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Emergence of radial orientation
selectivity: E�ect of cell density
changes and eccentricity in a
layered network
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We establish a simple mechanism by which radially oriented simple cells

can emerge in the primary visual cortex. In 1986, R. Linsker. proposed

a means by which radially symmetric, spatial opponent cells can evolve,

driven entirely by noise, from structure in the initial synaptic connectivity

distribution. We provide an analytical derivation of Linsker’s results, and

further show that radial eigenfunctions can be expressed as a weighted sum

of degenerate Cartesian eigenfunctions, and vice-versa. These results are

extended to allow for radially dependent cell density, from which we show

that, despite a circularly symmetric synaptic connectivity distribution, radially

biased orientation selectivity emerges in the third layer when cell density in

the first layer, or equivalently, synaptic radius, changes with eccentricity; i.e.,

distance to the center of the lamina. This provides a potential mechanism for

the emergence of radial orientation in the primary visual cortex before eye

opening and the onset of structured visual input after birth.

KEYWORDS

neural network, rate-based neural plasticity, orientation selectivity, spatial opponent

cells, neural learning, radial orientation

1. Introduction

Synaptic plasticity underpins our understanding of learning in neural systems as it is

themechanism that describes how synaptic weights change in response to sensory inputs.

Plasticity has traditionally been modeled as rate based, in which synaptic weights change

in response to short-time averaged pre- and postsynaptic neuron spiking rates. Over

the past two decades, the importance of pre- and postsynaptic neuron spike timing has

been recognized, particularly for contexts in which high-resolution temporal information

is involved at microsecond resolution (Gerstner et al., 1996; Kempter et al., 1999a),

prompting the emergence of spike-timing dependent plasticity (STDP) (Gerstner et al.,

1996; Markram et al., 1997). Spike-based plasticity updates synaptic strength in response

to the relative timing of pre- and postsynaptic spikes, amplifying synaptic strength if

the presynaptic neuron contributes to the postsynaptic neuron’s spike, and depressing a

synapse if the presynaptic neuron fires after the postsynaptic neuron and thus did not

contribute to its spike.
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Plasticity mechanisms have played a fundamental role in

explaining the emergence of simple cells in the early layers

of cortical processing, such as the primary visual cortex (V1).

Plasticity has successfully explained the emergence of simple

cells such as orientation selective cells (Bienenstock et al., 1982;

Wimbauer et al., 1998; Yamakazi, 2002), direction selective

cells (Wimbauer et al., 1997a,b; Senn and Buchs, 2003), ocular

dominance (Miller, 1990), and feature maps in which sensitivity

to a particular feature changes as the layer is traversed (Goodhill,

2007).

Much of the research on learning in cortical networks has

been empirical and computational because of the analytical

complexity of learning in response to parameters that describe

the number of layers, connectivity structure, and neuron type.

A notable exception is the analysis of the network proposed by

Linsker (1986b) in which the emergence of a spatial opponent

cell in the third layer of a three-layer network of Poisson neurons

with Gaussian connectivity kernels was described. Learning in

this network is a linear function of correlation in presynaptic

neural activity, with two learning constants that control the

homeostatic equilibrium. The linearity of the learning system

enables an eigenfunction analysis to be used to identify the

independent contributors to a postsynaptic neuron’s synaptic

weight structure. Eigenvalues provide a way to distinguish the

eigenfunctions that are the most significant contributors, and

hence determine the receptive field of the postsynaptic neuron.

Although, Linsker (1986b) focused on empirical results,

there has been significant work aimed at extending the analytical

framework for the network that he proposed. MacKay and

Miller (1990) proposed the first three radial eigenfunctions

based on the work by Tang (1990), but without providing a

derivation. The proposed eigenfunctions were for a simplified

learning system in which homeostatic constants were assumed

zero so that all plasticity was driven by correlation between

presynaptic inputs and there was no non-competitive plasticity.

They provided an empirical examination of the impact of non-

zero homeostatic constants, showing that the eigenfunction of

the leading eigenvalue can change in response to a change in the

homeostatic equilibrium.

Miller (1990) employed Linsker (1986b) network in a model

of learning in the primary visual cortex, with overlapping left

and right eye inputs processed by the lateral geniculate nucleus

(LGN). The network structure prompted correlation and anti-

correlation in two afferents originating from either the same

eye or the opposite eye, leading to the emergence of an ocular

dominance feature map. Miller (1990) provided a description

of an analytical derivation for the eigenfunctions of ocular

dominance feature maps across the cortex.

Wimbauer et al. (1998) extended Linsker (1986b) network

by incorporating lateral inhibitory connections in the third layer,

showing the emergence of orientation selective cells in the third

layer. They provided a derivation of Cartesian eigenfunctions for

learning with homeostatic constants set to zero and empirically

extended the solution to the general learning equation with non-

zero homeostatic constants. They simulated the development

of an orientation selective feature map distributed across the

primary visual cortex using a model slightly more complex than

that for which they derived the eigenfunctions.

Davey et al. (2021) relaxed Linsker (1986b) implicit

assumption of homogeneous spike propagation delay between

all pre- and post-synaptic connections between two layers.

Distance dependent propagation delay was incorporated

into all synaptic connections in the three layer network, and

the consequent impact on both neural activity and synaptic

plasticity analytically derived. Davey et al. (2021) established

that propagation delay induces low-pass filtering by dispersing

arrival times of spikes from pre-synaptic neurons, providing

a natural correlation cancellation mechanism for distal

connections. Cut-off frequency was found to decrease as the

dendritic arbor increased in radius across the pre-synaptic

layer, introducing an upper limit on temporal resolution for the

network.

Analytical solutions to Linsker (1986b) learning system

have played a central role in explaining the emergence of

spatial opponent and orientation selective cells in the network.

However, thus far, no general analytical solution has been

provided, with analytical results to date being for the simplified

system in which the homeostatic constants are set to zero.

We provide here a solution for the eigenfunctions of Linsker

(1986b) network in polar coordinates. As the system is radially

symmetric, polar coordinates provide a natural coordinate

system that enables an straightforward extension of polar

eigenfunctions to the general learning system with non-zero

homeostatic constants. One of the benefits of a full analytical

solution for the network is insight into why the receptive field

changes in response to changes in the homeostatic equilibrium

and the framework to determine exactly when this change

occurs.

Thus far, the original network proposed by Linsker (1986b)

and used in the subsequent analytical analyzes of Miller (1990)

andWimbauer et al. (1998)made an assumption that cells within

each layer were evenly distributed and that receptive fields of

all cells in a layer were statistically identical; i.e., drawn from

the same synaptic connectivity distribution. To date, there has

been no exploration of the impact of relaxing this assumption.

However, it is known that some biological cell layers show an

uneven density of cells across the lamina and contain receptive

fields with different statistical properties. For example, the retina

is well known to have cell density changes as a function of

eccentricity (Sjöstrand et al., 1999; Watson, 2014) and receptive

field sizes of neurons in the primary visual cortex increase with

stimulus eccentricity (Smith et al., 2001; Wurbs et al., 2013).

Furthermore, it is well established that orientation selectivity

in the primary visual cortex is biased toward radial orientation

in that an orientation selective neuron in the primary visual

cortex is more likely to be oriented toward the center of the
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retina (Rodionova et al., 2004). In this study, we explore the

impact of radially dependent synaptic connection distributions

on emerging receptive field properties in the third layer of

Linsker (1986b) network and show how introducing radially

dependent synaptic connectivity distributions in the first layer

results in the emergence of radial orientation selectivity in the

third layer of the network.

This paper is organized as follows. Section 2.1 introduces

the network and neuron models used, based on Linsker

(1986b) network. Radial eigenfunctions and eigenvalues are

analytically derived for the simplified learning equation, for

which the homeostatic parameters are set to zero, and then

extended via perturbation analysis to the full system in

Section 3. Eigenfunctions and eigenvalues are also derived

in Cartesian coordinates in Section 3 and compared to the

radial eigenfunctions. Finally, we show in Section 4 that

the introduction of radially dependent synaptic connectivity

distributions in the first layer generates radial orientation

selectivity in the third layer of the network.

2. Methods

2.1. Network specification

Following Linsker (1986b), we consider a three-layer, feed-

forward topographical network. The network is driven by

spontaneous neural activity in the first layer, layer A, which

inputs to layer B, which in turn inputs to layer C, as shown

schematically in Figure 1. Layers comprise populations of

homogeneous neurons, equispaced in a square grid across the

layer. The distance between the parallel layers is assumed to

dominate sufficiently such that propagation delay experienced

by action potentials from the presynaptic layer can be assumed

approximately equal. Neurons m and n of layer A have synaptic

inputs to neurons i and j of layer B, respectively, which both

input to neuron p of layer C.

Each postsynaptic neuron has a Gaussian synaptic

connection distribution, centered on its two-dimensional

position in the lamina, which ensures that radially proximate

neurons are more likely to connect to it than a neuron more

distal in the presynaptic lamina. The connectivity distributions

are parameterized by a standard deviation (radius) that is

homogeneous across a layer, denoted σAB and σBC, for synaptic

connections between layers A and B and layers B and C,

respectively. Consequently, the probability of neuron m in layer

A connecting to neuron i in layer B is given by

pN

(

(

xmi, ymi
)

; (σAB)2
)

=
1

π(σAB)2
exp

(

−
x2mi + y2mi

(σAB)2

)

,

(1)

where xmi =
(

xmi, ymi
)

is the two-dimensional radial distance

between m and i. Note that this definition differs from the

standard definition by a factor of
√
2 in accordance with the

definition used by Linsker (1986b), and is specifically chosen for

later convenience.

For postsynaptic neurons in layer C, it is useful to write

the connection probability in polar coordinates by assuming,

without loss of generality, that the postsynaptic neuron is at

position (0, 0). The probability of presynaptic neuron j in layer

B connecting to postsynaptic neuron p in layer C in polar

coordinates is then

pN

(

(

rjp, θjp
)

; (σBC)2
)

= π(σBC)2exp

(

−
r2jp

(σBC)2

)

, (2)

where rjp is the radial distance from neuron p, at the center of

the lamina, to neuron j in layer B, and θjp is the angle to j within

the two-dimensional lamina.

Linsker (1986b) showed that the Gaussian connectivity

distributions introduce spatial correlations in the inputs to layer

B neurons despite spontaneous neural activity in layer A being

uncorrelated. Layer B neurons that are spatially more proximate

will have a greater number of shared connections, and therefore

more correlated input, when compared to layer B neurons that

are positioned further apart in the lamina. The expected number

of shared presynaptic inputs between two postsynaptic neurons

in layer B, denoted NBB, is shown to be (see Appendix A for full

derivation)

E
[

NBB
(

dBij

)]

=
(NAB)2

2π(σAB)2
exp

(

−
(dBij)

2

2(σAB)2

)

, (3)

where NAB denotes the expected number of synaptic

connections from layer A to each neuron in layer B, and

dBij represents the distance between neurons i and j such that

dBij =
√

x2ij + y2ij.

2.2. Neuron model

The network is driven by spontaneous Poisson activity of

the layer A neurons. This implies that there are no spike-based

temporal correlations between input and output neurons other

than what is captured in the rate-based signals and that the rates

change slowly when compared to the period over which they are

averaged (Kempter et al., 1999b). Activity of a layer A neuron

is modeled as fAm (t) ∼ Poisson
(

χA
)

, where fAm (t) is the spiking

rate of layer A neuronm at time t.

As in Linsker (1986b), we use a Poisson neuronmodel so that

the network is linear when operating within the weight bounds,

discussed below. The update equations for neural activity in

layers B and C are

f Bi (t) = RBa +
∑

m

wAB
mi (t) fAm (t) , (4a)

fCp (t) = RCa +
∑

i

wBC
ip (t) f Bi (t) , (4b)
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FIGURE 1

Schematic diagram of the three layered feed-forward network.

Layer A neurons, m and n, feed into layer B neurons, i and j,

respectively, which in turn feed to a layer C neuron, p. Synaptic

connections between neurons are shown as solid, colored lines

connecting from a presynaptic neuron to a postsynaptic neuron

of the same color. The synaptic strength, for example between

neurons m and i, is denoted wAB
mi . Synaptic connection

distributions are homogeneous within a layer and modeled as

being Gaussian, parameterised by distance-dependent standard

deviation (radius) denoted σAB between layers A and B and σBC

between layers B and C. The probability of a postsynaptic

neuron having a presynaptic connection from a particular

position in the layer is depicted by the intensity of the color of

the presynaptic layer. Not shown in the diagram is the expected

number of presynaptic connections input to a neuron, denoted

by NAB and NBC for postsynaptic neurons in layers B and C,

respectively. The radial distance between two neurons within a

lamina, for example between neuron m from layer A and i from

layer B, is denoted dB
mi.

where RBa , R
C
a denote spontaneous firing rates, and wAB

mi (t),

wBC
ip (t) depict synaptic strengths between neurons m and i in

layers A and B, respectively, and neurons i and p in layers B and

C, respectively. Note that an implicit assumption in this Poisson

model of neural activity is that propagation delay is negligible

or, equivalently, is dominated by inter-layer distances between

neurons and, therefore, can be considered homogeneous across

all inputs to a postsynaptic neuron.

2.3. Learning dynamics

The adiabatic approximation in neural learning is that

incremental weight changes occur slowly with respect to neural

dynamics, which occur on amillisecond timescale. Furthermore,

neurons within the same population are assumed to have

the same statistical properties of neural activity and synaptic

connectivity. Consequently, the system is ergodic and the

spike rate can be determined from the ensemble average or

from a temporal mean over the timescale of learning. Under

these assumptions, the learning equation can be expressed as

a differential equation (Linsker, 1986b). The general learning

equations for synaptic weights between neurons in layers A and

B and synapses connecting layers B and C is given by Linsker

(1986b)

ηẇAB
mi = kAB1 +

1

NAB

∑

n

wAB
ni

(

QA
mn + kAB2

)

,

wmin ≤ wAB
mi ≤ wmax , (5a)

ηẇBC
ip = kBC1 +

1

NBC

∑

j

wBC
jp

(

QB
ij + kBC2

)

,

wmin ≤ wBC
ip ≤ wmax , (5b)

where η≪1 is the learning rate that ensures that learning is slow

on a millisecond timescale, wmin and wmax are the lower and

upper bounds on the weights, respectively, and the parameters

kAB1 , kAB2 , kBC1 , kBC2 are layer specific constants controlling

homeostasis (i.e., independent of the correlation structure of

the inputs). The definition for normalized covariance has the

same structure for each layer; for example, the normalized

covariance QA
mn between layer A neurons m and n is

defined by

QA
mn =

〈

fAm − fA
〉 〈

fAn − fA
〉

f 20
, (6)

where 〈〉 depicts the ensemble average, fA = χA, denotes the

temporal average of layer A neural activity, and f 20 is a scaling

factor to normalize the covariance matrix Q.

For a Gaussian synaptic density distribution, the covariance

between layer B neurons is a function of the radial distance

separating the neurons, as described in Appendix B,

cov
(

fAm , fAn

)

=

(

NABfA
)2

2π(σAB)2
exp

(

−
(

dAmn

)2

2(σAB)2

)

. (7)

Only radial distances are considered, so that distances

between layers are assumed to have negligible impact on

learning dynamics since the inter-layer transmission delay

is uniform.

Normalizing this result and incorporating it into Equation

(5) gives the learning equation

ηẇmi = k1 +
1

N

∑

n

wni

(

exp

(

−
|xmi − xni|2

2(σAB)2

)

+ k2

)

, (8)
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where it is assumed that the covariance is normalized and we

have removed the layer superscripts for readability.

It is assumed that a deeper layer is not learned until after

its presynaptic layer has converged to a stable weight structure,

and hence layers are learned sequentially. This accords with the

approach employed by Linsker (1986b) and does not impact

the final weight structure across the network. Consequently,

synapses connecting layers A and B evolve to a stable structure

before learning begins for synapses connecting layers B and C.

Linsker (1986b) demonstrated that individual synapses

are unstable and, for excitatory synapses, all or all-but-

one necessarily reach the upper bound, wmax. However,

under an assumption of weak covariance of the inputs

(MacKay and Miller, 1990), the mean weight of synapses

input to a postsynaptic neuron is not necessarily unstable but

rather controlled by homeostatic mechanisms. For excitatory

connections, the mean weight of a postsynaptic neuron’s

synapses will converge to

w = −
k1
k2

, if k2 < 0, and 0 <
k1
k2

< 1, (9)

where the conditions on k1 and k2 are required to ensure that

the mean synaptic weight does not diverge to the bounds. For all

synapses to grow until they reach the upper bound, it is required

that k1 + k2 > 0. In this case, the system is unstable so that

the mean synaptic weight grows until all individual synapses, or

all-but-one, have reached the upper bound (Linsker, 1986b).

Linsker (1986b) selected homeostatic constants for synapses

connecting layers A and B such that the mean weight was

unstable and, consequently, all synapses diverged to the upper

bound. For connections between layers B andC, the homeostatic

constants are chosen such that the mean weight is stable,

requiring some individual synapses to diverge to the lower

bound and others to the upper bound.

With synaptic connections between layers A and B assumed

to all reach the upper bound, the focus is on determining the

learned synaptic structure for postsynaptic neurons in layer C.

Given that the learning equation in Equation (5b) is linear within

the weight bounds, the system lends itself to an eigenfunction

analysis. That is, we wish to identify the independent

eigenfunctions that contribute to the evolution of synaptic

weights. Given that the system is driven by unstructured

noise, it will self-organize such that the eigenfunction with the

leading eigenvalue will ultimately dominate the synaptic weight

structure.

In order to conduct an eigenfunction analysis, we

approximate the discrete grid of neurons by its continuous

limit. The probability of a synaptic connection existing between

neuron m at position
(

xmi, ymi
)

in the presynaptic layer and

postsynaptic neuron i, detailed in Equation (1), becomes a

synaptic density describing the expected proportion of the total

number of presynaptic inputs originating from
(

xmi, ymi
)

. The

synaptic strength is then considered to be the average weight of

synapses at this location. In the continuous limit, the learning

equation in Equation (8) becomes

ηw (x) = k1 +
∞
∫

−∞

A

(

exp

(

−
∣

∣x− x
′∣
∣

2

2(σAB)2

)

+ k2

)

exp

(

−
∣

∣x
′∣
∣

2 + |x|2

(σBC)2

)

w
(

x
′)d2x′ , (10)

where neuron i in layer B is denoted by its continuous position

vector x =
(

xip, yip
)

and neuron j in layer B is represented by

its continuous vector, x′ =
(

xjp, yjp
)

, where vector subscripts

have been omitted for readability. The Cartesian coordinates

have been centered on the layer C neuron. Note that A

contains coefficients to normalize covariance and connection

probabilities, such that A =
(

π(σBC)2
)−2

.

To characterize the system in terms of its eigenfunctions, we

need to solve the eigenvalue problem for the system,

ληw (x) =
∞
∫

−∞

A

(

exp

(

−
∣

∣x− x
′∣
∣

2

2(σAB)2

)

+ k2

)

exp

(

−
∣

∣x
′∣
∣

2 + |x|2

(σBC)2

)

w
(

x
′)d2x′ . (11)

3. Radial eigenfunctions of the
learning equation

Given the circular symmetry of the spatial opponent neurons

that emerge from Linsker (1986b) network, we derive the

radial eigenfunctions and eigenvalues of a layer C neuron’s

receptive field. By identifying the eigenfunction with the largest

eigenvalue, we can analytically determine the expected receptive

field of the neuron, since this eigenfunction is expected to grow

most rapidly and dominate development of the receptive field.

3.1. Radial eigenfunctions of the
simplified learning equation

To proceed we initially set k2 to zero and later consider the

more general case in which k2 is non-zero. Converting to polar

coordinates, such that r and θ give the magnitude and phase of

x, and transforming r to be unit-less by scaling it by 1
σAB , the
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eigenvalue problem in Equation (11) becomes

ληw (r, θ) =A(σAB)2exp

(

−
r2

2

(

2(σAB)2 + (σBC)2

(σBC)2

))

∞
∫

0

dr̃r̃exp

(

−
r̃2

2

(

2(σAB)2 + (σBC)2

(σBC)2

))

2π
∫

0

dθ̃exp



−
−2rr̃ cos

(

θ − θ̃

)

2



w
(

r̃, θ̃
)

. (12)

The eigenfunctions and eigenvalues for the simplified

learning equation are derived in Appendix C.1. Introducing a

radial decay parameter that controls the rate of decay from the

center of the receptive field,

C =
(σBC)2

2σAB
√

(σAB)2 + (σBC)2
, (13)

the eigenfunctions and associated eigenvalues can be expressed

in polar coordinates as

λl,n = 2πA

(

C(σBC)2

C((σAB)2 + (σBC)2)+ (σBC)2

)l+n+1

(14a)

vl,n (r, θ) = Nl,nr
l−nexp

(

−
r2

2C

)

Ll−n
n

(

r2

C

)

exp
(

i(l− n)θ
)

,

(14b)

where Nl,n is a normalization factor and Ll−n
n is an associated

Laguerre polynomial. Since
∫∞
0 xpe−xL

p
q(x)

2 dx = (p + q)!/q!,

the normalization factor can be derived as

Nl,n =







√

2
πC(σAB)2

, l = n
√

n!
π l!Cl−n+1(σAB)2

, otherwise,
(15)

where the factor of 2 difference occurs for the case l = n

because the integral for the angular component is over cos (0θ),

a constant.

Eigenfunctions up to order 4 are shown in Figure 2 in order

of decreasing eigenvalue, λ. The eigenfunctions are ordered by

l + n, where n controls the shape of the Laguerre polynomial

and l − n controls the angular frequency. The eigenfunction

with the largest eigenvalue has order l + n = 0 and is radially

symmetric with all positive synaptic weights. Consequently, for

the simplified learning equation described in Equation (12) and

after learning for a sufficiently long period, the synaptic weight

structure of a layer C postsynaptic neuron will be all excitatory

connections with weights at the upper bound.

For completeness, we derive the eigenfunctions and

eigenvalues of Linsker (1986b) network using Cartesian

coordinates, the solution of which is a special case of that found

in Wimbauer et al. (1997b). We show that a weighted sum of

FIGURE 2

Radial eigenvalues and eigenfunctions of the simplified learning

equation, Equation (12), given in Equation (14) for pairs of

indices, (l,n) ∈ λl,n. Eigenvalues are ordered by l+ n, with

l+ n = 0 giving the largest eigenvalue and, hence, (0, 0) being

the leading eigenfunction. Eigenfunctions in the same row have

the same eigenvalue and are, therefore, degenerate.

Eigenfunctions are given for both the real part of Equation (14b)

(i.e., the cosine angular component) and for the imaginary part,

denoted by R and I, respectively. From the figure, it can be seen

that, when l = n, the eigenfunction is radially symmetric, being

fully determined by the radial component of the eigenfunction.

White indicates positive regions of synaptic weights, while black

indicates negative regions. The leading eigenfunction is all

positive and dominates learning. As l− n increases, the

frequency of the angular component increases.

the Cartesian eigenfunctions produces the radial eigenfunctions,

thus establishing equivalence. The derivations are given in

Appendix D. For eigenvalues indexed by order u and v, for the

x and y dimensions respectively, eigenfunction and eigenvalue

pairs are given by

λu,v = 2π(σAB)2qu+v+1 (16a)

vu,v

(

x
√
C
,

y
√
C

)

=
1

√
2uu!

1
√
2vv!

Hu

(

x
√
C

)

Hv

(

y
√
C

)

exp

(

−
x2 + y2

2C

)

. (16b)

Figure 3 shows Cartesian eigenfunctions up to the fourth

order, which is determined by u + v. The eigenfunctions

are shown in order of decreasing eigenvalue, so that the

eigenfunction with the largest eigenvalue is of order u + v =
0. This eigenfunction is radially symmetric, with all positive

weights. A radial eigenfunction with a given degenerate order

can be reconstructed as a weighted linear sum of Cartesian

eigenfunctions of the same order (Figure 4). Consequently, the
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FIGURE 3

Cartesian eigenfunctions of the simplified learning equation,

Equation (61), defined for index pairs (u, v). Eigenvalues are

determined by u+ v, where (0, 0) has the largest eigenvalue and

therefore v0,0

(

x√
C
, y√

C

)

is the leading eigenfunction, dominating

learning. Eigenfunctions in the same row have the same

eigenvalue and are, therefore, degenerate. Eigenvalues decrease

with descending rows. Regions of white indicate positive

synaptic weights, while black indicates negative weights. The

leading eigenfunction has all positive synapse weights.

Cartesian eigenfunctions of the simplified learning equation

described in Equation (61) give the same result as the radial

eigenfunctions, shown in Figure 2. After sustained learning, the

weight structure of a neuron in layer C will have all synapses at

the upper bound.

3.2. Radial eigenfunctions of the full
learning equation

While covariance between the activity of layer B input

neurons primarily drives the structure of the layer C cell, the kBC1
and kBC2 terms control the homeostatic equilibrium. MacKay

and Miller (1990) empirically showed that the choice of kBC2 can

change the structure of the dominant eigenfunction, and hence

the resultant receptive field of a layer C cell. As Figure 2 shows,

for the simplified system, the leading eigenvalue has all synapses

at the upper or the lower bound. For a negative value of kBC2 ,

homeostasis can only be reached if some of the synapses are

negative. To determine the impact of the learning constant, we

find an analytical expression for the eigenfunctions of the full

learning equation, Equation (11), by conducting a perturbation

analysis on the simplified learning equation, in Equation (11).

The full derivation is detailed in Appendix C.2. The

eigenfunctions of the first order perturbation are equal to

those of the simplified equation, Equation (14). However, the

eigenvalues are altered by the addition of the learning constants

according to

λ1l,n = λl,n +Wl,n, (17)

where

Wl,n = πCl−n+1kBC2 N2
l,n

Ŵ
(

l+ n+ 1
)

(α − 1)2n

n!2αl+n+1

2F1

(

−n, n; l− n;
α(α − 2)

(α − 1)2

)

, (18)

and 2F1 () is the hypergeometric function. As detailed in

Appendix C.2, the only non-zero perturbations are where l + n

is even and l = n, which happens only once for each even order

degenerate eigenfunction set.

Inspection of Equation (18) reveals that, for positive k2,

perturbation of the eigenvalues is positive and monotonically

decreasing with l + n. Consequently, the order of the

eigenvalues remains the same. For negative k2, the perturbation

on the eigenvalues is negative and monotonically increasing

with eigenfunction order, l + n (see Figure 5). Since these

perturbations are being added to the original eigenvalues, which

are positive, the result can be a change in the dominant

eigenfunction. This result supports the empirical findings by

MacKay and Miller (1990) who showed the emergence of a

spatial opponent cell in C, where l+n = 0 for small values of k2,

and bi-lobed neurons with l+ n = 1, for larger values of k2.

4. Emergence of radial orientation
selectivity

The original network proposed by Linsker (1986b), and

for which we have calculated the eigenfunctions, made an

implicit assumption that neurons within each layer were evenly

distributed and that receptive fields of all neurons in a layer were

statistically identical, drawn from the same synaptic connectivity

distribution. However, it is known that some biological neuron

layers show an uneven density of cells across the lamina, and

contain receptive fields with different statistical properties.

We consider the impact of changing neuron density as a

function of distance to the layer center. We assume that a

consequence of this is that the radius of a neuron’s synaptic

connectivity distribution becomes dependent on the neuron’s

position in the layer. That is, where neurons are spread further

apart there is an increase in connectivity radius to compensate.

For simplicity assume that a postsynaptic neurons’s arbor is

within a sufficiently small area that the presynaptic neuron

connection density is parameterised by a constant radius. If we

denote the spatial center of the neuron layer by c and consider

this point to have location vector [0, 0], then a postsynaptic cell,
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FIGURE 4

A weighted sum of degenerate Cartesian eigenfunctions of order u+ v = 4 are used to generate radial eigenfunctions of order l+ n = 4. Weights

are determined using maximum likelihood regression. The top row shows degenerate Cartesian eigenfunctions of order 4. The middle row

shows the weighted sum of the Cartesian eigenfunctions, reproducing the radial eigenfunctions in the bottom row of Figure 2. The bottom row

shows the regression weights.

located at
[

xic, yic
]

, has connection density that is a function of

the magnitude of its position,

dBic =
(

x2i + y2i

)1/2
. (19)

Let the radius of a cell be a linear function of its radial

distance to the layer center, such that

σAB
i = dBicσ

AB. (20)

In this scenario, the probability of presynaptic

neuron, m, in layer A, generating a synaptic connection

to postsynaptic neuron, i, in layer B, is given

by

pN

(

(

xmi, ymi
)

;
1

2
(σAB)2

)

=
1

π(dBic)
2(σAB)2

exp

(

−
x2mi + y2mi

(dBic)
2(σAB)2

)

. (21)

In Appendix E, we calculate the expected number of shared

inputs between two neurons in layer B. This is important to

consider as shared inputs is the source of correlation between

layer B neurons, which then triggers the emergence of spatial

opponent neurons in Linsker (1986b) network. In the case

FIGURE 5

E�ect of adding the perturbation term, k2, on eigenvalues λl,n,

represented by Wl,n in Equation (17). For positive k2, the

perturbation results in Wl,n being positive, while for negative k2,

the perturbation causes Wl,n to be negative.

of the synaptic connection radius increasing linearly with

distance from the center of the neuron layer, the expected

number of shared inputs between two layer B neurons is
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FIGURE 6

Examples of receptive fields and tuning curves. (A) Receptive fields predicted by the leading eigenfunction of three layer C neurons at di�erent

locations relative to the center of layer B. The layer is small relative to the receptive field size of the layer C neurons to highlight changes in

receptive field size and the radial orientation selectivity of selected layer C neurons. These features emerge from a linearly increasing arbor

radius in synaptic connectivity between layer A and layer B neurons. As established by Linsker (1986b), it is the overlap between the arbors of

layer B neurons that prompts correlation in their activity despite only inputting unstructured noise into layer A and, subsequently, generates the

structured receptive fields found in the layer C neurons. (B) Tuning curves generated for each of the layer C neurons in (A). Tuning curves were

calculated for the spatial frequency prompting the largest response in the neuron.

found to be

E
[

NAB;
[

xi, yi
]

,
[

xj, yj
]

]

=
(NAB)2

π(σAB)2
(

d2i + d2j

)

exp



−
d2ij

(σAB)2
(

d2i + d2j

)



 . (22)

We simulated this learning equation and plotted the

receptive fields of three layer C neurons in three different

positions relative to a small layer of B neurons (see Figure 6).

The neurons developed radial orientation tuning, with tuning

curves showing an orientation directed toward the center of the

lamina.

5. Discussion

In this paper, we provide a general expression for the

complete set of eigenfunctions for the three-layer feed-forward

network proposed by Linsker (1986b). Initially, the homeostatic

parameters were set to zero to simplify the learning equation.

This result was then extended via a perturbation analysis to

provide the complete set of eigenfunctions for the network with

non-zero homeostatic parameters.

Linsker (1986b) analysis was integral in revealing how neural

learning occurred before the onset of structured environmental

input, empirically demonstrating the emergence of spatial

opponent neurons in the third layer. MacKay and Miller (1990)

provided a stability analysis of Linsker (1986b) network, noting

the first six eigenfunctions, determined via an ansatz based on

the results of Tang (1990). MacKay and Miller (1990) showed

that the receptive field structure of cells in the third layer

could be either spatial opponent neuron or bi-lobed neurons,

depending upon the value of the homeostatic parameters.

Similarly, Walton and Bissest (1992) extended Linsker (1986b)

network to the auditory system, considering the morphology of

the resulting neuron based on the homeostatic parameters of the

system. In this paper, we provide the complete set of eigenvalues

for the full learning equation, enabling an exact calculation of

the homeostatic parameters required to induce this change, and

a quantitative analysis on the parameter space.

Linsker (1986a) showed that augmenting the network

with additional layers prompts the development of orientation

selective neurons. However, given the absence of a complete

mathematical framework for the three-layer network, there

has been limited analysis provided for the development of

orientation selective neurons in Linsker (1986a) network

(MacKay and Miller, 1990; Miller, 1990; Wimbauer et al.,
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1998). Yamakazi (2002) provided an analysis of deeper layers,

essentially based on an ansatz for the eigenfunctions for the

three-layer network. The results in this paper provide the

foundation for analysis of larger networks and hence the

development of features other than spatial opponent neurons.

As the system is radially symmetric in connectivity distribution,

radial eigenfunctions provide a natural coordinate system that

will facilitate future work on more complex network and

parameter regimes.

The results of this study demonstrate that relaxing the

assumption of evenly distributed neurons across the layer can

change the receptive fields that emerge in the third layer.

Similar to the distribution in the retina, we examined a

decrease in neuron density with increasing distance from the

center of the layer and, consequently, an increase in synaptic

connectivity radius. We analytically derived an expression for

the learning equation in the third layer, as a result of a

radially dependent connectivity distribution between the first

and second layers. The eigenfunctions for the learning equation

were empirically calculated, showing that orientation selective

neurons emerge. Interestingly, the preferred orientation of the

neurons was the radial orientation toward the center of the

laminar. The radial bias is more pronounced for peripheral

neurons, which accords with experimental results (Freeman

et al., 2011).

It is well established that neural density changes as a function

of eccentricity in the retina (Sjöstrand et al., 1999; Watson,

2014), and receptive field sizes of neurons in the primary visual

cortex increase with stimulus eccentricity (Smith et al., 2001;

Wurbs et al., 2013). Furthermore, it is known that orientation

selectivity in the primary visual cortex is biased toward radial

orientation, in that an orientation selective neuron in the

primary visual cortex is more likely to be oriented toward the

center of the retina (Rodionova et al., 2004; Sasaki et al., 2006;

Antinucci and Hindges, 2018). However, the origin of radial

orientation selectivity has not yet been confirmed, and hence its

emergence from inhomogeneous cell density has significance as

a potential mechanism. It should be noted that experimentally

measured orientation bias has been shown to emerge as an

artifact of visual gratings (Scholl et al., 2013). However, given

that radial orientation bias has been established using a range of

stimuli, such as small bars (Philips and Chakravarthy, 2017), and

random dots in conjunction with reverse correlation (Mareschal

et al., 2006), its presence is now well established.
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