
ORIGINAL RESEARCH
published: 17 June 2022

doi: 10.3389/fncom.2022.889992

Frontiers in Computational Neuroscience | www.frontiersin.org 1 June 2022 | Volume 16 | Article 889992

Edited by:

Andreas Bahmer,

University Hospital Frankfurt, Germany

Reviewed by:

Peter Cariani,

Boston University, United States

Yoojin Chung,

Decibel Therapeutics, Inc.,

United States

*Correspondence:

Raymond L. Goldsworthy

raymond.goldsworthy@med.usc.edu

Received: 04 March 2022

Accepted: 25 May 2022

Published: 17 June 2022

Citation:

Goldsworthy RL (2022) Computational

Modeling of Synchrony in the Auditory

Nerve in Response to Acoustic and

Electric Stimulation.

Front. Comput. Neurosci. 16:889992.

doi: 10.3389/fncom.2022.889992

Computational Modeling of
Synchrony in the Auditory Nerve in
Response to Acoustic and Electric
Stimulation
Raymond L. Goldsworthy*

Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California,

Los Angeles, CA, United States

Cochlear implants are medical devices that provide hearing to nearly one million people

around the world. Outcomes are impressive with most recipients learning to understand

speech through this new way of hearing. Music perception and speech reception

in noise, however, are notably poor. These aspects of hearing critically depend on

sensitivity to pitch, whether the musical pitch of an instrument or the vocal pitch of

speech. The present article examines cues for pitch perception in the auditory nerve

based on computational models. Modeled neural synchrony for pure and complex

tones is examined for three different electric stimulation strategies including Continuous

Interleaved Sampling (CIS), High-Fidelity CIS (HDCIS), and Peak-Derived Timing (PDT).

Computational modeling of current spread and neuronal response are used to predict

neural activity to electric and acoustic stimulation. It is shown that CIS does not provide

neural synchrony to the frequency of pure tones nor to the fundamental component

of complex tones. The newer HDCIS and PDT strategies restore synchrony to both

the frequency of pure tones and to the fundamental component of complex tones.

Current spread reduces spatial specificity of excitation as well as the temporal fidelity

of neural synchrony, but modeled neural excitation restores precision of these cues.

Overall, modeled neural excitation to electric stimulation that incorporates temporal fine

structure (e.g., HDCIS and PDT) indicates neural synchrony comparable to that provided

by acoustic stimulation. Discussion considers the importance of stimulation rate and

long-term rehabilitation to provide temporal cues for pitch perception.
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INTRODUCTION

Hearing is remarkable. People with the best sensitivity to musical pitch can discriminate tones
that are less than a tenth of a percent apart. Those with the best sensitivity can hear sounds
move in the environment by less than a degree. This precision requires perception of timing
differences across ears on the order of tens of microseconds (Tillein et al., 2011; Brughera et al.,
2013). Timing is essential to the auditory system. Special physiological mechanisms have evolved
to encode timing of sounds with high fidelity (Joris et al., 2004; Joris and Yin, 2007; Golding and
Oertel, 2012; Bahmer and Gupta, 2018). Auditory nerve fibers respond synchronously to incoming
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sounds for frequencies up to two thousand cycles per second,
arguably with useful timing cues up to ten thousand cycles
per second (Verschooten et al., 2019). Despite the many
evolutionary developments required for precise coding of timing
in the auditory system, and despite strong arguments for the
importance of temporal fine structure for music and speech
perception (Lorenzi et al., 2006), timing cues are largely
discarded by sound processing for cochlear implants. This
article describes results from computational modeling of cochlear
implant stimulation followed by current spread and neuronal
excitation. Results inform how neural synchrony is discarded
by common stimulation strategies, and how synchrony can be
restored by strategies that encode temporal fine structure of
incoming sound into electrical stimulation.

Cochlear implants are remarkable. People who lose their
hearing can hear again through an electrode array surgically
implanted in their cochlea (Svirsky, 2017). Nearly a million
people can hear because of cochlear implants. The quality of
hearing is impressive with most recipients able to understand
spoken speech in quiet without relying on lip-reading or other
visual cues (Niparko et al., 2010). Music appreciation and
speech reception in noise, however, tend to be poor (Looi
et al., 2012). The fact that hearing with cochlear implants is
not as good as normal is not surprising. Cochlear implants
are limited in their ability to stimulate different regions of the
auditory nerve (Middlebrooks and Snyder, 2007). The auditory
nerve is comprised of ∼30–40 thousand nerve fibers while
cochlear implants use at most 22 stimulating electrodes (Loizou,
1999; Liberman et al., 2016). Furthermore, electrical current
broadly spreads in the cochlea degrading the spatial specificity
of stimulation (Landsberger et al., 2012).

This limit on spatial specificity is in sharp contrast to
the capacity of cochlear implants to stimulate with temporal
precision. Most cochlear implants control stimulation timing
with microsecond precision (Shannon, 1992). This exquisite
temporal precision, however, is poorly used by conventional
sound processing. The most common sound processing for
cochlear implants, Advanced Combinatorial Encoders (ACE),
used on Cochlear Corporation devices, discards temporal
fine structure in favor of encoding slowly varying envelope
oscillations up to 300 cycles per second, even though there is clear
evidence that timing information is important at least up to 2–
4 thousand cycles per second (Dynes and Delgutte, 1992; Oertel
et al., 2000; Joris et al., 2004; Verschooten et al., 2019).

There are historical reasons why ACE became commonly
used today. Early sound processing for cochlear implants
included simultaneous analog stimulation and strategies based
on speech feature extraction (Loizou, 1999). Simultaneous analog
stimulation caused interference between electrodes that was
difficult to control and that produced unwanted fluctuations
in loudness (Wilson and Dorman, 2008, 2018). Strategies built
on speech feature extraction suffered from a different problem.
Those strategies were limited by challenges of estimating
speech features—fundamental and formant frequencies—in
noisy environments. Consequently, the forerunner of the ACE
strategy, known as Spectral Peak (SPEAK), broke through as
a widely successful strategy based on amplitude modulation

of pulsatile stimulation. By encoding spectral maxima directly,
these stimulation strategies reliably conveyed essential speech
information. This approach has consequently been referred to as
speech processing rather than sound processing since it is quite
effective for speech but less so for music.

Attempts have been made over recent decades to preserve
this effective encoding of speech features provided by strategies
like SPEAK and ACE while enhancing temporal information
important for perception of pitch and melody in music. Peak-
Derived Timing (PDT) triggers pulse timings based on the
temporal fine structure of sound (vanHoesel and Tyler, 2003; van
Hoesel, 2007; Vandali and van Hoesel, 2011). With PDT, sound
is separated into overlapping frequency bands as done for ACE,
but rather than discarding temporal fine structure, PDT triggers
pulse timings based on local peaks in the filtered signal of each
processing channel. A similar strategy was developed for MED-
EL cochlear implants referred to as Fine Structure Processing
(FSP), which schedules pulse timings on zero crossing rather than
peaks, but the same principal applies. Further, while PDT applied
the stimulus-derived timing for every electrode, FSP originally
only applied the fine structure processing to the most apical
electrode corresponding to bandpass filtering center frequencies
up to 250Hz (Riss et al., 2014). Variations of FSP have since
been developed that use higher stimulation rates and present
fine structure to the four most apical electrodes corresponding
to bandpass filter center frequencies up to 950Hz (FS4: Riss et al.,
2014, 2016).

Results with such temporal encoding strategies have been
mixed. Studies of PDT found little to no benefit on either
pitch perception or spatial hearing (van Hoesel and Tyler, 2003;
van Hoesel, 2007; Vandali and van Hoesel, 2011). Early reports
for FSP found small but significant benefits on pitch without
detriment to speech (Riss et al., 2014, 2016). More promising,
recent studies suggest that benefits for pitch perception emerge
from experience with the newly encoded information, with
continued benefits after extended experience (Riss et al., 2016).
There aremany challenges to determining whether new strategies
achieve the desired outcome of better encoding of temporal
cues for pitch. Experience may be needed to fully learn to
use these cues. Since long-term rehabilitation may be needed
to learn how to use these cues, tools are needed to better
characterize how well these cues are encoded for different
stimulation strategies. Computational models of current spread
and neural excitation can explicitly characterize cues available in
the auditory nerve in response to cochlear implant stimulation.
Careful characterization of these cues clarifies the extent that
pitch perception of cochlear implant users is limited by the
availability of these cues rather than by the brain’s ability to learn
to use them.

This article considers computational neural modeling of
spatial and temporal cues in the auditory-nerve response for pitch
perception. Cochlear implants can transmit spatial excitation
cues with more deeply inserted electrodes evoking lower pitches
(Shannon, 1983; Landsberger and Galvin, 2011). Cochlear
implants also convey temporal cues with higher stimulation or
modulation rates providing higher pitches (Tong et al., 1982;
Zeng, 2002). There is considerable debate regarding optimal
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use of spatial and temporal cues for pitch perception for both
acoustic and electric hearing (Eddington et al., 1978; Loeb, 2005;
Cedolin and Delgutte, 2010; Kong and Carlyon, 2010; Oxenham
et al., 2011; Miyazono and Moore, 2013; Marimuthu et al., 2016;
Verschooten et al., 2019).

While it is unclear to what extent spatial and temporal
cues contribute to pitch, the resulting resolution in normal
hearing allows listeners to discriminate frequency differences
<1% for a wide range of conditions (Moore et al., 2008; Micheyl
et al., 2012). The best cochlear implant users despite having at
most 22 stimulating electrodes, and despite discarding temporal
fine structure, can distinguish pure tones based on frequency
differences of about 1–5% from 500 to 2,000Hz depending
on frequency allocation of clinical processing (Goldsworthy
et al., 2013; Goldsworthy, 2015). Pitch perception for complex
tones, however, is comparably worse with cochlear implant users
typically only able to discriminate differences in fundamental
frequency of 5 to 20% in the ecologically essential range of 110–
440Hz (Goldsworthy et al., 2013; Goldsworthy, 2015). While it
is difficult to characterize contributions of spatial and temporal
cues for complex pitch (Carlyon andDeeks, 2002; Oxenham et al.,
2004, 2011), work has clarified the extent that these cues are
present and distributed in the auditory-nerve response (Cariani
and Delgutte, 1996a; Plack and Oxenham, 2005).

For complex tones with fundamental frequencies in the range
of human voices (100 to 300Hz), cochlear implant filtering does
not provide tonotopically resolved harmonic structure (Swanson
et al., 2019). Consequently, implant users rely on temporal
cues for discriminating complex tones in this range. Temporal
cues for pitch become less effective with increasing rates with
marked deterioration of resolution between 200 and 300Hz.
This leads many cochlear implant users to express frustration
with melody recognition above middle C (∼262Hz) (Looi et al.,
2012). It has been shown that discrimination improves for
fundamental frequencies higher than 300Hz, likely because of
better access to place cues to make up for the impoverished rate
cues (Goldsworthy, 2015; Swanson et al., 2019).

In the present article, the spatial and temporal cues
associated with the frequency of pure tones and the fundamental
frequency of complex tones is characterized in acoustic hearing
using a computational model of the auditory periphery.
This computational model has been rigorously validated on
physiological recordings and behavioral measures (Zhang et al.,
2001; Zilany et al., 2009, 2014). The same analyses are
then performed to characterize the spatial and temporal cues
available in cochlear implant stimulation followed by current
spread and a point process model of neural excitation (Litvak
et al., 2007; Goldwyn et al., 2012). Three cochlear implant
stimulation strategies are examined including Continuous
Interleaved Sampling (CIS), High-Definition CIS (HDCIS), and
Peak-Derived Timing (PDT). These strategies were selected as
representative of conventional stimulation that discards temporal
fine structure (CIS) and newer strategies that actively encode
acoustic temporal fine structure into electrical stimulation
(HDCIS and PDT). Finally, an analysis of how stimulation rate
affects neural synchrony is conducted to characterize information
loss for devices that cannot stimulate with high pulse rates. The

results inform the extent that acoustic temporal fine structure of
incoming sound is transmitted into neural excitation.

MATERIALS AND METHODS

Overview
Computational models were used to compare neural synchrony
for acoustic and electric stimulation. Neural synchrony was
quantified as vector strength. For acoustic stimulation, auditory-
nerve fibers were simulated based on a computational model of
the auditory periphery that has been validated with extensive
physiological data (Zilany et al., 2014). For electric stimulation,
cochlear implant stimulation was based on emulations of three
stimulation strategies that differ in how temporal features
of incoming sounds are encoded. The three strategies were
Continuous Interleaved Sampling (CIS), High-Definition CIS
(HDCIS), and Peak-Derived Timing (PDT). These strategies
were probed using pure and complex tones. Output electrical
stimulation patterns were processed through a model of current
spread followed by a point process model of neuronal excitation
(Litvak et al., 2007; Goldwyn et al., 2012).

Stimuli
Stimuli were pure and complex tones generated in MATLAB R©

as 30ms tones. Pure tones were generated as sinusoids in sine
phase. Complex tones were generated by summing sinusoids
in sine phase. Integer harmonic components were included
from the fundamental to the highest harmonic <10,000 cycles
per second (Hz). Harmonic components were summed with
spectral attenuation of −6 dB per octave as typically occurs for
complex sounds in nature (McDermott and Oxenham, 2008). All
stimuli were calibrated to an input level of 65 dB sound pressure
level (SPL) for the phenomenological auditory-nerve model and
to have a peak value of one for cochlear implant processing.

Computational Modeling of Auditory-Nerve
Response to Acoustic and Electric
Stimulation
Phenomenological Auditory-Nerve Model
Auditory-nerve activity was modeled using a phenomenological
model of auditory processing that has been developed across
multiple institutions (Zilany et al., 2014). This computational
model includes aspects of the auditory periphery including a
middle-ear filter, a feed-forward control-path, adaptive filtering
to emulate cochlear mechanics, inner hair-cell transduction
kinematics followed by a synapse model and discharge generator.
Thus, it models multiple aspects of auditory physiology and
has been validated with a wide range of physiological data
as well as behavioral data from humans. While the model
captures diverse aspects of the auditory periphery, it is
referred to here as an auditory-nerve model since the focus
is on the auditory-nerve response to acoustic stimuli. In
this article, it will be referred to as the phenomenological
auditory-nerve model to distinguish it from the point process
neuron model used in cochlear implant simulations. The
phenomenological auditory-nerve model was implemented
with 256 fibers with logarithmically spaced characteristic
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frequencies from 125 to 8,000Hz. The input level for all
stimuli was specified as 65 dB SPL. The species parameter
was set to human, which uses basilar-membrane tuning
based on (Shera et al., 2002). The inner and outer hair-
cell scaling factor was specified to model normal hearing.
All three available fiber types (low, medium, and high levels
of spontaneous discharge) were examined but significant
differences were not observed related to neural synchrony
between fiber types.

Cochlear Implant Processing
Cochlear implant stimulation was generated using emulations
of CIS, HDCIS, and PDT. The first stage of processing for
all emulations was to process stimuli through a bank of
twenty-two filters with logarithmically spaced center frequencies
from 125 to 8,000Hz. Filters were second order with infinite
impulse response with 3-dB crossover points geometrically
positioned between center frequencies. For CIS, filter outputs
were converted to temporal envelopes using Hilbert transforms.
Temporal envelopes were then used to modulate 90 kHz pulsatile
stimulation (∼4,091 pulses per second per channel). For
HDCIS, filter outputs were half-wave rectified and these rectified
signals were used as high-definition temporal envelopes. These
temporal envelopes were then used to modulate 90 kHz pulsatile
stimulation. For PDT, a peak-detection algorithm was used to
find local maxima in filtered outputs and a single pulse was
scheduled for the corresponding electrode at that instance. All
electrical pulses were modeled as biphasic with 25 µs phase
durations and an 8-µs interphase gap.

Current Spread
A model was used to characterize the extent that current
spread degrades temporal cues for pitch perception. It is well-
known that the spatial cues for pitch are degraded by current
spread, but it is poorly understood to what extent interactions
of nearby electrodes leads to smearing of temporal cues. If
nearby electrodes encode distinct temporal cues, and if current
spreads from these electrodes to the same neural region, then
the synchrony of neural response would be degraded. Current
spread was modeled using an inverse law and assuming the
electrode array was linear and parallel to modeled nerve fibers.
Stimulation was designed for 22 electrodes with electrodes spaced
0.75 millimeters apart. The distance between electrodes to the
closest neuron was 1 millimeter. The voltage at a neuron was
calculated as the sum of 22 voltage sources modified based on
the inverse law for voltage attenuation. Rationale for using simple
models of electrode geometry and summation of electric fields
have been described elsewhere (Litvak et al., 2007).

Neural Excitation
The modeled voltage source after current spread was used to
drive a point process model of neuronal excitation as developed
and described by Goldwyn et al. (2012). This point process
model of individual neurons provides a compact and accurate
description of neuronal responses to electric stimulation. The
model consists of a cascade of linear and non-linear stages
associated with biophysical mechanisms of neuronal dynamics.

The details of the model are described in Goldwyn et al.
(2012); but briefly, each processing stage is associated with
biophysical mechanisms of neuronal dynamics. A semi-analytical
procedure determines parameters based on statistics of single
fiber responses to electrical stimulation, including threshold,
relative spread, jitter, and chronaxie. Refractory and summation
effects are accounted for that influence the responses of auditory
nerve fibers to high-rate pulsatile stimulation. For the present
study, the electrical current after current spread was normalized
to an input level of 1 milliampere. For each neural location,
neurons were modeled having thresholds from 0.1 to 0.8
milliamperes with increments of 0.05 milliamperes. All other
model parameters for the point process model were as described
by Goldwyn et al. (2012).

Synchrony Quantified as Vector Strength
The study objective was to characterize synchrony to frequency
and fundamental frequency in the auditory nerve for acoustic
and electric stimulation. For modeled auditory-nerve response,
computed using either the phenomenological or point-process
models, vector strength was calculated based on spike timings
(Goldberg and Brown, 1968; van Hemmen, 2013):
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Where N is the number of action potentials, f is the frequency
(or fundamental frequency) of interest, and ti is the time of
event. In the present study, a corresponding vector strength for
cochlear implant stimulation was needed to compare synchrony
at the level of the auditory nerve with synchrony in electrical
stimulation patterns (both before and after current spread).
Electrical stimulation is conveyed by cochlear implants with
biphasic pulses with cathodic phase durations typically 25 µs in
duration followed by symmetric anodic phases to balance charge.
The total charge per phase was used to control the probability of
neural spiking in the auditory nerve. As such, a modified version
of vector strength was used to account for the probability of
spiking based on charge delivered:

VSCI =
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Where qi is the normalized charge per phase of each biphasic
pulse. This metric of vector strength falls between 0 and 1 and
corresponds to the original definition but with events weighted
by the probability of spiking approximated by the charge per
phase delivered for each stimulating pulse.

Analysis of Interspike Intervals
As has been described in the literature, electric stimulation
produces a high degree of synchronous firing of auditory-
nerve fibers (Hong and Rubinstein, 2006; Hughes et al., 2013).
Pulse trains with abrupt stimulus onsets can produce hyper-
synchronization to the first pulse followed by refractoriness and
potentially hyper-synchronization not to the next pulse in a
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sequence but to alternating pulses in the sequence. This putative
response to pulse trains with abrupt onsets has been shown in
computational models as well as measures of the electrically
evoked compound action potential. Hyper-synchronization to
alternating pulses would not be detected by vector strength
since only the relative phase of the stimulus cycle is considered.
Consequently, interspike intervals were analyzed. Interspike
interval distributions were calculated based on 100 iterations of
a 500Hz input tone that was 100ms in duration. Current level
per pulse was chosen so that the stimuli evoked ∼100 spikes
per second.

Vector Strength Across Frequencies and
Across Fundamental Frequencies
Analyses were conducted to compare vector strength of modeled
auditory-nerve activity for acoustic and electric stimulation for
pure tones for semitone-spaced frequencies from 125 to 8,000Hz
and for complex tones for semitone-spaced fundamental
frequencies from 55 to 1,760Hz (corresponding to musical notes
from A1 to A6). Response properties were characterized for a
representative frequency or fundamental frequency, and vector
strength was calculated for all frequencies and fundamental
frequencies. Interpretation of results focus on information
present in electric stimulation and how synchrony is affected by
current spread and neural response.

Effect of Stimulation Rate on Neural
Response
The analyses described in the previous sections were conducted
with modeled stimulation rate of 90,000 pulses per second
(pps), which is possible with state-of-the-art cochlear implants.
However, the most common implants in use today only support
stimulation rates of 14,400 pps, which must be distributed across
electrodes. Typically, electrode selection is used to distribute
stimulation across 6–8 electrodes per stimulation cycle dividing
to 1,800 pps per electrode. Further, there are many legacy
implants that only support slower stimulation. The N22 implant
from Cochlear Corporation can only stimulate at ∼3,500
pps (the exact rate depends on the stimulus configuration).
Even with an aggressive selection of only five electrodes per
stimulation cycle, the resulting electrode stimulation rate would
only be 700 pps per electrode. To conclude this article, the
effects of reduced stimulation rate on modeled neural response
is examined.

Front-end spectral filtering was implemented using the
same bank of 22 band-pass filters described in previous
sections. Temporal envelopes including temporal fine structure
were derived as used for HDCIS, but channel selection was
implemented using an emulation of Advanced Combinatorial
Encoders (ACE). This combination of high-definition temporal
envelopes with electrode selection is referred to here as high-
definition ACE (HD-ACE). Channel selection was specified to
be increasingly aggressive to counteract decreases in stimulation
rate. Eight active electrodes were used for the 90,000 pps
stimulation rate, six for the 14,400 pps stimulation rate, and four
for the 3,500 pps stimulation rate. Current spread wasmodeled as

in previous sections. Neural response was modeled for neurons
having fiber locations from 0 to 30 millimeters in 0.1-millimeter
increments with the electrode array parallel and 1 millimeter
away. The most basal electrode was modeled as perpendicular
to the 0-millimeter neural location. As in previous sections,
neuron thresholds between 0.1 and 0.8 millivolts in 0.1-millivolt
increments were modeled.

RESULTS

Modeled Neural Response to Acoustic
Stimulation
Figure 1 shows auditory-nerve activity when driven by acoustic
stimulation as modeled by the phenomenological model of
auditory processing (Zilany et al., 2014). The upper subpanels
of Figure 1 show auditory-nerve activity and response metrics
for a 500Hz pure tone. It has been shown in the literature that
the auditory nerve responds with well-defined tonotopy and
with synchronous phase-locked spiking to acoustic frequency
for frequencies at least as high as 2 to 4 kHz (Dynes and
Delgutte, 1992), though noting arguments and evidence for
phase-locked firing as high as 10 kHz (Verschooten et al., 2019).
Themodeled activity accounts for tonotopy and synchronywith a
clearly defined tonotopic response centered on the characteristic
frequency of the tone. The response exhibits a high degree of
synchronous excitation periodically every 2ms. The periodic
excitation travels from base to apex capturing the established
behavior of the cochlear traveling wave. The calculated metric of
synchrony shows that vector strength to the 500Hz frequency is
high with a maximum of 0.88.

The lower subpanels of Figure 1 show modeled auditory-
nerve activity and response metrics for a complex tone with a
fundamental frequency of 220Hz. In terms of spatial excitation
cues, there are well-defined spatially resolved peaks in the
excitation pattern for the fundamental and roughly for the first
8–10 harmonics. Above the tenth harmonic, the excitation peaks
are not well-defined in terms of tonotopic response. Importantly,
the synchrony of the response is also well-defined with spatially
resolved peaks in the patterning of vector strength. Synchrony
near the fundamental is high reaching a maximum of 0.90
near the fundamental. At that point, synchrony fluctuates in
between harmonic components. For fibers having a characteristic
frequency near a harmonic, the fiber response is not synchronous
to the fundamental; instead, response phase-locks to the temporal
fine structure of the dominant harmonic (Delgutte and Kiang,
1984; Sachs et al., 2002; Kumaresan et al., 2013). In between
harmonic components, two or more components interact to
produce strong oscillations at the fundamental frequency. This
alternating pattern of synchrony to the fundamental has been
referred to as a fluctuation profile and has been hypothesized
as important for pitch (Carney et al., 2015; Carney, 2018).
For fibers with characteristic frequencies above 2 kHz, as filters
broaden allowing more harmonic components to interact, the
periodicity of the fundamental dominates the temporal response,
and the vector strength increases with a maximum of 0.97 in
this region.
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FIGURE 1 | Modeled auditory-nerve response to acoustic stimulation for pure and complex tones. Left panels show spectrogram representations of average fiber

firing rate for 256 fibers logarithmically spaced between 125 and 8,000Hz. Middle panels show spatial excitation cues as firing rate averaged across time. Right

panels show temporal cues as vector strength to the input tone frequency of fundamental frequency.

Modeled Neural Response to Electric
Stimulation
Figure 2 shows modeled neural activity for three cycles of a
500Hz pure tone for the CIS, HDCIS, and PDT stimulation
strategies implemented with a stimulating pulse rate of 90,000
pps. This figure clarifies how different stimulation strategies
encode temporal cues of pure tones into electric stimulation
and how neural excitation is predicted to respond. For this
figure, only a single electrode was modeled for stimulation. The
driving stimulus is represented in the upper subpanels as a
sinusoid. For CIS, a relatively slow temporal envelope is derived
using a Hilbert transform then used to modulate constant-
rate pulsatile stimulation. Importantly, the pulse rate used for
CIS is independent of the incoming tonal frequency and thus
does not convey temporal cues for pitch associated with the
incoming sound. For HDCIS, the envelope that is derived and
used to modulate pulsatile stimulation is a half-wave rectified
version of the filtered acoustic waveform, which does contain
temporal fine structure associated with the frequency of the
incoming sound. The electric stimulation represented in the
middle subpanels clearly indicates the encoding of this cycle-
by-cycle amplitude modulation of pulsatile stimulation. The
PDT strategy does not derive envelopes but instead schedules
pulsatile activity based on peak detection implemented on
the filtered acoustic waveform. This approach is like the fine
structure processing used on MED-EL devices, but the latter
based on zero crossings rather than peak detection. In either
case, the electric stimulation clearly conveys the periodicity of

the incoming acoustic frequency as a singular electric pulse for
each cycle.

The lower panels of Figure 2 show the modeled neural
response for neurons with thresholds having a range of 0.1–
0.8 milliamperes (with 0.1 milliampere increments) for 201 fiber
locations. The fiber locations, or neural positions, are given
relative to a location of 0 millimeters corresponding to the closest
neuron to the stimulating electrode, but with the stimulating
electrode 1 millimeter away from that closest neuron. With this
range of thresholds and neural locations, the modeled neural
activity shows a range of responses. For CIS, the stochastic nature
of the point process model, coupled with the range of modeled
thresholds, causes spike timings to quickly desynchronize after
having a strong onset response. For HDCIS, the range of modeled
thresholds and spatial locations provides a clear synchrony of
spiking both the pulse rate and acoustic periodicity but noting
that no modeled neurons responded to the last stimulating pulse
of the stimulus. For PDT, the precise temporal pattern of the
electric stimulus produces synchronous behavior in the modeled
neural elements.

Interspike Intervals in Response to Electric
Stimulation
Figure 3 shows first and all-order interspike intervals for
modeled auditory-nerve responses described in the previous
section. The CIS strategy produces a high-rate pulse train,
the rate of which is independent of the frequency of the
acoustic input, the neural response does not have interspike
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FIGURE 2 | Modeled auditory-nerve response to electric stimulation for three cycles of a 500Hz pure tone as encoded by three different cochlear implant stimulation

strategies. For CIS, a relatively slow envelope extraction procedure discards incoming temporal fine structure, and the derived envelope is used to modulate

constant-rate pulsatile stimulation. For HDCIS, the envelope is “high-definition” in that it is a rectified version of the filtered input signal and thus retains the temporal

fine structure. For PDT, individual electric pulses are triggered based on the temporal maxima of the filtered input signal. The lower subpanels show modeled neural

response to stimulation with the neural position indicating the relative position of the modeled neural elements with a value of 0 millimeters indicating a neuron closest

to the electrode array, which is modeled as parallel to the nerve fiber and 1 millimeter away.

intervals representative of the 500Hz periodicity of the input

acoustic tone. Instead, the CIS strategy produces interspike

interval distributions qualitatively like high-rate distributions

recorded from cat auditory-nerve fibers (Miller et al., 2008) and

as previously modeled by Goldwyn et al. (2012). In contrast,

both HDCIS and PDT produced interspike intervals with
clear histogram periodicities at the desired 2ms periodicity of
the input acoustic tonal frequency. The roll-off of histogram
interval counts for the first-order statistics and flattened
interval counts for the all-order interval counts agrees with the
recordings made in cat auditory nerve fibers by Mckinney and
Delgutte (1999). These modeling results suggest that HDCIS
and PDT convey temporal cues for pitch beyond what is
characterized by vector strength. These results are important
because cochlear implant stimulation can sometimes introduce
unwanted timing distribution of neural events. Specifically,
abrupt pulsatile stimulation may lead to hyper-synchronization
to an initial pulse with recovery and synchrony to odd pulses.
Such artifactual response properties would not diminish vector
strength but would affect interspike intervals. The results here
suggest that such artifactual hyper-synchronization to alternating
stimulation cycles is not occurring and that the interspike
intervals produced by HDCIS and FSP strategies is comparable to
that observed with acoustic stimulation (Mckinney and Delgutte,
1999).

Comparison of Cochlear Implant
Stimulation Strategies for Pure Tones
Figure 4 shows cochlear implant stimulation and derived metrics
for a representative 500Hz pure tone. The tonotopic aspect
of the stimulus is well-defined with the strongest response
seen in the filter channel with center frequency of 500Hz.
The encoding of the acoustic temporal fine structure of the
tone—the cycle-by-cycle periodicity—is strikingly different with
CIS compared to HDCIS and PDT. Specifically, CIS discards
acoustic temporal fine structure and stimulates using constant-
rate pulsatile stimulation, with the pulse rate independent of the
incoming sound. Consequently, synchrony quantified as vector
strength between the stimulation pattern and the tone frequency
is near zero. This result is not surprising since it is known that
CIS discards acoustic temporal fine structure and only encodes
envelope modulations (Svirsky, 2017). In contrast, HDCIS and
PDT have markedly improved synchrony to the input tone
frequency, HDCIS has a vector strength of 0.79 at the maximally
excited filter, while PDT has a vector strength of 0.98 at its
maximally excited filter.

The derived metrics of spatial and temporal cues illustrate
the effects of modeled current spread and neural excitation.
Current spread, naturally, spreads the spatial response reducing
the relative power of the maximally excited filter. Interestingly,
the compressive nature of modeled neural excitation increases
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FIGURE 3 | First and all-order interspike intervals for modeled auditory-nerve responses to electric stimulation depicted in Figure 2. Interspike interval distributions

estimated from 10,000 interspike intervals with the pulse rates as indicated. Current level per pulse was chosen so that the stimuli evoked ∼100 spikes per second.

the relative power of the maximally excited filter. This effect
is likely caused by low-level filters not producing sufficient
electrical stimulation to reach threshold of modeled neurons.
The synchrony of response is also affected by modeled current
spread and neural excitation. Since cochlear implant sound
processing used here incorporates recursive filtering with phase-
delay characteristics comparable to traveling wave mechanics of
the cochlea, the energy profile for each cycle peaks first in high-
frequency filters with notable elongation near the peak resonant
filter (i.e., the spectral maximum). This temporal spreading of
fine structure results in peak energy occurring first in high-
frequency channels with maximal temporal spreading near the
filter with highest spectral output. Consequently, current spread
results in temporal fine structure of one filtering channel to
diminish the temporal precision of adjacent channels. This is
observed in themarked reduction of synchrony following current
spread. However, for HDCIS and PDT, vector strength is higher
after modeling the neural response using the point process model
with variable thresholds. This recovery of synchrony is likely
driven by the synchronization of modeled spiking to charge
accumulation on a cycle-by-cycle basis with rest sufficient period
in between periods of the encoded temporal fine structure.

Comparison of Cochlear Implant
Stimulation Strategies for Complex Tones
Figure 5 presents a representative analysis of the spatial
and temporal cues associated with complex tones. For this
representative analysis, a harmonic complex with fundamental

frequency of 220Hz is processed through the three stimulation
strategies. The spatial response to the harmonic tone is
nearly identical for the three strategies, with the response
quantified as the proportion of charge delivered to each
electrode. Note that proportional charge is normalized here,
clinical implementation of PDT will likely require higher charge
on low-frequency channels since lower pulse rates require
more charge per pulse to obtain audibility thresholds and
comfortable listening levels (Goldsworthy and Shannon, 2014;
Bissmeyer et al., 2020; Goldsworthy et al., 2021, 2022). For all
three stimulation strategies, the fundamental frequency clearly
produces a resolved peak in the spatial pattern, which occurs in
the stimulation pattern as well as after modeling current spread
and neural excitation. Compared to the spatial cues available

in acoustic hearing (see Figure 1), the spatial cues available in

electric hearing are poorly represented beyond the fundamental
frequency. The modeled neural response to acoustic input of
Figure 1 depicts 8–10 harmonics that produce spatially resolved
excitation, which is in general agreement with the physiological
and psychophysical literature (Plack and Oxenham, 2005). In
contrast, with only 22 logarithmically spaced filters, only the
fundamental and first harmonic produced spatially resolved
harmonics, the latter being substantially degraded by current
spread but noting that the modeled neural response enhances the
response.

The temporal cues associated with the fundamental frequency
of complex tones strikingly differ for CIS compared to HDCIS
and PDT. For all three stimulation strategies, temporal cues
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FIGURE 4 | Cochlear implant stimulation, neural response, and derived metrics of spatial and temporal cues for a 500Hz pure tone. For the electrodogram

representations of the left panels, the electric potential was normalized to a peak of 1 millivolt as indicated by the color bar and only the anodic phase of stimulation is

depicted. The neural responses were calculated for neuron thresholds from 0.1 to 0.8 in 0.1 microamperes steps and the current level of the electrical stimulus after

current spread was specified to produce ∼100 spikes per second.

quantified as vector strength of synchrony between the electric
stimulus and modeled neural excitation with the incoming
acoustic stimulus is particularly high for high-frequency spectral
regions where unresolved harmonics dominate and produce
strong temporal periodicity. However, the stimulation strategies
differ in the temporal response associated with the fundamental.
Specifically, temporal cues associated with the fundamental
frequency of the stimulus are not available in the low-frequency
spectral region for the CIS strategy but are clearly present and
markedly high for both HDCIS and PDT.

Synchrony Across Frequencies for Pure
and Complex Tones
Figure 6 shows synchrony quantified as vector strength for
modeled auditory nerve fibers for acoustic and electric
stimulation. The upper and lower subpanels show synchrony
in response to pure and complex tones, respectively. In each
subpanel, the acoustic neural response is the vector strength
based on the phenomenological auditory-nerve model. The
different columns of subpanels show the synchrony of the electric
stimulus before and after current spread and neural modeling
with the point process model.

For pure tones, modeled acoustic neural response captures
the diminishing of neural synchrony that occurs in normal
hearing for frequencies above 2–4 kHz. The CIS stimulation
strategy simply does not convey temporal fine structure, which

is a known design flaw. The HDCIS and PDT strategies
both provide a high level of synchrony in the stimulation
pattern, which is degraded by current spread, but mostly
restored by the point process model of neural excitation.
Neural synchrony does not diminish near 2 kHz for electrical
stimulation, which agrees with physiological data suggesting
that neural synchrony is higher for electric than for acoustic
stimulation since electric stimulation bypasses the sluggish
synaptic mechanisms of transduction (Dynes and Delgutte,
1992). The vector strength of response for electric stimulation
does diminish above 4 kHz, which is driven by the electric
pulses not being perfect impulses but having finite durations
(i.e., the total pulse width of about 60 µs is a significant
portion of the tonal period). The most relevant finding is
that the synchrony of modeled neural response to pure tones
is comparably high for HDCIS and PDT when compared
to synchrony observed in acoustic hearing. The observed
synchrony in the modeled neural response is consistently higher
than that observed in modeled acoustic hearing for the PDT
stimulation strategy.

The modeled neural response for acoustic stimulation is
similar for complex tones as for pure tones. As depicted
in Figure 1, the vector strength for complex tones has two
distinct regions with high levels of synchrony: one associated
with the fundamental component and one associated with the
high-frequency spectral regions of unresolved harmonics. The
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FIGURE 5 | As Figure 4 but for complex tones with fundamental frequency of 220Hz.

maximum vector strength across fibers is shown for complex
tones as a summary statistic. For the model of auditory-nerve
response to acoustic stimulation, synchrony to the fundamental
follows the same behavior as a pure tone. Synchrony is
relatively high for the three stimulation strategies. For CIS,
since synchrony is not provided for the fundamental, the
observed synchrony derives from the high-frequency spectral
region of unresolved harmonics. As can be seen in Figure 3, the
temporal periodicity of stimulation in high-frequency channels
are in phase and thus are not degraded by current spread.
Modeled neural excitation increases vector strength since the
point process neurons tend to respond during the same phase of
the charge accumulation. Observed synchrony was higher yet for
HDCIS and PDT with both being enhanced by modeled neural
response. While parameterization of the computational model
will affect results, neural excitation to electric stimulation clearly
provides temporal cues with comparable neural synchrony in
acoustic hearing.

Effect of Stimulation Rate on Neural
Response
Figure 7 shows the modeled neural response for HD-ACE
implemented for the three stimulation rates for pure and complex
tones. Only the first 20 millimeters of the fiber locations are
shown since the modeled 22-electrode array only extends to
be perpendicular to the 16-millimeter location. The cycle-by-
cycle temporal fine structure for both pure and complex tones

are conveyed by the stimulation strategy but with noticeable
reduction in the amount of fine-structure detail that is encoded.

These modeling results clarify the effect of stimulation rate
on encoding temporal fine structure into neural activity. While
some degree of synchrony is maintained despite the reduction in
stimulation rate, there is clearly a loss of detail in the response of
the auditory nerve. Psychophysically, a previous study has shown
that cochlear implant users are sensitive to small fluctuations in
charge density that occur associated with this loss of detail in the
temporal fine structure (Goldsworthy et al., 2022).

DISCUSSION

Neural synchrony to incoming stimulation is exceptionally
high in the auditory system. The auditory nerve fires with
synchrony to incoming sounds for frequencies up to two and
arguably as high as 10 thousand cycles per second (Dynes
and Delgutte, 1992; Chung et al., 2014, 2019; Verschooten
et al., 2019). This remarkable synchrony was examined here by
comparing computational models of auditory-nerve response to
acoustic and electric stimulation. It was shown that synchrony to
sound of the most common stimulation strategies for cochlear
implants (ACE and CIS) is completely discarded for pure tones
and substantially degraded for complex tones, specifically that
the temporal fine structure of the fundamental frequency is
discarded. In contrast, modeling results indicate that stimulation
strategies that explicitly encode temporal fine structure (HDCIS
and PDT) provide comparable levels of neural synchrony to
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FIGURE 6 | Synchrony of neural response to the frequency of pure tones and fundamental frequency of complex tones for acoustic and electric stimulation.

sound as produced in acoustic hearing. Modeled current spread
reduced spatial and temporal cues for pitch perception, but the
point process model of neuronal response increased both spatial
specificity and neural synchrony. Discussion focuses on how
computational modeling could be used to yield better encoding
of temporal cues for cochlear implants.

The present article compares modeled neural synchrony for
different cochlear implant stimulation strategies with synchrony
observed in acoustic hearing. The ACE and CIS strategies are
commonly used with cochlear implants, but it is well-known
that these strategies discard temporal fine structure of sound.
The extent, however, that computational modeling indicates that
HDCIS and PDT encode temporal fine structure of incoming
sound into synchronous neural activity is enticing. Of course,
aspects of modeling such as the extent of current spread and
the distribution of neural parameters will affect modeling results,
and this flexible capacity will allow models to be tuned to
physiological data collected in the future. Since HDCIS encodes
aspects of temporal fine structure into stimulation, and does not
explicitly remove that information using smoothed envelopes,
some extent of neural synchrony will be transmitted. Similarly,
stimulation strategies that trigger stimulation pulses based on
temporal fine structure such as PDT, FSP, and FS4 will produce
varying degrees of neural synchrony (van Hoesel, 2007; Vandali
and van Hoesel, 2011; Riss et al., 2014, 2016). The present

article does not attempt to exhaustively describe synchrony for
all strategies, but to clearly describe synchrony for common
stimulation strategies.

The modeling results presented here incorporate current
spread and a point process model or neuronal response.
Synchrony was degraded by current spread because the front-
end filtering included phase delay like that produced by traveling
wave mechanics of the cochlea. If linear phase filtering were
instead used for the front-end filtering—as often used for
cochlear implant signal processing—then stimulation timing
features would be coherent and current spread would cause less
smearing of temporal information. However, it is not presently
known the extent that modeling traveling wave mechanics is
important for conveying temporal fine structure cues (Loeb
et al., 1983; Loeb, 2005; McGinley et al., 2012). Computational
modeling can be used to clarify the tradeoffs between emulating
traveling wave mechanics and minimizing the smearing of
temporal cues for pitch perception (Cohen, 2009; Karg et al.,
2013; Seeber and Bruce, 2016; van Gendt et al., 2016).

There is a rich body of literature associated with temporal
cues for pitch perception in the auditory-nerve response
with strong arguments for different metrics to quantify the
strength of these cues (Meddis and Hewitt, 1992; Cariani and
Delgutte, 1996a,b; Cedolin and Delgutte, 2010; Hartmann
et al., 2019). Vector strength was made the focal point
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FIGURE 7 | Modeled neural response to electrode stimulation for pure and complex tones for high-definition emulations of the Advanced Combinatorial Encoders

stimulation strategy. The images show modeled fiber location vs. time for five cycles of a 500Hz pure tone (left panels) and five cycles of a 220Hz complex tone (right

panels). The color bar indicates the average firing rate of the neural response. pps, pulses per second.

of the present article as a starting point for comparing
the temporal response properties of the auditory nerve to
acoustic and electric stimulation because it is a straightforward
metric of synchrony that has been used in basic studies
of physiology (van Hemmen, 2013). Further, interval
histograms were examined and the periodicity information
present in the neural response to electrical stimulation
was comparable to that observed for acoustic stimulation
(Mckinney and Delgutte, 1999). Future work should consider
other metrics of synchrony as predictors of behavioral pitch
resolution as results are better characterized for different
stimulation strategies.

The extent that encoding synchrony into sound processing
for cochlear implants will improve music and speech perception
for recipients is unknown. The results of the present study show
that synchrony is poorly encoded by conventional ACE and CIS
strategies, but that synchrony can be restored using stimulation
based on physiology that actively encodes the temporal fine
structure of incoming sound. Behavioral results for strategies
that attempt to encode temporal fine structure (e.g., HDCIS, FSP,
PDT) have yielded promising, but mixed results (van Hoesel
and Tyler, 2003; van Hoesel, 2007; Vandali and van Hoesel,
2011). The most promising results for such strategies suggest
that prolonged rehabilitation is needed to make use of newly
encoded timing cues, which suggests long-term recovery and
rehabilitation of neural circuits tuned to synchronous activity
(Kral and Tillein, 2006; Kral and Lenarz, 2015; Riss et al.,
2016). Musical sound quality was shown to be better with FSP

compared to HDCIS particularly for bass frequency perception
(Roy et al., 2015). New strategies designed to encode temporal
fine structure should be evaluated with prolonged periods of
experience. Further, optimization of new strategies could benefit
by modeling how synchrony to sound can be restored first at the
level of the stimulation pattern but ultimately at the level of the
auditory nerve.
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