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Much of current artificial intelligence (AI) and the drive toward artificial general intelligence
(AGI) focuses on developing machines for functional tasks that humans accomplish.
These may be narrowly specified tasks as in AI, or more general tasks as in AGI –
but typically these tasks do not target higher-level human cognitive abilities, such
as consciousness or morality; these are left to the realm of so-called “strong AI” or
“artificial consciousness.” In this paper, we focus on how a machine can augment
humans rather than do what they do, and we extend this beyond AGI-style tasks to
augmenting peculiarly personal human capacities, such as wellbeing and morality. We
base this proposal on associating such capacities with the “self,” which we define as the
“environment-agent nexus”; namely, a fine-tuned interaction of brain with environment
in all its relevant variables. We consider richly adaptive architectures that have the
potential to implement this interaction by taking lessons from the brain. In particular,
we suggest conjoining the free energy principle (FEP) with the dynamic temporo-spatial
(TSD) view of neuro-mental processes. Our proposed integration of FEP and TSD –
in the implementation of artificial agents – offers a novel, expressive, and explainable
way for artificial agents to adapt to different environmental contexts. The targeted
applications are broad: from adaptive intelligence augmenting agents (IA’s) that assist
psychiatric self-regulation to environmental disaster prediction and personal assistants.
This reflects the central role of the mind and moral decision-making in most of what
we do as humans.

“We are like islands in the sea, separate on the surface but connected in the deep”

(William James)

Keywords: intelligence augmentation (IA), spatio – temporal dynamics, free energy principle, free energy principle
and active inference (FEP-AI) framework, human self, hierarchical learning, agent-environment interaction
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INTRODUCTION: AIM – AUGMENTING
HUMAN INTELLIGENCE

From Environment to Agents – Lessons
From the Brain
The ambitious goal of artificial general intelligence (AGI) is often
stated as building machines that can perform any intellectual
task a human can. While this is still out of reach, and somewhat
vague, current artificial intelligence (AI) has already reached
and sometimes superseded human abilities on many narrowly
defined tasks, such as game-playing and image analysis. Current
approaches to AGI often focus on extending this ability to less
narrowly defined environments and more complex or partly
novel tasks. In contrast, explicitly human capacities such as
morality or consciousness are typically considered outside the
purview of AGI. Although they are of importance in Cognitive
Science and Philosophy, much of mainstream Computer Science
has abandoned their pursuit.

In this paper, we focus on how a machine can augment
humans rather than do what they do, and we extend this beyond
AGI-style tasks. We argue that augmentation is possible even for
very personal human capacities such as wellbeing and morality.
We base augmentation on how these capacities link to the self,
which we interpret in a broad but technical sense as the brain’s
“environment-agent nexus”: that is, the fine-tuned interaction
of the individual’s brain with – and its alignment to – the
environment, including the full gamut of sensory, social and
cultural features of the environment (Northoff and Stanghellini,
2016; Northoff, 2018a; Constant et al., 2020; Scalabrini et al.,
2020). The relevance of such environment-agent nexus becomes
particularly visible in times of changing environmental contexts
as during pandemics like COVID as they strongly impact the
agent, i.e., our self (Scalabrini et al., 2020).

Our proposal targets the functionality of the human
environment-agent nexus and, specifically, its potential
augmentation by a machine. For an artificial agent to assist
in the regulation of such a delicate interplay, great sensitivity and
adaptivity of its own agent-environment nexus will be required –
if not at a human level, then at least a more refined level than
current artificial agents. We argue that lessons from the brain
hold great promise for modeling and implementing this.

Building More Adaptive Agents –
Conjoining Free Energy and
Temporo-Spatial Dynamics
More precisely, as an agnostic and flexible approach to building
richly aligning agents, in this paper we hypothesize that
conjoining the free energy principle with the dynamic temporo-
spatial view of neuro-mental processes (Friston et al., 2006;
Northoff et al., 2020) offers a promising avenue. Some key
observations about the brain motivate this.

First, the brain exists in a temporally continuous interface with
the environment, which has been described in terms of the free
energy principle (FEP). At the core of the FEP is Variational
Free Energy, which is computed given states of two systems:

the agent and its environment. In our proposal, we propose
to apply it to the temporo-spatial dynamics (TSD) of agent
and environment. Crucially, the brain’s TSD is organized in a
hierarchical manner, according to time and space scales, which
are adaptively determined and finely nested (as described in
detail in see section “Intrinsic Organization of the Brain – Spatial
and Temporal Hierarchies5”). This temporo-spatial hierarchy has
been associated with neuro-mental processes for both self and
consciousness (Tagliazucchi et al., 2013, 2016; Huang et al., 2016,
2018; Zhang et al., 2018; Wolff et al., 2019a; Northoff et al.,
2020).

Our core proposal is that equipping artificial agents with
hierarchical, free energy minimizing temporo-spatial dynamics
could be crucial for improving their ability to align to
changing environmental contexts, and – in particular – to
dyadic exchanges with humans. We anticipate that our agents
may augment human capabilities by being able to access or
observe the environment in ranges that far exceed those of
humans, either by accumulating experience over many human-
years or measuring quantities we cannot observe. Nevertheless,
these agents should necessarily align with the environment
with which they exchange, which includes the humans that
they should augment.

In the remainder of this paper, after an interlude to sketch
possible future scenarios, we discuss the road toward adaptive
agents in see section “Artificial Intelligence and Environment –
Learning From the Brain’s Adaptive Capacities,” then focus on
two key lessons from the brain: the conjoining of FEP and
TSD in see section “Environment-Brain Interface – Conjoining
the Free Energy Principle and Temporo-Spatial Dynamics,”
and spatial- and temporal hierarchy in see section “Intrinsic
Organization of the Brain – Spatial and Temporal Hierarchies”.
See section “Modeling the Environment-Agent Nexus Using Free
Energy Principle and Temporo-Spatial” will pick up the modeling
of artificial agents and what can be learned from the brain,
while see section “Can Artificial Agents Augment Humans –
Coming Back to Our Examples” will return to our examples
and how our novel AI models may address the issues raised by
these scenarios.

Finally, we remark that many in the AI community consider
the presence of self and consciousness as the ultimate aim for
strong AI (Tani, 1998; Prescott, 2015; Tegmark, 2017; Russell,
2019). We specifically do not aim for strong AI: we are not asking
whether the machine possesses these human qualities. We instead
only focus on how AI could be modeled and designed in order to
better augment human capacities beyond their limitation – for
that, the agent does not need to be conscious by itself and exhibit
a sense of self (in the same way a vacuum cleaner does not need
to be conscious to serve its purpose).

INTERLUDE – A VIEW INTO THE FUTURE

In this section, as inspiration, we sketch three scenarios in which
human decision making could be augmented by an artificial
agent that is sensitive to human interpersonal social and moral
considerations. Most importantly, future artificial agents – of
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the kind we describe here – must continuously adapt to and be
aligned with the prevalent social and physical econiche.

Avoiding Moral Dilemma by Improving
Decision Making
Imagine you are the chief executive officer (CEO) of a global
coffeeshop company. You are looking for a personal assistant.
That personal assistant should not only support you but, ideally,
augment and thereby improve your decision making. Let’s sketch
the following scenario: Due to a change in political climate
in one country – that is a major market for your company –
your business is targeted by protests against foreign imported
coffeeshops. The situation is serious, with boycotts and violent
demonstrations threatening your employees.

What do you do? One option would be to temporarily suspend
all business in that country, ensuring the safety and comfort of
your employees. That would incur severe short-term financial
losses, however, and would probably close that country’s market
in the future. A second option is to wait and see how the protests
turn out and, more generally, how the political climate develops;
while, at the same time, attempting to secure safety for the
employees within the coffeeshops. Unlike in the first option, this
would keep the country’s market open for the future. You are
thus caught in a moral dilemma between human concerns and
financial security.

Tools already exist that can (possibly with only mediocre
accuracy) sketch the country’s development and the company
shares on the stock market from the past to the present – to
infer their near and far future. However, rarely does such a
tool account for the economic and political factors in a way
that is sensitive to the moral dimension in decision making.
This is a missed opportunity; since, unlike humans, an artificial
augmenting assistant would not get stuck in the vicissitudes of
moral decisions that we as humans face on an almost daily basis.

Instead, a moral-decision-making assistant would be able
to conceive a larger context, beyond the context we humans
can perceive, by having access to thousands of case studies.
This would allow integrating and reconciling the seemingly
contradictory options, e.g., moral vs. financial imperatives in
our case. In turn, this could guide and augment the CEO’s
decision-making capacity, offering her the ability to more
thoroughly perceive and reflect beyond the dichotomy of self-
other – to a narrative that reconciles and integrates both
perspectives on a deeper fundamental level in more global and
long-term ways. Finally, legal constraints should also be taken
into consideration, while the human relies on the assistant’s
input. The accountability and legal responsibility of artificial
assistants is an open question and current legal research tries to
formulate principles for the assessment of such decisions and the
consequences these might have.

Predicting Natural Disasters
Now let us shift from economy to nature, invoking another
scenario. We are living in a world full of catastrophic crises that
involve cascades of events in a hierarchy of different time and
space scales; these include wildfires, seismic earth waves with

earthquakes, flooding, pandemics and storms (Friston et al., 2020;
Scalabrini et al., 2020). Especially in the age of climate change, we
require tools to properly predict such environmental crises well
ahead of time in a more fine-grained way.

Let us take the recent example of the 2019–2020 Australian
wildfires. To understand the instances and progression of the
fires, effectors occurring at temporal and spatial scales that
vary by several orders of magnitude should be considered.
For example, the (positive) Indian Ocean Dipole (pIOD)– that
characterizes high sea surface temperatures in the eastern and
low sea surface temperatures in the western Indian Ocean,
produces abnormal easterly winds that induce dry conditions
in Australia and eastern Asia. These extreme events used to
occur with a periodicity of approximately 20 years; however,
non-linear models that incorporate greenhouse gas effects predict
increasingly extreme pIOD frequencies. Wildfire prediction
could thus incorporate these variables over a long temporal
range that, as such, is not accessible to humans. Additionally, to
construct regional predictions, daily (infrared) satellite imagery
used to identify burnt areas would be enormously informative.

In other words, distinct data sources with varying predictive
validity (e.g., on fuel and fire conditions) would be required to
predict the occurrence and trajectory of such events. This kind
of prospective inference goes far beyond human capacities. Even
current AI methods, such as deep learning, which have been used
for specific classification tasks (e.g., of burnt vs. not burnt earth)
do not model the range of time-scales that would be needed to
incorporate data portending a cascade of pre-fire changes. An
artificial agent that does incorporate a rich and adaptive range of
time-scales in its (generative) models of the future may, on the
other hand, offer new promise.

This artificial agent may not only extend the frequency range
of its sensorium – beyond humans – to ultraslow frequencies
but also align with dynamics on a near continuous-time range
of scales. That could enable it to detect when a chain of micro-
events transition in a non-linear way into a prolonged period
of bushfires. Analogously, we can potentially develop artificial
agents that augment and ultimately enhance our perception
of other environmental crises and their cascading antecedents
in a progressively fine-grained spatial and temporal fashion.
Please see Friston et al. (2017), for a worked example of this
kind of hierarchical forecasting in the context of computational
psychiatry and (Friston et al., 2020) for the coronavirus
pandemic of 2020.

Recovering Subjects’ Poor Alignment to
Improve Their Mental Health
Finally, let us move from nature to human disease, most
notably psychiatric disorders like schizophrenia and depression.
In such disorders, an aberrant alignment of the subject to their
environmental context has been implicated in major behavioral,
cognitive, and mental changes (Northoff and Stanghellini, 2016;
Northoff and Huang, 2017; Northoff, 2018b). For instance,
depressed patients are locked within their inner cognitions,
without being able to reach out to the outer world, rendering
them isolated, sad and hopeless; i.e., depressed (Northoff, 2016) –
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an alignment that might otherwise have been adaptive in another
setting (Badcock et al., 2017). While likewise schizophrenic
patients are unable to synchronize with their environment, for
instance, to music (Koelsch et al., 2019), but also their social
and physical surroundings. This can lead to false inference and
aberrant beliefs; i.e., delusions, and hallucinations (Parnas, 2012;
Adams et al., 2013; Lakatos et al., 2013; Northoff and Duncan,
2016; Powers et al., 2017; Benrimoh et al., 2018; Parr et al., 2018).

Imagine now an augmenting agent that could help recalibrate
these subjects’ alignment to their environment. Like a dance
teacher who teaches you the rhythm of the music and how
to dance to it, such an augmenting agent would “teach” these
subjects’ brains to better synchronize with their social, cultural,
and ecological contexts. The patient’s inner cognition may then be
re-attuned to the events in the world, enabling them to re-engage
and experience themselves as integrated rather than remaining
isolated. At the same time, the schizophrenic patients’ brain
would regain its capacity for alignment and synchronization
(Tschacher et al., 2017), such that their inner beliefs and
perceptions are better reflections of their lived world, i.e., attuned,
with the outer reality. The patients’ pathological creation of an
inner world, i.e., hallucinations and delusions, would revert to
veridical inferences about what is actually going on “out there.”

Conceived in a wider context, beyond mental disorders,
regaining a sense of agency – in other words, a sense of
controlling one’s destiny – is important for mental health in
general. Also, with the advent of modern brain computer
interfaces (BCI) and other technologies, e.g., virtual reality, etc.,
achieving this re-alignment is not a distant goal anymore. It is
now possible to build technologies that react directly to brain
and bodily inputs – and send information to them to induce
altered brain states.

ARTIFICIAL INTELLIGENCE AND
ENVIRONMENT – LEARNING FROM THE
BRAIN’S ADAPTIVE CAPACITIES

Current Artificial Intelligence and
Opportunities for Progress
Despite their differences, all three examples share the same basic
theme. By extending the human capacities of decision making,
temporo-spatial prediction (as in wildfires), and alignment (as
in psychiatric disorders), the artificial agents here conceived
augment the engagement and control of human agents. They
do this by enabling a better interface with their respective
environmental context, that is, a more tightly interwoven
“environment-agent nexus,” and one which covers a broader
temporo-spatial interface with the environment than humans.
This may, in turn, extend the artificial agent’s capacities,
i.e., decision making, prediction, and alignment, beyond
those of humans.

The development of AI agents with near-human or super-
human performance on some tasks has so far been driven
by the paradigms of deep learning and reinforcement learning
[see overviews in Tegmark (2017) and Russell (2019)]. Deep

learning pioneers Bengio, Hinton and LeCun were honored
with the 2019 Turing Award for their seminal work, while
reinforcement learning, often combined with deep learning, has
enabled recent high profile machine learning successes such
as AlphaGo. Themes similar to those we propose, such as
generative modeling of the world in reinforcement learning (Ha
and Schmidhuber, 2018) or compositionality and hierarchicality
(Han et al., 2020), have also appeared and been incorporated
into reinforcement learning. In a much more top-down fashion,
even models of an artificial self; i.e., self-consciousness, have been
proposed and implemented, for instance by Tani (1998, 2016),
Tani et al. (2008), Prescott (2015), and Prescott and Camilleri
(2019).

However, despite all this progress, there is very little focus
on the kind of artificial agents that might augment human
selves in their moral decision making, or indeed appreciate
their situated context. Augmenting human capacities requires the
agent to be adaptive and thus align to the continuously changing
environmental contexts of humans. This is well reflected in
our three examples, where the agent’s relation and alignment
to the environment is crucial for its ability to augment human
capacities. The term “environment” is here meant to include
cultural, social, natural, ecological, and geographic contexts.

Alignment, signifying adaptation to – and shaping by –
the environment, then includes the long-term experience-
dependence of the agent’s inner structure on her respective
cultural and evolutionary context (Brown and Brüne, 2012; Heyes
and Frith, 2014; Heyes, 2018; Veissière et al., 2019; Constant
et al., 2020). Such shaping of the agent’s inner structure by
its environment remains to be modeled in current artificial
agents. Therefore, recent calls have been made from both
within (Ha and Schmidhuber, 2018; Iwahashi, 2019; Russell,
2019) and without (Metzinger, 2018) AI, to improve the
artificial agent’s interface with their respective environmental
contexts. A dynamic and continuously adaptative interface
with the environment (including its social, cultural, ecological,
geographical, evolutionary, and other features) is not yet well-
developed in AI at its current state.

Aim of This Paper – Model for More
Adaptive Artificial Intelligence
Our focus is on improving the agent’s adaptive interface with the
environment. That would not only allow for developing artificial
agents that could augment the capacities of human agents but
would also be “trustworthy” (Tegmark, 2017; Russell, 2019). In
the next section, we propose a novel AI approach.

We aim to learn from the brain. While much of current
AI takes inspiration from the brain, we here focus on one
specific aspect of the brain: its remarkable capacity to adapt and
align itself to continuously changing environmental contexts.
Motivating our focus is the fact that such rich adaptivity is an
essential feature of agents augmenting human capacities along
the lines of our three examples.

To enable rich adaptivity, we take inspiration from the
principles by which the brain aligns itself to its continuously
changing environments, both social and ecological. Recent
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FIGURE 1 | By minimizing free energy, brain and environment align as seen with the maximization of the joint distribution of the brain’s sensory states (s) and hidden
states of the environment (ψ) while simultaneously ensuring that the representation of the environment in the brain is maximally entropic (entropy term). Currently the
theory has considered neurobiological implementations of this gradient flows – resulting in testable imaging and electrophysiological predictions. With augmentation
the goal may be to facilitate extended environmental states (lower left blue panel) that are not readily accommodated in neural states currently but could be
accommodated in an artificial agent with extended “sensory” inputs.

neuroscience has brought to the fore two principles that drive
adaptivity of an agent within its econiche – the free energy
principle (FEP) and temporo-spatial dynamics (TSD). We
propose that future AI methodologies may benefit from modeling
artificial agents along the lines of FEP and TSD in order to create a
rich environment-agent nexus that could augment human selves
along the lines pictured above.

ENVIRONMENT-BRAIN INTERFACE –
CONJOINING THE FREE ENERGY
PRINCIPLE AND TEMPORO-SPATIAL
DYNAMICS

Free Energy Principle (FEP) – Gradient
Flow on Variational Free Energy Between
Brain and Environment
Technically, the free energy principle casts neuronal dynamics
as a gradient flow on a quantity known as variational free
energy in Bayesian statistics and an evidence lower bound (ELBO)
in machine learning. In this sense, free energy provides a
specific cost function for optimizing over possible dynamics. But,
moreover, the principle of FEP crucially focuses on variational
free energy of the ∗pair∗ of agent- and environment- dynamics,
and its minimization drives these to align. This can be seen
in equation (1) where minimizing free energy will maximize

the joint distribution of the brain’s sensory states (s) and
hidden states of the environment (ψ) (negative energy term),
while simultaneously ensuring that the representation of the
environment in the brain is maximally entropic (entropy term),
therefore accommodating the most variable state of affairs
possible within that distribution, in accord with Jayne’s maximum
entropy principle:

F (s, µ) = Eq
[
−ln p (s, ψ|m)

]
−H

[
q (ψ)

]
(1)

This furnishes a formal theory of active inference in the brain;
sometimes referred to as self-evidencing (Hohwy, 2016).

In Eq. 1 the states s and ψ are assumed to belong to
state spaces, which could be any mathematical spaces where
differentiation (computing a gradient) is possible, but it is
common for them to be Euclidean space of some dimension.
What’s more interesting is what a state represents: As typical
in physics, machine learning, game theory, etc., a state is
assumed to record all relevant information that characterizes
an agent/environment in the present so its evolution in time
can be determined. In our specific setting, the core of our
proposal is to use FEP on TSD and so we wish to consider
states that summarize temporo-spatial dynamics of relevance:
for example, a musical instrument may be vibrating at a certain
fundamental frequency with various overtones and moreover
different parts of the instrument may be exhibiting different
versions of this. The whole summary of all these dynamics
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in the present moment would constitute the instrument’s TSD
state. Likewise, one could summarize a single instrument by
less detail but also specify TSD for other instruments thus
giving rise to the TSD state of an ensemble of musicians’
instruments and so on. Similarly, the various frequencies of
brain activity in different brain regions could constitute the
relevant state of a human brain. Of course, not all infinite
detail is specified. We are interested in tapping into certain
aspects of the “agent” and “environment” whose evolution we
then describe with FEP. Recall that the agent can act on the
environment to make it more aligned with the agent, or vice
versa the agent can adjust its state to be better aligned with
the environment. The intricacy of human behavior involves
both modalities.

Self-evidencing means that the brain refers to its own
internal state, i.e., its intrinsic temporo-spatial dynamics, rather
than exclusively to the external environmental events when
making inferences about the causes of sensory inputs. This
is essential to survival, but at the same time, in pathological
instances, can lead to false inferences about states of affairs
beyond the sensorium. For instance, many psychiatric disorders
can be cast in terms of aberrant beliefs where subjects infer
something is there when it is not (e.g., hallucinations) or
infer something is not there when it is (e.g., an agnosia or
dissociative disorder) (Edwards et al., 2012; Benrimoh et al., 2018;
Figure 1).

Active inference is the core process that describes the
environment-brain interface, namely, its interactive nature.
That environment-brain interaction, i.e., the interaction of
organism/brain and world/environmental context, can be
characterized by free energy and, more specifically, variational
free energy (Friston, 2010). Variational free energy is related to
the discrepancy between the outside world and how an agent
models and predicts that world. See (Friston and Frith, 2015) for
an illustration of the implicit synchronization using simulations
of birdsong and gradient flows on variational free energy.

Central to this concept is the notion of a generative model
(m, in Eq. 1 above); namely an internal model embodied in the
organisms’ brain. Due to its hierarchically organized temporo-
spatial dynamics (see below for details), the brain can, effectively,
perform gradient descent on the variational free energy within its
respective environmental context. Taken in a more general way,
variational free energy measures the degree of synchronization,
alignment or attunement between the brain’s internal temporo-
spatial dynamics and the environment’s external states that
underwrite the former’s sensorium.

Neuronal dynamics can thus be described succinctly as
gradient flow (i.e., descent) on variational free energy. These are
necessarily approximated by any self-organizing system that can
be distinguished from its environment (in virtue of possessing
a Markov blanket) (Friston, 2013). For instance, the connection
to perception (i.e., perceptual inference) rests on noting that a
gradient flow on variational free energy is formally equivalent
to a gradient flow on the logarithm of evidence for a model of
the environment, entailed by the hierarchical brain; hence self-
evidencing. Preempting later parts of our paper, the conclusion
here is that hierarchical, (diachronic) temporo-spatial dynamics

must characterize any augmenting AI that is modeling the same
environment that we – as human selves – populate.

Temporo-Spatial Dynamics (TSD) – Brain
as Small-Scale Temporo-Spatial Model
of the Environment
Using variational free energy to align to and model its
environmental econiche, i.e., the respective environmental
context, enables the brain to constitute mental features and
functions. In fact, the free energy principle has already been used
as a powerful formalism for modeling and understanding diverse
mental features, including consciousness and affect/emotion (Gu
et al., 2013; Seth and Friston, 2016; Clark et al., 2018; Smith et al.,
2019a,b). Prominent in these studies is the application of free
energy to the self as well as to different facets of self like the
dynamic self, the bodily self and the subjective self (“I” vs. “me”)
(Gallagher and Daly, 2018; Seth and Tsakiris, 2018), which all can
be subsumed under the umbrella notion of “spatiotemporal self ”
(Northoff and Stanghellini, 2016; Northoff and Huang, 2017).

Importantly, the link of free energy to mental features like
self can be predicated on temporo-spatial dynamics; as for
instance in “deep temporal models” that possess a necessary
temporal thickness or depth (Seth, 2015). It has been argued
that a necessary characteristic of generative models that support
consciousness and intentionality is precisely their capacity to
model the future (Friston, 2018). These “deep temporal models”
are thus crucial for the human to adjust and thus align to
the ongoing temporal dynamics of their environment. This
results in a deeply temporal environment-agent nexus that, as
such, naturally conjoins variational free energy and temporo-
spatial dynamics.

Furthermore, the very nature of free energy minimization –
as tuning a generative model to a hierarchical or deep world
with separation of temporal scales – necessarily means that
hierarchical temporo-spatial dynamics must be recapitulated in
any such aligning or adapting agent. In the language of self-
organization, this is what has been described as “good regulator
theorem” that describes the intimate model-like relationship
between the regulator of a system and the regulated system:
“every good regulator of a system must be a model of that system”
(Conant and Ross Ashby, 1970; Seth, 2014, 2015).

Specifically, this means that the environmental hierarchies of
different events may be recapitulated and thus modeled by the
brain itself within its own intrinsic hierarchical organization, i.e.,
its temporo-spatial hierarchy. There is no need for the living to
represent a model of the environment in their head: “An agent
does not have a model of its world – it is a model. In other words,
the form, structure, and states of our embodied brains do not
contain a model of the sensorium – they are that model.” (Friston,
2013). Such modeling of the environment by the brain is driven
by the need of the brain to minimize its variational free energy
with its respective the environmental context.

The brain can be conceived as a free energy-driven temporo-
spatial model of its environmental hierarchies. That results in
temporal and spatial nestedness of the brain within its respective
environmental context. Despite different temporal (and spatial)
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scales across body, brain, and environments, they are nevertheless
connected through self-similarity in their shape or form. Just like
the smaller Russian doll is contained within the larger one (same
shape, different size), the brain and its temporo-spatial model
nest in a self-similar way within the much larger environment.
Given such self-similarity between brain and environment, we
may better focus on “what our head’s inside of” rather than
searching for “what inside our heads” (Bruineberg and Rietveld,
2014, 2019).

INTRINSIC ORGANIZATION OF THE
BRAIN – SPATIAL AND TEMPORAL
HIERARCHIES

Driven by its variational free energy with the external
environment, the brain is a model of the temporo-spatial
dynamic of the latter within its own internal organization. This
raises the question of the nature of the brain’s detailed spatial and
temporal features of its intrinsic organization – that shall be the
focus in the following.

The Brain’s Intrinsic Spatial
Organization –Core-Periphery Structure
What kind of hierarchical organization should be implemented
in our artificial agents? We suggest again to look to the
brain and its temporo-spatial hierarchical organization. Different
models, relying on distinct principles, have been suggested for
the cortical organization (Markov et al., 2013). Being based
strongly on anatomical grounds, medial-lateral and especially
rostral-caudal models as well as modular models have been
proposed for the human brain (see Margulies et al., 2016;
Huntenburg et al., 2018 for excellent discussions). The rostral-
caudal model suggests an anatomical gradient from more
unimodal subcortical and sensory regions to more heteromodal
prefrontal regions, which can be distinguished by their micro-
and macro-structural/architectonic features (Northoff, 2010;
Northoff et al., 2011; Gollo et al., 2015, 2017; Margulies
et al., 2016; Huntenburg et al., 2018). However, more recent,
functionally oriented, investigations question the primacy of such
rostral-caudal organization (see Figure 2).

Margulies et al. (see also Bassett et al., 2013; Huntenburg et al.,
2017, 2018) suggest rather an onion-like model of the human
brain, featuring different, i.e., inner, middle, and outer, layers.
Inner layers mediate trans-modal internally oriented functions
like self (Northoff et al., 2006), episodic simulation (Schacter
et al., 2012), and mind wandering (Christoff et al., 2016). Despite
their differences, these distinct forms of internal cognition all
strongly recruit the default-mode network (DMN) that is situated
at the core in the brain’s overall spatial organization (Margulies
et al., 2016; Huntenburg et al., 2018). In contrast, unimodal
functions like motor and various sensory modalities implicate
sensorimotor cortices that represent the outer layers, e.g., the
periphery (see also Northoff, 2011; Northoff et al., 2011).

The onion-like model entails the distinction between a
core, e.g., the most inner layer, and a periphery, e.g., the

outer layers. This amounts to what has been described as
“core-periphery model” in social science (Borgatti and Everett,
2000) and the centripetal hierarchies proposed by Mesulam in
neurobiology (Mesulam, 1998). A centripetal or core-periphery
architecture can be characterized by a core that shares nodes
with strong interconnections among each other. These core-core
connections are much stronger than the connections of the core
to the periphery, e.g., core-periphery connections, and also the
connections among the nodes within the periphery itself, e.g.,
periphery-periphery connections (Borgatti and Everett, 2000).
Such core-periphery has been shown to also apply to the brain
(Margulies et al., 2016; Huntenburg et al., 2017, 2018; Gu et al.,
2019) and akin to other models like “rich club” (van den Heuvel
and Sporns, 2013), “dynamic core” (Tononi and Edelman, 1998;
de Pasquale et al., 2012, 2016, 2018), and “global workspace”
(Dehaene et al., 1998, 2017; Mashour et al., 2020).

The Brain’s Intrinsic Temporal
Organization–Temporal Hierarchy
How about the brain’s intrinsic temporal organization? Hasson
and colleagues conducted a series of fMRI studies of the
encoding of external stimulus sequences (music, movies, etc.),
where stimuli (words, sentences, paragraphs, etc.) had different
durations – short, medium, and long (Honey et al., 2012; Chen
et al., 2015, 2017; Hasson et al., 2015). Using inter-subject
correlation of task-evoked fMRI data, they associated stimulus
duration with responses in different regions. This enabled them
to infer that the different regions exhibit different degrees or
windows of temporal integration for encoding and receiving
external stimuli –cast in terms of “temporal receptive windows”
(TRW; see Lerner et al., 2011; Hasson et al., 2015; Simony et al.,
2016).

Specifically, they observed that words (1 s −/+ 0.5 s)
elicited activation in lower-order primary sensory regions like
visual (when presented visually) or auditory (when presented
auditorily) cortex. Sentences, lasting longer, (8 +/− 3 s) were
associated with higher-order regions like medial temporal and
parietal cortex. In contrast, whole paragraphs lasting about (38
+/− 17 s) recruited activity in the DMN (see Honey et al., 2012;
Stephens et al., 2013; Hasson et al., 2015; Simony et al., 2016).

Together, these data show that different regions exhibit
different durations in their TRW’s and thus different time
scales during task-related activity, suggesting a certain temporal
hierarchy (Hasson et al., 2015), that may mimic the centripetal
spatial organization. This is related to (i) the externally presented
stimuli, (ii) the brain’s own internal spontaneous activity (as
measured in the resting state), and (iii) the brain’s spatial core-
periphery organization.

(i) These data show that the brain’s time scales are directly
related to the time scales of stimulus- bound responses. This
entails some form of temporal correspondence of the brain’s
internal neuronal dynamics during task-related activity in both
lower- and higher-order sensory and cognitive regions with
the temporal structure of the external environmental stimuli
and events. One can thus conceive the brain’s time scales, i.e.,
its TRW, as one manifestation of the brain’s alignment to its
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FIGURE 2 | The schema shows typical core-periphery organization with high connectivity/relationship (lines between dots) among the nodes or members (dots) of
the core as well as low connectivity/relationship among the nodes of the periphery and between core and periphery nodes.

environment in that the brain’s internal temporal hierarchy is
matched to that of the external environment.

(ii) Most interestingly, a more or less analogous hierarchy
of time scales can be observed not only during evoked activity
but also in the brain’s spontaneous or intrinsic activity (Murray
et al., 2014; Chaudhuri et al., 2015; Gollo et al., 2015, 2017).
Measured by the correlation between different time points of
neural activity, i.e., the autocorrelation window (ACW), these
studies demonstrate diverse correlation lengths, (i.e., ACW), in
different regions, in the resting state. Pending more robust results
about the temporal hierarchy in the brain’s resting state, these
data suggest that the hierarchy of time scales is an intrinsic
feature of the brain itself and not just shaped by the external
task itself. Building on the previous part, we assume that the
brain’s hierarchy of intrinsic time scales can be conceived in a
much broader way. The brain’s hierarchy of intrinsic time scales
does not model but is by itself a small-scale self-similar miniature
model of the larger-scale environmental hierarchies themselves,
including their historically and evolutionarily shaped features
(Figure 3) as mirrored in the brain’s current and past experience
of these.

(iii) Finally, one may want to raise the question how such a
hierarchy of intrinsic time scales maps onto the brain’s spatial
organization in a core-periphery architecture. The different
time scales and implicit temporal hierarchy operates across
the functional anatomy described above. The regions in the
core show rather long ACW and thus more extended intrinsic
neuronal time scales than the periphery, where the ACW is
relatively shorter (Murray et al., 2014; Chaudhuri et al., 2015;
Gollo et al., 2015, 2017).

Specifically, Gollo et al. (2015) show that core regions; e.g., rich
club regions like DMN and the insula evince predominantly slow
time scales, with stronger power in infra-slow (0.01 to 0.1 Hz)
and slower (0.1 to 1 Hz) and relatively weaker power in faster
frequencies (1–180 Hz; see also He, 2011; Huang et al., 2015,
2016; Zhang et al., 2018; Wolff et al., 2019a). In contrast to the
DMN as core, sensorimotor regions in the outer periphery exhibit

relatively less power in the infra-slow and slow frequency ranges –
and relatively more power in the faster ranges (He, 2011; Huang
et al., 2015).

Together, this amounts to an intricate temporal or dynamic
hierarchy; i.e., a chronoarchitecture within which each region
is featured by its “natural frequency” or “intrinsic neural time
scale” (Bartels and Zeki, 2005; Kiebel et al., 2008; Honey et al.,
2012; Gollo et al., 2015, 2017; see Figure 3). More generally,
the brain’s intrinsic temporo-spatial hierarchical organization, as
we have seen, can be conceived as self-similar miniature model
of the temporo-spatial complexities of its environment – albeit
in a much smaller and more compressed scale, as manifest in
our perception and cognition of that very same environment
(Northoff, 2018a).

MODELING THE ENVIRONMENT-AGENT
NEXUS USING FREE ENERGY
PRINCIPLE AND TEMPORO-SPATIAL

Artificial Agents – Modeling a Free
Energy-Driven Intrinsic Temporo-Spatial
Hierarchy
In the above, we laid the groundwork for a mathematical
formalism and showed the structural organization of the brain’s
highly adaptive capacities. Such a mathematical formalism may
furnish the foundation for developing a highly adaptive and thus
“aligning” artificial agent as a first step toward next generation
AI paradigms. Specifically, the mathematical formalism we
proposed integrates the free energy principle (FEP) and temporo-
spatial dynamics (TSD), and could be employed by agents
in their computational algorithms. This will enable a delicate
balancing of dynamical stability and adaptability between agent
and environment – as it is central for applying AI to augment
human perception and cognition (see Russell, 2019, for a review
of some recent AGI developments in this direction). We now turn
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FIGURE 3 | The figures show the intrinsic neural timescales in the human brain calculated by autocorrelation window (ACW) in human brain data from Human
Connectome data set (MEG). (A) Distribution of the duration of intrinsic neural timescales duration throughout the brain and its different regions (red: longer duration
of ACW). (B) Decrease in autocorrelation (y-axis) of neural activity over time (x-axis) in different networks (different lines) with demarcation at 50% (ACW) (vertical
lines). (C) Values of ACW (y-axis) for the different networks (x-axis). (D) Schematic depiction of core-periphery organization with the color shading of the nodes
reflecting the length of intrinsic neural timescales (more dark = longer timescales, more light = shorter timescales).

to modeling questions, in the AI sense of the word, where a model
is a part of a learning algorithm that mimics whatever the agent
will try to optimize. If the agent is tasked with learning to identify
photos of cats and dog with as few errors as possible then the
situation is relatively simple: it must search in a specific space of
mappings from photos to the labels cat/dog. This is the “model.”
It may for example be represented as sides of a hyperplane in a
high-dimensional space (a feature space) that photos are mapped
to. If the agent is a robot that is tasked with moving around an
uncertain terrain it may model a 4-legged animal, in that it has
metal extensions that can be moved with motors, and the various
possible movements in response to sensory input from the terrain
would also be part of the model.

If we now want to develop a highly adaptive, “aligning”
artificial agent as a first step toward next generation AI that
mimics the way a human aligns then one core feature is the
modeling of an intrinsic temporo-spatial hierarchy in the agent.
Future AI models may want to implement such intrinsic spatial
and temporal organization in their artificial agents, including
the different time scales and the core-periphery organization
[see Yamashita and Tani, 2008 – for first steps in this direction
in artificial agents using what they describe as “multiple time
scale recurrent neural network,” (Paine and Tani, 2005; Tani,
2016); as well as (Choi and Tani, 2017) who emphasize the need
for temporal hierarchies in artificial agents for their adaptation
to the environment]. Spatiotemporal hierarchies would extend
the current – often module-based – models of artificial agents

(Prescott and Camilleri, 2019) to the above mentioned core-
periphery organization. The core-periphery organization could
be complemented by combining top-down (providing the agent’s
inner input) and bottom-up (providing the agent’s outer input)
layers – that Tani uses in his compelling model of an artificial
agent (Tani, 1998; Tani et al., 2008; Choi and Tani, 2017; see also
Iwahashi, 2019).

Most importantly, by conjoining it with FEP, the artificial
agent’s intrinsic temporo-spatial hierarchy may be a small-scale
but self-similar model of its own environmental context. To
achieve that, the agent’s temporo-spatial hierarchy needs to
be highly dynamic and continuously changing, so as to adapt
to the changing environmental dynamics. More specifically,
this means that the causal (or temporo-spatial) architecture
of the environment must be recapitulated or installed in the
agent’s temporo-spatial dynamics in such way as to allow the
agent to minimize its variational free energy with its respective
environmental context.

Augmenting Agent Meets Augmented
Agent – Adapting the Agents’
Temporo-Spatial Dynamic to Augment
Humans
How can such an artificial agent augment human capacity
along the lines of our three future scenarios? We suppose
that free energy-driven intrinsic temporo-spatial organization
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FIGURE 4 | The figure depicts schematically the connection/relationship or alignment between different persons (magenta lines) with one exception as that person
(on the right with red circle) is isolated from the others, being unable to connect or relate (A). Improvement of that person’s alignment to others is possible by using
the kind of adaptive models (upper right corner) we here suggest – this breaks the person’s isolation allowing them to connect and relate to others (red lines) (B).

provides the artificial agent with the kind of balance between
temporal stability and adaptivity (Kiebel et al., 2009; Friston
et al., 2012) that is essential for its role in its environmental
context. The artificial agent will consequently be highly dynamic
and stable at one and the same time. In turn, this enables the
agent to interact with humans that can be characterized by a
somewhat analogous hybrid of temporal dynamic and stability.

The artificial agent could then, to a certain degree, mirror the
humans and, even stronger, synchronize with them in a temporo-
spatial way that is necessary for any form of dyadic exchange
or communication (see Friston and Frith, 2015 for empirical
support and numerical analyses).

A similar theme emerges in the context of human-agent
interactions, known as “human in the loop.” In this setting,
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artificial agents generate enormous amounts of information
regarding complicated problems aided by human input before
reaching a final decision (see Edelman et al., 2019 for robotics).
In this setting, agents rely on expert humans to adjust errors
in their intermediate predictions; thus, the accuracy of the
algorithm increases.

So, how can we construct an artificial agent’s intrinsic
temporo-spatial organization to ensure it not just mirrors but
truly augments human selves? Based on the conjoining of
FEP and TSD, one can expose the artificial agents to different
simulated social and natural or ecological environments with,
for instance, a broader and more fine-grained frequency range
beyond the one available through the sensory epithelia of
one human. That, as we suppose, should extend the artificial
agent’s spatial and temporal organization beyond the one of
humans to, for instance, a wider and more fine-grained range in
the power spectrum.

How can such extension of the artificial agent’s interface with
its environmental context beyond the ones of humans facilitate
its interaction with the humans themselves? This is where the
free energy principle comes in. Since variational free energy is an
extensive quantity, the augmenting and augmented agents will,
following an information theoretic measure of augmentation,
minimize their joint free energy (Bruineberg and Rietveld, 2014;
Friston and Frith, 2015; Constant et al., 2020). In turn, this
will inevitably lead to a generalized synchrony between the
augmenting (AI) and augmented (human) agent.

CAN ARTIFICIAL AGENTS AUGMENT
HUMANS – COMING BACK TO OUR
EXAMPLES

Enhancing Moral Decision Making – Self-
Other Continuum in Decision Making and
“Trustworthy AI”
Humans are able to change their belief updating and
contextualize their objectives. That is, for instance, manifest
in our decision making that operates on a balance between
environmental constraints; i.e., externally guided, and self- or
ego-centric concerns, i.e., internally guided (Nakao et al., 2012,
2013, 2016, 2018, 2019; Wolff et al., 2019a,b). If the subjective
preference dominates, as in the choice of a certain moral values or
a specific profession (independent of objective values), internally
guided decision making dominates.

In contrast, if one assesses the external input according
to purely objective (rather than subjective) criteria, externally
guided decision making dominates. Technically, the balance
between adjudicating between internal and external preferences
can be articulated in terms of the confidence placed in – or
precision afforded to – prior beliefs about the sorts of outcomes
that follow “good” and morally valuable decisions (Friston, 2013).

Moral decision making paradigmatically exposes the internal-
external continuum, i.e., self-other continuum. For instance, the
well-known footbridge dilemma raises the question whether one
is willing to sacrifice one’s own life in favor of sacrificing the

life of several other people (Wolff et al., 2019a). Who is more
important – the own self or the other self? In our first example,
the CEO is caught in such moral dilemma, that is, between more
self-or ego-centric concerns of the company and the wellbeing of
the employees – one can thus speak of a self-other continuum in
our decision making.

An optimal artificial agent would consider both self and
other, as in our very human decision making. And, even
more important, it would allow reconciling and integrating
both at a deeper more fundamental level which escapes
us as humans (for which reason we are trapped in moral
dilemmas like the footbridge dilemma). Current AI does not
significantly address the self-other continuum and the deeper
more fundamental level of their integration. Even though the
name “value function” is very explicitly a function that serves
as a surrogate for moral values, how are these fluidly to be
combined with external criteria? Some approaches exist: e.g.,
Dayan and Hinton (1992), which was motivated by speeding up
reinforcement learning (RL) with a control hierarchy. But this
architecture itself is hard-coded and imposed by the designer,
rather than seeking any reciprocity with the environment.
Another approach is suggested by Naruse et al. (2018) based on
category theory, where the values of different sub-agents are in
principle aggregated.

Novel paradigms – such as the one suggested here – may
have other mechanisms for incorporating diverse criteria, i.e.,
internal, and external, into decision making. In particular, active
inference formulates value in terms of prior preferences that
are internal preferences of the system itself. These internal
preferences are effectively (sub personal or non-propositional)
Bayesian beliefs about the consequences of action. Crucially,
this means that internal preferences and implicit value are
attributes of beliefs about anything – and cannot be reduced
to a single value or an external fact. Importantly, these
internal preferences can by themselves be traced to the
agent’s relationship with her/his past and present environmental
context – it is that very same environment-agent alignment
that endows and constitutes the value of these internal
preferences, including their potential moral values (Northoff,
2018a).

At the end of the day, regardless of the architecture,
we care about the artificial agent’s alignment and how
well it can incorporate the self-other continuum and, going
beyond humans, integrate this on a deeper more fundamental
level. Another way of expressing this is to estimate an
agent’s prior internal preferences that are implicit in its
decisions and choices about external conflicts. Indeed, this
approach has been adopted formally through the notion
of computational phenotyping (Schwartenbeck and Friston,
2016). Ultimately, the agent’s expanded interface with the
human agent’s environment may allow the artificial agent
to not only develop moral values acceptable to humans
but, even more, become an example of “trustworthy AI”
(European Commission [EC], 2019) (and ideally to be more
“trustworthy” than human agents), as discussed extensively in
policy-making and research circles (European Commission [EC],
2018; Floridi et al., 2018; Metzinger, 2018; Veale et al., 2018;
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Castelo, 2019; European Commission [EC], 2019; Salles et al.,
2020).

Predicting Natural Disaster –
Augmenting Complexity Matching of
Environment and Brain
One instance of testing metrics of alignment of an agent to its
environment consists of what has been described as “complexity
matching” (Kello et al., 2010; Borges et al., 2018). Briefly,
complexity matching allows to compare, i.e., correlate and match
the degrees of spatial extensions and/or time scales between
two different systems (Salvanes et al., 2013; de Pasquale et al.,
2016; Borges et al., 2018). The degree of complexity matching
between brain and environment is considerably enhanced by
the fact that the brain’s temporo-spatial structure including its
hierarchy is strongly shaped by the environment and its different
time scales including both life-span and evolutionary timescales –
this amounts to experience-dependence (as understood in a wide
sense as exposure).

Accordingly, by letting itself and its temporo-spatial hierarchy
be shaped by its environmental context, the brain increases its
likelihood of higher degrees in the matching of its own temporo-
spatial complexities with the ones of its environmental context.
In particular, complexity matching of brain and environment
is inherently temporo-spatial and therefore strongly dependent
upon the brain’s temporo-spatial hierarchy. What AI describes
as dynamic adaptation (Tani, 2016; Ha and Schmidhuber, 2018;
Han et al., 2020) is likewise related and may thus be traced to
complexity matching.

However, current AI has problems in complexity matching
with respect to heterogenous, highly variable and dynamic
environments including social, cultural, and ecological – that
is, for instance the case in our example of the wildfires where
the ecological context continuously changes. This may, in
part, be related to a rather constrained architecture in current
artificial agents that allows only a limited range of timescales
and consequently alignment with a rather restricted number
of different environments. Moreover, modeling in brain-like
artificial agents, i.e., “animats” as the authors say, demonstrates
the experience-dependence (in the sense of exposure) of the
agent’s internal structure as its inner complexity is dependent
upon the complexity of the outer environment (Edlund et al.,
2011; Joshi et al., 2013; Albantakis et al., 2014).

That is just a first step though; it leaves open the matching
of environmental structure and the agent’s internal structure
with the shaping of the latter by the former, i.e., complexity
matching and “complexity shaping” as one may want to say.
The realization of complexity matching, and temporo-spatial
hierarchical organization can be considered a first step toward
increasing the degree of the agent’s complexity matching with the
environment. For that to be possible, the temporal range of the
agent’s power spectrum and its spatial expansion of regions and
networks may need to be extended beyond the ones of humans.

Such agents would, for instance, exhibit a larger range of
different frequencies (than humans) which would allow them
to better match with their environmental context in a broader

and eventually more fine-grained way. The agent’s interface
with its environmental context may thus be expanded which,
leading to higher degrees of complexity matching of agent and
environment, may be especially relevant for our second case, the
prediction of natural disasters with cascading events prior to the
actual outbreak.

Alleviation of Symptoms in Mental
Disorders – Brain-Computer Interface
Modulating the Subject’s
Environment-Brain Alignment
While we usually take our brain’s capacity for alignment
to its environment for granted (as we do not explicitly
perceive it), we are painfully aware when our brain’s alignment
to its environmental context is not properly functioning
anymore. That is, for instance, the case in coma where
we, having lost completely our brain’s capacity of alignment,
are no longer able to make any decisions and navigate in
the environment (Zilio et al., 2021). Yet another instance
of altered alignment are mental disorders like depression
and schizophrenia – or indeed the use of psychedelics
(Carhart-Harris et al., 2016).

In the case of depression, one withdraws from the external
environment, resulting in abnormally elevated internal focus; i.e.,
increased self-focus, at the expense of the environment-focus
(Northoff, 2007, 2016). See Figure 4. The self-other continuum
is here shifted abnormally toward the pole of the self – this
leaves subjects with social withdrawal, negative mood, sadness,
and suicidal ideation. While in schizophrenia, subjects lose their
brain’s ability to align and synchronize with external stimuli
(Lakatos et al., 2013; Northoff and Duncan, 2016). The internal-
external continuum and thus the self-other continuum is here
not only shifted but disrupted – that results in the perception
and cognition of the external environment in terms of the
own internal imagination and thoughts, i.e., hallucinations and
delusions as typical symptoms of such inner-outer confusion
(Parnas, 2012; Northoff and Duncan, 2016).

One central therapeutic aim in these patients entails
“normalizing” their matching and thus their gradient flow on
variational free energy with the environment, in the hope that
they can re-align to the environment in a “normal” way (see
Figure 4). As described in our third example, artificial agents
may improve our current, rather limited, therapeutic tools in
this respect. Specifically, one would like to construct an artificial
agent that, implemented as a brain-computer interface (BCI),
can (i) continuously record and monitor the individual brain’s
alignment to its environmental context along the lines of internal-
external self-other continuum; (ii) determine continuously the
individual’s optimal and non-optimal degrees of alignment
in relation to environmental context; and (iii) modulate the
individual’s brain’s actual alignment by shifting it toward more
optimal degrees in psychiatric patients; for example, those
suffering from depression or schizophrenia. This may sound
fanciful; however, treating simple things like tremor may yield to
this sort of dynamical intervention (c.f., chaos control). Please see
Cagnan et al. (2017) for a nice example.
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Ideally, such an artificial agent may extend the capacity
of therapists to determine optimal and non-optimal levels of
alignment (approaching the capabilities of a healthy subject who
senses and modulates his/her own environment-agent nexus).
However, irrespective of the method used to achieve better
environment-self alignment; improved wellbeing and alleviation
of distress and discomfort associated with disorders remain the
goals of a therapeutic AI tool like this. Will such augmenting
agents thus exert true therapy? We may simply want to ask the
users themselves, i.e., the augmented agent: does the tool improve
your wellbeing and/or alleviate distress or discomfort? how does
it compare to human-therapist intervention (if this has been
tried)?

To test our hypothesis that conjoining of FEP and TSD is
useful for designing IA’s of the three types listed here we propose
that initial prototypes of such agents be subjected to two kinds
of litmus test. First, direct tests of basic aspects of the desired
alignment that are known to be relevant, such as complexity
matching as described above. And second, tests that involve
human ratings and can thus be seen as IA-analogs of the famous
Turing test (Turing, 1950): do specific users rate a decision
making tool as moral; do users from many cultures rate the
tool as culturally sensitive; does the tool improve your wellbeing
and/or alleviate distress or discomfort; how does it compare to
human-therapist intervention (if this has been tried)?

CONCLUSION

We propose a novel AI approach. Rather than creating
human intelligence, we propose augmenting it. For that
purpose, we suggest taking lessons from the brain as a
key strategy in attempts to build artificial agents that can
support and augment human selves. Taking lessons from the
brain, we suggest that the artificial agents should first exhibit
internally a complex, hierarchical temporo-spatial structure
which, secondly, should be continuously shaped and updated
through minimization of variational free energy within its
respective environmental context.

The aim is to enable the continuous shaping and construction
of the agent’s inner spatial and temporal organization in a
hierarchical manner, driven by its gradient flow on variational
free energy with the respective environmental context. That

serves as basis for constructing both dynamic stability and
adaptivity of the agent to its respective environmental context,
namely, the human whose capacities it shall augment.

Such in-built environment-agent nexus will provide novel
opportunities for AI as suggested in our initial examples. Even
though it does not create and thus possess the human capacities
by itself, the augmenting agent will nevertheless allow broadening
our brain’s interface with its environment. That, in turn, has the
potential to stabilize and hence our brain-based self especially in
times of crisis like pandemics as well as to augment our perceptual
and cognitive capacities beyond our current human limits.
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