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Time is of the essence in how neural codes, synchronies, and oscillations might
function in encoding, representation, transmission, integration, storage, and retrieval
of information in brains. This Hypothesis and Theory article examines observed
and possible relations between codes, synchronies, oscillations, and types of
neural networks they require. Toward reverse-engineering informational functions
in brains, prospective, alternative neural architectures incorporating principles from
radio modulation and demodulation, active reverberant circuits, distributed content-
addressable memory, signal-signal time-domain correlation and convolution operations,
spike-correlation-based holography, and self-organizing, autoencoding anticipatory
systems are outlined. Synchronies and oscillations are thought to subserve many
possible functions: sensation, perception, action, cognition, motivation, affect, memory,
attention, anticipation, and imagination. These include direct involvement in coding
attributes of events and objects through phase-locking as well as characteristic
patterns of spike latency and oscillatory response. They are thought to be involved in
segmentation and binding, working memory, attention, gating and routing of signals,
temporal reset mechanisms, inter-regional coordination, time discretization, time-
warping transformations, and support for temporal wave-interference based operations.
A high level, partial taxonomy of neural codes consists of channel, temporal pattern, and
spike latency codes. The functional roles of synchronies and oscillations in candidate
neural codes, including oscillatory phase-offset codes, are outlined. Various forms
of multiplexing neural signals are considered: time-division, frequency-division, code-
division, oscillatory-phase, synchronized channels, oscillatory hierarchies, polychronous
ensembles. An expandable, annotative neural spike train framework for encoding low-
and high-level attributes of events and objects is proposed. Coding schemes require
appropriate neural architectures for their interpretation. Time-delay, oscillatory, wave-
interference, synfire chain, polychronous, and neural timing networks are discussed.
Some novel concepts for formulating an alternative, more time-centric theory of brain
function are discussed. As in radio communication systems, brains can be regarded
as networks of dynamic, adaptive transceivers that broadcast and selectively receive
multiplexed temporally-patterned pulse signals. These signals enable complex signal
interactions that select, reinforce, and bind common subpatterns and create emergent
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lower dimensional signals that propagate through spreading activation interference
networks. If memory traces share the same kind of temporal pattern forms as do
active neuronal representations, then distributed, holograph-like content-addressable
memories are made possible via temporal pattern resonances.

Keywords: synchronies, oscillations, neural codes, temporal codes, radio communications, holographic memory,
timing nets, neural networks

1. INTRODUCTION

The primary aim of this Hypothesis and Theory paper is
to explore possible functional roles that neuronal oscillations,
synchronies, and other temporal patternings of spikes might play
in local and global neuronal circuits. Here we focus on their
possible relations to neural codes. Finally, we briefly present some
putative design principles for an integrated neural architecture,
analogous to radio communication systems.

1.1 Reverse-Engineering the Brain
Reverse-engineering is the process of deducing the operating
principles by which a complex system of unknown origin
and/or structure achieves its functions. Understanding how the
nervous system achieves its functions of controlling behavior
is a large, long-term scientific reverse-engineering problem
that encompasses several major aspects (Figure 1). This
involves understanding the structure of the nervous system,
individual and collective neuronal behavior, identifying the
functional signals of the system (neural codes), characterizing
its informational functions and the operations that subserve
them, as well as understanding the neural basis of conscious
awareness (Figure 1A). Ultimately functional and computational
neuroscience seeks to account for how neuronal systems behave,
to elucidate the neurocomputational processes by which they
achieve the many informational functions that enable complex
behaviors (Figure 1B). This goal also includes identification
of the neuronal concomitants of states of awareness and their
specific experiential contents.

1.2 The Neural Coding Problem
The neural coding problem entails identification and elucidation
of which aspects of neural activity bear distinctions that subserve
informational functions in the nervous system (Bullock, 1967;
Perkell and Bullock, 1968; Perkell, 1970; Uttal, 1972; Cariani,
1995a; Stevens and Zador, 1995; Rieke et al., 1997; Nádasdy,
2000; Kumar et al., 2010). Whereas the connectome describes
neuroanatomical interneural components and connections, and
the dynome describes the dynamics of neuronal activity (Kopell
et al., 2014), the realm of neural coding describes those aspects of
dynome and the connectome that bear functional significance.

Here we take neural codes, in the strong sense of Watrous
et al. (2015), to mean “that neural computation is causally driven
by some configuration of spikes or extracellular signal, which
implies that the brain is using this code to represent information.”
Defined this way, neural codes are the functional “signals of
the system.” They are neural activity differences “that make a
difference.” Neural codes are thus recognized as codes on the

basis of their “interpretation” by the rest of the system – how the
nervous system uses them to achieve some function.

Neural representations that subserve perception, cognition,
motivation, memory, affect, and the orchestration of action are
all, in effect, neural coding schemes. On the sensory side, these
representations are primarily generated by the action of external
stimuli on sensory systems, whereas on the motor side, motor
program representations for coordinated action are produced
by adaptive internal pattern generation processes guided by
sensory feedback and reward. Neural representations associated
with drive states important for homeostasis and survival are
presumably more likely to be based on dedicated circuits and
coding schemes. Between sensory and motor systems lie neuronal
assemblies and signals that self-organize from the internal
informational dynamics of coordinating perception and action in
service of anticipatory prediction and drive reduction.

Being part of a coherent, interpretable neural coding scheme
separates those spikes that change internal functional states
and external behaviors from those that don’t – not every spike
need be interpretable by the system. Until evidence establishes
that a given neuronal activity pattern exists and is linked to a
particular function, prospective coding schemes are regarded as
“candidate codes.”

The functional definition carries with it additional constraints.
There must be some reliable mechanism whereby a possible code
can be interpreted (read out) by the rest of the system (Perkell
and Bullock, 1968; Kumar et al., 2010) and it must be capable of
being integrated with codes for other attributes. If the distinctions
it conveys can be retained in memory, then the original code
or its transformations must also be compatible with available
memory mechanisms.

1.3 Proposed Functional Roles of
Synchronies and Oscillations
Following the discovery of brain rhythms less than century
ago, many hypotheses concerning possible functions of neural
synchronies and oscillations have been proposed and debated
(Walter, 1959a,b; John, 1967b; Thatcher and John, 1977; Basar,
1988; Buzsáki, 2006; Nunez and Srinivasan, 2006; Uhlhaas et al.,
2009; Klimesch, 2012; Singer, 2018, 2021). These include:

• Neural coding of specific attributes. Phase-locked
synchronizations of spikes to external stimuli that
precisely and robustly encode perceptual attributes can
be found in almost every sensory modality, including
audition, vision, mechanoreception, proprioception,
and electroreception (Mountcastle, 1967; Carr, 1993;
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FIGURE 1 | Systems Overview. The general problem of understanding how nervous systems work as informational and experience-producing systems. (A) Different
aspects of the problem [cf. Marr’s levels of analysis (Marr, 1982)]. (B) What is to be explained (explananda) in what terms (explanans). Reverse-engineering seeks to
elucidate operant functional principles in nervous systems using information processing models that account for mental functions. Neuro phenomenal mappings
predict subjective experiences by elucidating the neural correlates of states of consciousness (NCCs) and of the contents of consciousness (NCCCs).

Cariani, 2001b; Lestienne, 2001). Stimulus intensity can be
encoded in spike timings re: stimulus onset (Heil, 2004)
and gamma cycle phases (Vinck et al., 2010). An extensive
literature points to gamma-theta phase encoding of spatial
place information in the hippocampus (Skaggs et al., 1996;
Lisman, 2005; Lisman and Jensen, 2013).
• Segmentation and binding processes. Synchronies and

oscillations have been proposed as general mechanisms
for temporal grouping of events as well as the grouping
of attributes associated with separate objects and events
(Singer, 1999; Engel and Singer, 2001). Neural networks
that bind through synchrony (Shastri and Ajjanagadde,
1993), common oscillatory frequency (Baldi and Meir,
1990) or phase (Klimesch et al., 2010), or common temporal
patterns have been proposed (Reitboeck et al., 1988;
Cariani, 2015).
• Coupling/decoupling of neuronal subpopulations and regions

by common timing (synchrony), oscillatory frequency, or
common time patterns. Coupling through coherence (CTC),
in which common oscillatory frequencies and inter-
regional synchronies may serve to couple or decouple
different brain regions in a task-specific manner (Fries,
2015), is a leading general hypothesis. Flexible coupling of
oscillators or neuronal integration in global circuits (Miller,
2013). Recently, a role for the cerebellum in coordinating
inter-cortical communications through oscillatory control
has been suggested (McAfee et al., 2021). Coherent coupling
would also be critical for any heterodyne-like neural
mechanisms (§ 8.1.3).
• Support for memory. Interactions between alpha, beta, and

gamma in different cortical layers appear to mediate
volitional retention of items in working memory

(Miller et al., 2018). Gamma, theta, and delta oscillations
are associated with memory consolidation operations in
cortex, hippocampus, and striatum (Buzsáki and Moser,
2013; Headley and Paré, 2017).
• Temporal scaffolding. Hierarchies of nested oscillatory

processes triggered by common events potentially provide
a temporal framework for multi-level representations
(O’Connell et al., 2015), such as integrating speech
sequences at phonetic, syllabic, lexical, phrasal, and
sentential levels (Shamir et al., 2009; Ding et al., 2016;
Rimmele et al., 2021).
• Temporal processing windows. The relative timing of

the presentation of parts of an object can determine
which perceptual attributes are combined or separated.
Loudness summation, how close together in time two
identical sounds must be presented in order for their
perceived intensities to sum is a primary example. Likewise,
there are temporal integration windows for perceptual
attributes in every modality and temporal windows for
chunking sequences of perceptual events in time to form
phrase structures, as in music and speech (Bregman,
1990; Snyder, 2000; Ding et al., 2016). Endogenous
and externally-triggered oscillations may subserve these
neuronal temporal integration processes.
• Multiplexing of neuronal signals in time-, frequency-, and

temporal pattern-domains (§ 5.6).
• Attentional gating, routing, amplification, and suppression

mechanisms. Oscillatory neuronal activity in particular
frequency bands appear to support attentional processes
that enhance immediately relevant information and/or
suppress what is currently irrelevant (Klimesch, 2012;
O’Connell et al., 2015). “Predictive routing” is mediated

Frontiers in Computational Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 898829

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-898829 June 23, 2022 Time: 11:29 # 4

Cariani and Baker Time Is of the Essence

by characteristic layer-specific oscillations (Bastos et al.,
2020). Via fast, precisely timed basal ganglia circuits
(Pouzzner, 2020; Oberto et al., 2022), oscillations may be
involved in gating inputs to cortical areas by intermittently
disinhibiting thalamic inputs, thereby implementing
temporal processing windows.
• Time discretization and temporal ordering. Sequences

of gamma cycles (Uhlhaas et al., 2009) may serve to
temporal discretize neuronal responses in order to convert
continuous time patterns to discrete ordinal sequences that
are invariant to changes in tempo (Shamir et al., 2009).
• Reduction of spike jitter by suppressing membrane noise

(Schaefer et al., 2006).
• Signal cancelation via synchronized excitation and

inhibition, desynchronizations or interference of
competing oscillations. A striking example of signal
cancelation is the phenomenon of binaural masking level
difference (BMLD) where a tone rendered inaudible
by masking noise is presented in one ear. If one then
concurrently presents the same noise without the
tone in the other ear, the tone is unmasked (by up
to 15 dB) – subjectively it now pops out of the noise
(Durlach and Colburn, 1978). The underlying neural
cancelation mechanism is thought to involve matched
excitatory and inhibitory binaural brainstem inputs that
are phase-locked (synchronized) to the acoustic input
common to both ears, i.e., the noise. There is an analogous
unmasking effect in binocular vision (Henning and Hertz,
1973). In terms of the radio metaphor (§8.1), signals on
particular oscillatory carriers as well as other oscillatory
functions could conceivably be jammed by interfering
oscillations with nearby frequencies or with phase-opposite
oscillations of the similar frequency.
• Emergence of new oscillatory frequencies for increasing the

dimensionality of neural signal spaces (§ 8).
• Coupling to oscillatory bodily rhythms (Klimesch, 2018),

such as heartbeat, breathing, visceral processes, and
circadian rhythms.

1.3.1 Oscillatory Frequency
Although specific oscillatory frequencies vary considerably, there
is strong evidence that different frequency ranges, denoted by
Greek letters, are associated with different general functional
roles. Below are some current notions of correspondences of
oscillatory frequencies with information processing functions:

• Gamma (>30 Hz) oscillations are widely observed in
cerebral cortex and hippocampus, especially in olfactory,
visual, and auditory cortex. Gamma rhythms are generally
associated with increased neural cortical activity related
to selective sampling and coding of incoming inputs and
outgoing actions. (Fries et al., 2007; Buzsáki and Wang,
2012; Lisman and Jensen, 2013; Cannon et al., 2014).
Gamma frequencies and gamma power almost invariably
increase under attention. In many cases gamma co-occurs
with theta rhythms.

• 40 Hz gamma. Specific evoked and induced gamma
rhythms near 40 Hz are observed in auditory and visual
regions, as well as hippocampus, cerebellum, and elsewhere
(Galambos, 1992; Pastor et al., 2002). The 40 Hz “steady-
state response” (SSR) has been used to “frequency tag”
neural responses to other stimuli (Patel and Balaban, 2001b,
a). Use of 40 Hz electrical, magnetic, photic, auditory,
and vibrotactile stimulation is also actively being explored
in therapeutic neurological contexts (Haller et al., 2020;
Liu et al., 2021; Zhang et al., 2021; Mosabbir et al., 2022).
• Beta (∼15–30 Hz) oscillations are thought to be related to

dynamic formation of flexible ensembles, such as working
memory functions (Miller et al., 2018).
• Alpha rhythms (∼8–15 Hz) are thought to be involved

with functional inhibition, i.e., the suppression of
neuronal activity that is not currently relevant to current
goals (tasks) (Basar, 2012). “Alpha oscillations are used
as an electrophysiological indicator of vigilance and
arousal, attenuating during targeted cognitive activity
and strengthening while the brain is unoccupied by
specific mental tasks and devoid of significant sensory
input, particularly visual input. (Difrancesco et al., 2008).”
Increased cortical extent and duration of alpha rhythms,
but not alpha power, is correlated with transitions to
acoustic parameters related to preferred spatial hearing
percepts (Ando, 2009).
• Theta rhythms (4–10 Hz) are thought to be related to

selective sampling of incoming information.
• Coupled Theta-Gamma rhythms are rhythms that may

interact (“cross-frequency coupling”) such that they are
initiated or phase-reset by a common triggering event to
produce a nested hierarchy of oscillations (Canolty et al.,
2006; Buzsáki and Wang, 2012; Lisman and Jensen, 2013).
They are also thought be involved with organizing working
memory (Chaieb et al., 2015; Reinhart and Nguyen, 2019).
• Delta rhythms (0.5–4 Hz) are prominent during sleep. They

also may play a role in the temporal segmentation of
incoming streams of events, such as speech (Rimmele et al.,
2021).

1.3.2 Oscillatory Power, Duration, Timing/Phase,
Extent
In addition to oscillatory frequency, other potentially relevant
parameters of oscillatory responses are: oscillatory power,
temporal duration, oscillatory timing/phase, and spatial extent.
Analogous parameters apply to neural synchronies as well:
synchrony strength, duration, timing, and neural extent.
Oscillatory power reflects the magnitude of the oscillatory
frequency component relative to other components. The
temporal duration of an oscillation wise a measure of how
long the oscillation persists. Transient, oscillatory bursts can be
quite short, from 1 to 3 cycles (Feingold et al., 2015), whereas
sustained oscillations can persist for many cycles. Effective
duration is a measure that quantifies the duration of coherent
oscillations that is based on the decay of the envelope of the
autocorrelation function as lag time increases (Ando, 2009; Ando
and Cariani, 2014). Phase relations between multiple oscillations

Frontiers in Computational Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 898829

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-898829 June 23, 2022 Time: 11:29 # 5

Cariani and Baker Time Is of the Essence

depend on their relative timings. Lastly, the spatial extent of an
oscillatory pattern over brain regions is an indication of how
widespread is the neural activation pattern. Different kinds of
time-frequency representations may be appropriate for analyzing
different aspects of oscillations (Bârzan et al., 2022).

Some of these parameters, such as the effective duration
and cortical extent of alpha rhythms, are more correlated with
listener-preferred concert hall architectural acoustic parameters,
than more traditional measures such as alpha power (Ando, 2009;
Ando and Cariani, 2014). Precise timing of oscillatory bursts may
be critical for motor functions (Feingold et al., 2015).

Phase alignment is a form of synchronization. Phase relations
between different oscillations in different brain regions may well
be critical for their coordination (Sauseng and Klimesch, 2008).
Phase resets may also be critical for neural coding (§5.4) as well
as for synchronization of functionally-related neural populations
(Klimesch et al., 2009). The relationships between oscillations and
evoked neural activity patterns, including ongoing, induced and
triggered oscillations, are complex (Sauseng et al., 2007; Klimesch
et al., 2009).

Most of the proposed oscillatory functions involve
information processing operations – how the brain processes
neural signals – rather than representational functions – how
the contents of those signals (attributes and specific distinctions
of objects and events) are encoded. Arguably, once the neural
correlates of information processing operations are firmly
understood, then the scientific focus will then shift to problems
related to neural coding (representation) and informational
organization (scene analysis, binding and segmentation,
and composition).

1.4 Causality, Correlation, Obligatory,
Facilitative, and Tangential Roles
The nature of causality and time itself have long been
contemplated and debated by philosophers and scientists
(Reichenbach, 1956). In the neurosciences there have been
perennial debates surrounding the neural causation of mental
functions (Kim, 2011; Rolls, 2021). Whether oscillations and
synchronies play causal roles in neural informational functions
or whether they are correlative by-products of other processes
that subserve these functions has been an abiding question in
neuroscience (Sauseng and Klimesch, 2008). For example, one
reviewer raised the thorny question of whether inter-regional
synchronies might be byproducts of functional informational
coupling rather than its causes.

How is a causal functional relation distinguished from a
merely correlative one (Papineau, 1991)? Within neuroscience
contexts, causal efficacy can be reasonably ascribed to some
neural mechanism or process when its action reliably brings
about some subsequent change in internal state or behavior,
whereas its inactivation does not. If the relation is causal, the
correlation between cause (activation of the neural mechanism)
and effect is unity, whereas if other necessary factors are also
involved, such that the correlation is substantially below unity,
one has a correlative relationship. As correlations weaken, it
becomes successively more difficult to ascribe causation. A strong

correlation should lead investigation into possible underlying
chains of neural events that might explain the causal relationship,
at the same time discovering and ruling out possible common
causes and “spurious correlations.”

There are also “interventionist” strategies for isolating
causal chains (Woodward, 2008). Although current techniques
of selective, reversible neuronal activation, stimulation, and
pharmacological modulation are much more refined, the
methodology is similar to classical lesion studies that analyzed
loss-of-functions, with many of the advantages and pitfalls of
such studies (Vaidya et al., 2019).

If there is but one underlying neural mechanism, then
disrupting that mechanism should be sufficient to impair or
abolish the functions it subserves. However, in the case of neural
oscillations and synchronies, it may be difficult to rule out their
complete abolition in local ensembles. Depending on the nature
of the intervention, abolishing oscillations and/or synchronies
might also disrupt other neuronal responses that could be
necessary for the function at hand, leading to a potentially false
conclusion of their causal efficacy. The existence of multiple
parallel neural pathways that can realize partial function also can
make establishing the causal role of any one path more difficult.
In such cases, to prove causal roles, all parallel causal paths must
be first eliminated and then each individual path must be tested
for restoration of function.

In terms of realizing informational functions, oscillations and
synchronies may be necessary (obligatory), helpful (facilitative),
or functionally superfluous (neither helpful nor harmful). At one
extreme, neural coding of the attributes themselves might depend
entirely on spike synchronies or population oscillations. Prime
examples are neural codes in the auditory system that utilize
precise phase-locking: encoding of sound direction through
interaural time differences (§5.4), echolocation based on echo
delays (§5.4), and interval codes for pitch perception that
convey delays related to sound periodicities (§ 5.3). Other strong
examples exist in electroreception, flutter-vibration, and vision.
In these cases, there is no function in lieu of precise, phased-
locked spike synchronies.

Where synchrony and oscillatory timing is obligatory in
sensory and motor systems, their modification or abolition
should significantly alter or abolish percepts and actions. For
the most part, introducing external stimuli (clicks, flashes,
and shocks) that disrupt or reset normal oscillatory responses
or configuring stimuli to reduce synchronizations do not
dramatically alter basic percepts. For example, abolishing
oscillations in insect olfactory systems using picrotoxin impairs
fine, but not coarse, odor discriminations (§5.4.5). On the other
hand, it has been long recognized that synchronizing timings
of stimulation with ongoing brain rhythms can elicit rather
unexpected effects, such as streams of memories (Walter, 1959b),
suggesting that these rhythms are bound up with memory
traces. Recent work is revisiting this experimental approach
of oscillation-synchronized stimulation (Herrmann et al., 2016;
Hohn et al., 2019).

At the other extreme, neural codes might operate almost
entirely independently of population-wide oscillations and
synchronies, rendering their functions impervious to changes in
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relative timings of external stimuli. Between these two extremes,
neural information processing may be modestly enhanced if
stimuli are presented at a favorable phase of a neural population
oscillation. Attentional enhancement of relevant task-relevant
signals by suppressing irrelevant neural responses may not be
strictly necessary for most perception, but it certainly can make
a difference in challenging, near-threshold conditions.

1.5 Relations to Neural Codes
One aspect of synchronies and oscillations often left out of
discussions is the precise nature of the neural codes that bear
the attribute information being grouped, separated, enhanced,
suppressed, gated, grouped, transmitted, or retained in memory.
What are the specific attributes? What are the neuronal signals
that are being processed in these various ways? What are the
neural codes such that the contents of these signals are encoded
in patterns of spikes?

With the exception of phase-locked temporal codes, for
the most part, it is conventionally assumed that the attributes
themselves and their values are represented by rate- and channel-
coded feature detectors, i.e., which particular neurons respond
with higher firing rates (“spiking frequencies”). There are many
reasons to doubt this general assumption (Gautrais and Thorpe,
1998). In many systems neuronal behaviors do not comport with
functional roles as narrowly selective, unitary feature detectors,
such that it appears that multiple types of information may
be multiplexed in the same spike trains (Nelken et al., 2008;
Bizley and Walker, 2010). In the auditory system, as well as in
other sensory modalities, rate codes degrade at high stimulus
intensities, whereas perceptual discriminations (Weber fractions)
improve and perceptual invariances are retained. There also
exist neural coding alternatives to rate-channel coding that bear
exploration and examination. Accordingly, here we focus on
these other coding possibilities.

1.6 Enlarging Our Thinking
How we think about neural coding is critical for understanding
the functional roles of synchronies and oscillations in the brain.
The aims of this paper are twofold: to explore the roles that
synchronies and oscillations might play vis-a-vis alternative
neural codes and to suggest ideas that we believe might be useful
in formulating an alternative functional framework.

As this is a concept paper rather than a review, we will
be discussing relations of neural synchronies and oscillations
to possible neural coding schemes. We will attempt to
convey which coding schemes are already well supported by
experimental evidence and which ones are more putative.
Our aim here is heuristic, to facilitate broader thinking
into what kinds of temporal relations might subserve brain
functions in hopes of provoking deeper questions and more
insightful experiments.

2. TIME IN THE BRAIN

The psychologist Mari Reiss Jones called time “our lost
dimension” (Jones, 1976). A great deal of evidence points

to the importance of the timing and temporal patterning of
spiking activity in neural information processing. Not only
is the nervous system operating within time, i.e., within an
external temporal framework of events, but the basic signals
of the system themselves may be of time, i.e., they might be
temporal in nature.

Time is change. We hold as a working hypothesis that
the brain is a self-organizing system that organizes itself
to understand the world and effectively act within it. It is
autoencoding in the sense that it chooses its own features and
organizes its own input representations. There appears to be little
in the way of genetic, a priori internal labeling of specific objects
and events. That is to say, on the basis of the correlation structure
of perception and action, brains program themselves, adaptively
organizing neural codes, representations, and operations in
order to anticipate consequences and to choose and orchestrate
effective action that satisfies internal goal imperatives. In current
machine learning jargon, they are “autoencoders” that adaptively
construct their own codes and features. The neuromechanics
of such adaptive and plastic cybernetic goal-directed systems
are being worked out (Buschman and Miller, 2014). In
short, brains are purposive anticipatory correlation machines
(Bubic et al., 2010).

Thought about time in the brain follows five conceptions:
linear time, ordinal time, cyclical time, wave time, and
anticipatory, future time (Figure 2). These temporal orderings
stem from how time is measured. Linear time involves the
measurement of the timings of events in terms of a monotonically
increasing metric, such as a clock value. Cyclical time involves
labeling of the timings of events in terms of their measured
phases of a repeating process. Ordinal time is assessed in terms
of successions of events, i.e., temporal sequences of events. Wave
time involves the timing of events with reference to a non-
repeating event sequence of rise and fall. Future time involves
the projection of the temporal order of remembered past events,
along with their associated attributes, into the future. In this
context, the purpose of remembering the past is to anticipate the
future. Of course, remembering the past also has other, emotional
uses, such as nostalgia and fond remembrance, as well as a source
for motivation and resolve.

For the most part, discussions of neural synchronies tend to
be couched in terms of temporal proximity relations between
neural events and/or their adherence to reliable, linear timelines,
whereas discussions of neural oscillations are inherently couched
in terms of cyclical, recurrent timelines (Lestienne, 1999).
There is some cross-over between these conceptions, as one
can speak of the relative synchronization of the spikes of
an individual neuron to population-wide oscillations and of
recurring population-wide synchronies that constitute neural
oscillations and brain rhythms.

3. SYNCHRONIES

Neural synchronies involve temporal relations between neuronal
events on the level of individual neurons, ensembles and
populations. The term “synchrony” can have several different

Frontiers in Computational Neuroscience | www.frontiersin.org 6 June 2022 | Volume 16 | Article 898829

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-898829 June 23, 2022 Time: 11:29 # 7

Cariani and Baker Time Is of the Essence

Reference
time

LINEAR TIME (metrical time, t , ∆t)

E1R E2 E3 E4 E5

contiguity

simultaneity

temporal coherence
clock: E1-5 re: R0
timing sequence:
E1–∆t12–E2–∆t2–E3–∆t3…E5

E1< E2< E3< E4< E5
A < B means “B follows A in time”

ORDINAL TIME (succession)

CYCLICAL TIME (phase φ)

E4

R0
E1

E2

E3
E5EE

φ

onset

E1 E2
E3 E4 E5

φ

E1
RO E3

E4
E5E2

WAVE TIME

onset peak end
fallrise

aftermath

E1 E3 PE3

FUTURE TIME (anticipation)

FUTURE (prediction)
PAST

(memory)

E1< E2< E3

PE2PE1

PR
ES
EN

T

E2

PE1 (A1)

PE2 (A2)

PE3(A3)

A

C

D

B

E

FIGURE 2 | Descriptions of time and temporal relations. (A) Linear, metrical time. (B) Cyclical time. (C) Ordinal time (temporal order of succession). (D) Wave time.
(E) Future time (anticipation/prediction on the basis of past memories and present events). Symbols: Arrows time axes, E event timings, R reference timings, PE
predicted events, A set of event-associated attributes.

meanings in different contexts (Lestienne, 2001). Some main
senses of the term involve:

(1) Externally-driven synchronization (stimulus-locking or
phase-locking). These consist of spikes and/or population
responses that are time-locked to some external stimulus.
They can also be driven by internal events, such as the
synchronization of one population to another.

(2) Entrainment is phase-locked following of an external
stimulus on a cycle by cycle basis (e.g., one spike per period
of a pure tone), or, alternately, regular synchronization
to a periodic stimulus (e.g., musical metrical entrainment
in finger-tapping) or reliable following of an external
rhythmic stimulus that need not be periodic (e.g.,
entrainment to speech envelopes).

(3) Internally-driven synchronization to internal neural events,
such as synchronizations of different neuronal populations
to each other (Singer, 2019).

(4) Emergent synchronies are synchronizations that
appear over time.

(5) Simultaneity (zero-lag synchrony) – spiking or
neuronal activity co-occurs within some specified,
short time window.

(6) Temporal contiguity – (coarse temporal overlap).
Neural activity co-occurs within some intermediate
duration time window.

(7) Temporal coherence (temporally correlated spike timings,
non-zero-lag synchronies) – neuronal responses reliably
occur within some determinate set of temporal relations.
Temporal coherence can also mean that temporal patterns
of neuronal response share similarities.

(8) Common temporal framework (common timeline) neural
events reliably occur within the same fixed linear, cyclical,
or wave temporal framework.

(9) Synchronous firing neural networks, “synfire”
chains and cycles (Abeles, 1982a, 1990, 2003) and
polychronous networks, are neural architectures of
delay paths and coincidence detectors (§7) whose
elements fire when near-zero-lag synchronies from
incoming spikes occur.
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3.1 Externally-Driven Synchronization
(Phase-Locking)
Perhaps the most pervasive form of neural synchrony involves
stimulus-locked responses to external stimuli (e.g., “phase-
locking” in auditory, visual, mechanoceptive, and electroceptive
neurons) or internal events (e.g., phase-locking to cardiac,
respiratory, or sniffing cycles to muscle stretches during
movement); (Cariani, 1995b, 2001b; Lestienne, 1999, 2001).

Phase-locking enables temporal auto-correlation
representations of stimulus time structure and temporal cross-
correlation-based representations of stimulus direction (Cariani,
2001b; Lestienne, 2001). Both types of derived representations
are extremely robust and, unlike other coding schemes, improve
with higher stimulus intensities.

Phase-locking enables temporal coding of the time structure
of incoming stimuli at all temporal levels from frequency and
periodicity to slower modulations to rhythms. It can provide the
basis for temporal pattern and spike time-of-arrival neural codes
(§ 5). The neurogram shown in the Figure in (§ 5.3) illustrates
the ubiquity of phase-locking in the auditory nerve. When spikes
are time locked to a stimulus, times between spikes (interspike
intervals) carry detailed information about its time structure.
Distributions of “all-order” interspike intervals, i.e., between
consecutive and non-consecutive spikes, produce a temporal
neural representation of the stimulus autocorrelation function
that can serve an alternate time-domain means of encoding the
stimulus power spectrum.

Phase-locking also allows for localization of incoming stimuli
by analyzing relative times-of-arrival at different body locations.
Auditory localization in the horizontal plane by means of
binaural temporal cross-correlation is most widely appreciated,
but evidence for analogous localization mechanisms can be
found in many other sensory domains as well, such as
mechanoreception (von Békésy, 1967), electroception, vision
(Carr, 1993), and olfaction (von Békésy, 1964).

As a generalization, one could hypothesize that wherever
phase-locked information is available, it furnishes more precise
and robust information than rate-channel coding. For example,
in the auditory system, optimal use of spike timing information
from auditory nerve fibers produces frequency acuities (1f /f
pure tone Weber fractions) for pure tones that are 40-fold
more precise than those using rate-place information, even
at the low sound levels that are most favorable to rate-place
codes (Siebert, 1968; Heinz et al., 2001a). At higher sound
levels, where pitch acuities are best, spike timing information
in the auditory nerve fiber population improves (Cariani, 1999)
while rate-place representations break down due to saturation
of firing rates and shifting best frequencies. Unlike pitch
perception and temporal representations, rate-place codes fail
when sound levels are roved (Heinz et al., 2001b). In the
visual system, although thalamic units exhibit coarse, rate-
based tuning to the spatial frequency of gratings moving at
constant velocity, i.e., to different rates at which luminance is
temporally modulated, spike timing information similarly yields
more precise estimates of spatial frequency than does firing rate
(Cariani, 2004).

Due to phase-locking and temporally patterned movements,
perception and action can share common temporal codings.
In addition to movements, there also exist pervasive cross-
frequency couplings between neural populations and oscillatory
rhythms generated by bodily organs (Klimesch, 2018). Neural
phase-locking to rhythmic patterns of events (<10 Hz) exists
in multiple modalities at the cortical level. Temporal correlates
of both experienced and imagined auditory rhythms have been
found (Nozaradan et al., 2011, 2013; Nozaradan, 2014). For
the most part, rhythm has been modeled in terms of clocks,
modulation-tuned neurons, and non-linear oscillators rather
than as a direct temporal code. Direct temporal coding of
rhythm means that incoming auditory temporal volley patterns
that mirror the rhythmic structure can be shunted to motor
regions to trigger muscle actions, such as finger-tapping and vocal
mimicry. Likewise, when freely producing the same rhythmic
actions, the motor system generates that rhythmic temporal
pattern to coordinate the timing of groups of muscles. When
muscles contract, mechanoreceptive afferents innervating stretch
receptors produce spikes that are phase- locked to the ensuing
movements. Thus these temporal patternings of body movements
are in turn fed back into the brain such that the brain is
continually bathed in the temporal structure of its actions. The
external effects of patterned rhythmic action, such as drumming,
create still other temporal pattern feedbacks in auditory, visual,
and haptic modalities.

Thus, there may be a common neural language that underlies
the temporal aspects of perception and action, such that
perception and action can mutually inform each other in a direct
manner. Keeping the neural signals in the time-domain and
circulating in reverberating delay loops, as in recurrent neural
timing nets (§7.5), permits common temporal pattern codes to
be utilized in both perception and action. Hearing a musical
rhythm provides a temporal scaffold for timing movements,
and the timing of movements reinforces the perceived rhythmic
structure of the music. Such percept-action correlations are likely
generalized to many other modalities as well.

Synchronization can also occur internally, at neuronal,
ensemble, population, and regional levels of organization. The
synchronies can involve unitary events, oscillations, complex
rhythmic patterns, or waves. Such synchronies can emerge over
time, persist, or disappear. Most current thinking about inter-
regional synchronies involves increased functional connectivity
through facilitation of information transfer, e.g., Singer (2019).

3.2 Simultaneity and Temporal Contiguity
Response simultaneity is the co-occurrence of events in temporal
proximity, i.e., at approximately the same time. Depending
on criteria for temporal contiguity, i.e., what counts as “the
same time,” co-occurrences of spiking events can range from
temporally precise (<<1–20 ms zero- and near zero-lag
synchronies) to coarse temporal overlaps of synchronies between
different neuronal populations (20 – 500 ms coarse synchronies).

The issue of temporal overlap involves windows for summing
the effects of successive spikes in single neurons and of volleys
of spikes in neural populations. The notion of “firing rate”
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itself implies temporal contiguity between spikes, i.e., a temporal
counting window that encompasses at least two spiking events.

Durations of coincidence windows are governed by a host
of synaptic and membrane biophysical parameters as well as
by types, numbers, efficacies and spatial distributions of neural
inputs. Precisely timed inhibitory inputs can narrow these
windows substantially (Ashida and Carr, 2011). Spike-timing-
dependent plasticity (STDP) is also widely observed (Feldman,
2012; Markram et al., 2012), in which the effects of synchronized
synaptic inputs on producing subsequent action potentials are
facilitated, whereas those of unsynchronized inputs are depressed
(Bi and Poo, 1998; Sjöström and Gerstner, 2010). In addition,
action potentials produced by more synchronized synaptic inputs
may have larger downstream effects on subsequent local networks
(Zbili et al., 2020).

Different estimated durations of neural integration windows
from spiking variability have led to discussions of whether
cortical pyramidal cells should be seen primarily as integrators
(long windows > 20 ms) or coincidence detectors (short
windows < 5 ms) (Abeles, 1982b, 1994, 2003; Softky and
Koch, 1993; Konig et al., 1996). Integrators imply rate-channel
connectionist architectures, whereas coincidence detectors
imply synfire chains, polychronous networks, wave interference
networks, and neural timing nets, with mixtures of the two types
implying time-delay neural networks (§ 7).

3.3 Temporal Coherence
Besides temporal contiguity (simultaneity), synchrony can also
have the meaning of being part of a common temporal order.
Events can be “synchronized with” other events if they occur
at some regular, fixed delay relative to each other (delayed
across-neuron synchrony) or to a common reference time (onset-
referenced synchronies, typically a population-wide response to
a stimulus onset or abrupt change). In the temporal order sense,
although the various notes of the different instruments may occur
at different times, the actions of a symphony orchestra are all
synchronized to its conductor’s baton because they are all part of
a common, ongoing temporal order. Alternately, the instruments
in a MIDI score are all synchronized to the onset time of the
entire score. Both temporal orders can serve as scaffolds for the
coordination of neural activity. As discussed below, some neural
codes, such as synchrony-place codes, depend on patterns of
spike latencies relative to some common onset time, whereas
other synchrony binding codes do not.

4. OSCILLATIONS

Whereas synchronies involve temporal relations between discrete
neural events and linear timelines, oscillations involve recurrent
temporal patterns of events that can serve either as common time
references or as cyclical temporal scaffolds. Caution should be
taken not to conflate the two concepts (Lestienne, 1999).

As with “synchrony,” the terms “oscillation,” “oscillatory
behavior,” “oscillator,” and “oscillatory system” have multiple,
but related, meanings. The most restrictive sense of oscillation
involves an observable that periodically traverses a set of

positional states around some central state. An oscillator is a
postulated physical system, such as a pendulum, that manifests
such regular regenerative, cyclic behavior. A second, more
general sense of “oscillation” is any process that produces
some regular cyclic sequence of events, be it with a fixed,
characteristic period or not. Related to the idea of oscillation is
the notion of resonance.

Resonance is the property of having a response, however,
defined, that is greatest at some particular input frequency.
Typically, this means a response of higher amplitude for
particular driving frequencies of stimulation. Electrical
resonances are found in individual neurons (Raymond and
Lettvin, 1978; Hutcheon and Yarom, 2000). At the level of
neuronal ensembles, resonance can also mean that a neural
assembly responds differentially to different specific input
patterns, such that it can manifest a “pattern resonance” or,
if the resonance can be tuned through training, an “adaptive
resonance” (Grossberg, 2021). Neurons can be regarded as
oscillatory “integrate-and-resonate” instead of “integrate-
and-fire” elements (Izhikevich, 2001), and resonances in neural
oscillatory networks can switch behavioral modes (Greene, 1962).
Neural timing nets (Cariani, 2001a, 2015), wave-interference
(Heinz, 2004, 2010), and time-domain holography schemes
(Longuet-Higgins, 1989) (§7, §8) raise the possibility of neural
information processing based on “temporal pattern resonances.”

Individual neurons can be regarded as externally driven,
non-linear oscillators that undergo cycles of action potential
generation and recovery. Observed neuronal population
dynamics also show cycles of activation, depression, and recovery
that oscillate around resting states. Although neural oscillations
are most commonly graphically depicted as sinusoids, and
analyzed using frequency-domain Fourier descriptions, the time
courses of their underlying biophysical processes need not be,
and most often are not, sinusoidal (Nikolic et al., 2013).

Typically, “neural oscillations” or “brain rhythms” refer to
observed aggregated, quasi-periodic responses of populations of
neurons. Any temporal structure observed in these aggregated
gross electrical potentials (EEG, evoked potentials) or magnetic
fields (MEG) reflects neuronal dendritic and spiking activity that
is synchronized across large neural populations.

As with “synchrony,” the term “oscillation” is used in several
different, albeit related ways:

(1) Endogenous oscillations or intrinsic rhythms are
“spontaneous” neural oscillations in the absence of
driving stimulation (Walter, 1959a) that are commonly
thought to reflect resting brain states or the natural
resonances of neuronal population dynamics. A second
sense of endogenous oscillation is “endogenous neural
oscillations as rhythmic neural activity that originates
from the brain, and is therefore also present in the
absence of stimulus input” which allows for interactions
of endogenous oscillations with evoked, stimulus-driven
periodicities (Zoefel et al., 2018).

(2) Stimulus-driven, evoked or facilitated oscillations are
oscillatory responses to driving stimulation. Gamma
rhythms (30 Hz and above) are observed in response to
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stimulation, with higher intensities generally producing
higher oscillatory frequencies (Buzsáki and Wang, 2012).

(3) Stimulus-driven entrainments are stimulus-locked
responses to periodic and quasi-periodic stimuli
(Nozaradan, 2014).

(4) Stimulus-triggered oscillations are oscillations that are
initiated or phase-reset in response to a stimulus. The
N100 response that is observed in auditory evoked
electrical potentials and magnetic fields is an example
(Pantev et al., 1991).

(5) Induced oscillations are “oscillations caused or modulated
by stimuli or state changes that do not directly drive
successive cycles” (Bullock, 1992).

(6) Assimilated rhythms are rhythmic response patterns that
are acquired through training or electrical conditioning
(John, 1967a,b; Morrell, 1967).

(7) Emergent oscillations are oscillations that
develop over time.

(8) Nested oscillations or oscillatory hierarchies are oscillations
of different frequencies whose phases are reset together. An
example is the co-appearance of theta and gamma rhythms
beginning in common phase in response to an acoustic
onset (Pantev et al., 1991). Theta-gamma coupling in the
hippocampus appears to be related to working memory
(Lisman and Jensen, 2013).

(9) Quasi-cyclical trajectories in dynamical or
data-derived phase spaces.

(10) Adaptive oscillators are systems that have
dynamically controlled oscillatory elements
(Hoppensteadt and Izhikevich, 2000). For example
phase-locked loops can track periodic and quasi-periodic
signals such as speech. Neural phase-locked loops have
been proposed for converting temporal codes to rate codes
(Ahissar et al., 1997) and for quasi-oscillatory tracking of
speech (Shamir et al., 2009; Ghitza, 2011).

(11) Standing and traveling spatial waves are spatiotemporal
patterns of neuronal excitation and recovery in
local regions and on global scales (Nunez, 2000;
Nunez and Srinivasan, 2006; Thorpe et al., 2007;
Bhattacharya et al., 2022).

(12) Oscillatory neural networks are networks of coupled
oscillators (e.g., Baldi and Meir, 1990; Hoppensteadt, 1997;
Izhikevich, 1999).

5. NEURAL CODES

Possible functional significances of neuronal synchronies and
oscillations have long been debated. The neural coding problem
entails determining which aspects of neuronal activity convey
distinctions that subserve informational functions (Mountcastle,
1967; Perkell and Bullock, 1968; Perkell, 1970; Uttal, 1972, 1973;
Cariani, 1995b, 1997, 1998). From this perspective, the realm of
neural codes involves a subset of the aforementioned dynome,
and the question of whether oscillations are causal, correlative,
or merely incidental to informational functions is fundamentally
a question of their relations to neural coding.

Although neural coding includes both analog continuous
electrical fluxes (local current flows and fields) and trains
of discrete pulsatile spikes, for this discussion we adopt the
basic working assumption that all information, if it is to
be transmitted beyond its originating locale, will eventually
be encoded in spike trains. Neural codes can operate on
sequences and distributions of spikes at sub-neuron, neuron,
ensemble, and population levels. Aggregate measures of neuronal
activity, such as local field potentials, gross potentials, magnetic
fields, and blood oxygenation levels can serve as windows
on underlying neural codes even if what they measure may
be provide correlates of, and not direct causal linkages to,
informational functions.

Neural codes serve to encode information for all essential
neuropsychological functionalities: sensation, perception,
cognition, conation, emotion, short- and long-term memory,
attention, learning, prediction, deliberation, modal control
(wake-sleep) and bodily regulation. A further working
assumption is that, while there may exist neural codes that
are only localized to specific brain regions, there is a general
neural coding framework that enables most/all kinds of
information to be integrated within a common lingua franca in a
manner loosely analogous to the genetic code.

Many kinds of neural pulse codes are possible, although
a basic taxonomy can capture much of the space of possible
neural codes (Figure 3). Here codes can be divided into those
that depend on patterns of neural channel activations, temporal
patterns of spikes, and relative spike timings across channels.
Neural coding strategies can be combined, making the space of all
conceivable pulse codes potentially quite complex. Neural pulse
codes need to convey two different types of information: signal
type (what attribute?) and signal value (what specific distinction
within that attribute?). Signal type information involves the
dimension or category of information being conveyed, such
as sensory modality (e.g., visual, auditory, and olfactory) and
the attribute within that modality (form, color, texture, pitch,
loudness, location, and smell). Signal value involves a distinction
within the type category, (which form, color, texture, pitch,
loudness level, and apparent location).

In addition to conveying type and value distinctions, neural
coding systems must also support organization of attributes
amongst multiple objects and events (perceptual organization,
Gestaltist grouping, segmentation and binding, scene analysis).
In order to represent multiple objects occurring at the same
time, each having its own coded attributes, some compositional,
binding process is required for grouping together the coded
attributes associated with each object. Such a mechanism is
also needed for binding together the various attributes of
events in memory.

Our working assumption is that brains are highly plastic,
self-encoding systems that adaptively construct their own
internal codes on the basis of correlational regularities in
perception and action, many of which are temporal in
nature. There are also neural mechanisms involved in selective
task-related, attentional gating of neuronal signals that can
amplify or suppress different types of incoming information or
outgoing motor operations by facilitating or inhibiting particular
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FIGURE 3 | Neural pulse code schemes. (A) A partial taxonomy of types of neural codes. At the triangle vertices are pure coding types, whereas the edges indicate
combinations of two different types. P1 and P2 indicate two different spike patterns in the idealized spike raster icons. (B) Examples of other codes. Top left.
A simple rate-channel “doorbell” code. Bottom left. Rate modulation code or coarse “temporal” code. Right. Burst length (# spikes per burst or duration of burst) and
inter-burst interval (I1 and I2) codes. Rate modulation and burst-based codes don’t fit neatly into the taxonomy.

neural channels (channel codes) or temporal patternings
(temporal codes).

5.1 General Types of Neural Pulse Codes
A high level, partial taxonomy of types of neural codes
(Figure 3A) includes codes based on channel-identity, temporal
pattern, and response time-of-arrival (spike latency). Based on
their encoding/decoding schemes, many, possible pulse codes
can be divided into two broad types: channel-based codes and
temporal codes. Channel codes rely on which particular neural
channels are activated or distinguished such that information is
conveyed via across-neuron patterns of response. The channels
can be different individual neurons, ensembles, subpopulations,
or populations. Here channel-identities convey signal types,
whereas some other marking variable, such as average firing
rate, latency, order, or variability conveys the value of that
representational distinction. The taxonomy is by no means
exhaustive. Figure 3B shows some plausible codes, such as
those that depend on coarse temporal patternings of firing rates
(including firing rate variability) and those that depend on bursts
of spikes, that do not readily fit into this tripartite scheme.

Temporal codes, in contrast, rely on patterns of spike timings
to convey signal types and informational distinctions within
those types. Temporal codes can be divided into two basic
subtypes: temporal pattern codes and spike latency or relative
time-of-arrival codes. Temporal pattern codes are based on
volley patterns of spikes, irrespective of their absolute spike
times, whereas spike latency codes are based on spiking timing
in relation to some time reference point, irrespective of the
temporal patterns within. In terms of signals, temporal pattern
codes depend on the internal form of the signals, whereas
time-of-arrival codes depend on the relative timing of signals
irrespective of their internal form. Because there is no precise
neural representation of absolute time per se, all neuronal
time is relative. However, temporal reference can be subserved
by the timing of other neural responses, such as neurons,
ensembles, subpopulations, or populations that respond with
short latencies to onsets of external and internal events. Spike
latencies are therefore temporal offsets from some other neural
reference time marker.

Neural signal processing models commonly regard neurons as
filters, i.e., elements whose responses are differentially sensitive
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to particular aspects of their inputs. For example, auditory nerve
fibers are often modeled in terms of their firing rate responses
to pure tones of different frequencies, i.e., as frequency-domain
band-pass filters. In terms of neurons-as-filters metaphors,
channel codes use the energies of filter outputs as indicators
of channel activation, whereas temporal codes use the temporal
patterning of or the timing of neural spike train output signals as
indicators. In terms of feature detector metaphors, channel codes
use elevated rates or response latencies in selective, feature-tuned
channels to mark detection of specific features, whereas temporal
codes encode the features in the time structure or timing of
neural responses. In terms of signal processing, the primitives
of the coding types lie in separate domains: channel codes
operate in the “channel-domain,” whereas temporal codes operate
in time- and time delay-domains. Codes involving oscillatory
frequencies and their interactions lend themselves to frequency-
domain descriptions.

Both channel and temporal codes permit vectorial
representations. In channel codes, vector representations
consist of profiles of channel activations, whereas in temporal
codes, they consist of temporal pattern of spike timing profiles.
For example, a cochlear rate-channel code conveys a vectorial
representation of a stimulus power spectrum that consists of
the firing rates of auditory nerve fibers that are selectively tuned
to a particular range of pure tone frequencies. A temporal
pattern code, such as an interspike interval code (§ 5.3) conveys
a vectorial representation consisting of the distribution of
interspike intervals, i.e., time delays between spikes. A first-spike
latency code conveys a vectorial representation by means of
distributions of first-response-times amongst channels. The
temporal dispersion of first-spike times amongst channels,
without consideration of which channels are associated with
which spike latencies, is another potential means of encoding the
intensity of a transient stimulus.

Channel and time codes are by no means mutually exclusive.
Some systems might utilize rate coding, whereas others operate
directly on temporal patterns and timings of spikes. A commonly
held opinion is that nervous systems make use of both types
of coding, with temporal codes being deployed in some sensory
peripheries, while rate codes prevail in central stations. Channel
activations and spike timing relations can also be combined to
form composite, joint multimodal representations (the sides of
the triangle in Figure 3A). Auditory examples of such joint codes
are Licklider’s duplex model of pitch (Licklider, 1951), average
localized synchronized firing rate (ALSR) profiles (Young and
Sachs, 1979) and interval-place codes (Voigt et al., 1982) that
combine temporal pattern and across channel synchronies with
channel-based cochlear place information.

5.2 Channel Codes
In the vast majority of the neuroscience literature the
conventional, default neural coding assumption is channel
coding. Most often when neural coding is not explicitly discussed.
The simplest channel-based codes are “doorbell codes” (also
called “dedicated lines,” “labeled lines,” and “local codes”) in
which selective, narrowly-tuned neurons fire only in response
to some specific stimulus condition, such as the detection of a

specific pheromone molecule. For the most part, neurons that
respond differentially and monotonically to only one feature are
rare in the CNS, such that, arguably, if combinations of attributes
in multiple objects need to be represented, then either elaborate
disambiguation mechanisms or some means of multiplexing the
various neural response components is required.

In rate-channel codes, firing rate profiles of ensembles
of neurons that are tuned with respect to some stimulus
characteristic can convey stimulus information, such as through
spatial patterns of excitation amongst sensory receptors. Rate
codes assume some temporal integration (spike counting) time
for individual neurons, typically on the order of tens of
milliseconds or more. Because maximum driven firing rates
of cortical pyramidal cells are relatively low, typically well less
than 40 spikes/s, within a 50 ms spike counting window many
neurons fire only up to 2–3 spikes. If sensory patterns can
be discriminated in a matter of a few tens of milliseconds,
then rate coding is not a viable means of representation
(VanRullen et al., 2005). In order to encode more than a few
rate-based distinctions within neurocomputationally relevant
time windows, rate-based codes must pool spike counts from
many neurons. That limitation notwithstanding, ensemble and
population-level codes do potentially permit coding via the mass
statistics of large numbers of neuronal responses, provided that
their responses can be aggregated together and read out rapidly
(MacLean and Hatsopoulos, 2019). Dense population codes rely
on responses of large fractions of neuronal populations, whereas
sparse population codes rely on small numbers of responding
neurons. The fraction of responding neurons in a population,
i.e., the extent of elevated neuronal activity, can also serve as a
rate-like coding variable.

5.3 Temporal Pattern Codes
The simplest temporal pattern code is an interspike interval code
in which information is encoded in time durations between two
spikes. Interspike interval codes can be found in any sensory
system in which there is time-locking of spikes to stimuli. Strong
examples can be found in mechanoreception (flutter-vibration
frequency, Werner and Mountcastle), audition (periodicity pitch,
Meddis and Hewitt, 1991; Cariani and Delgutte, 1996a,b), and
spatial vision. In visual thalamus, neurons robustly phase-lock
to moving gratings to produce interspike intervals related to
the temporal modulation frequency of luminance variations
(Cariani, 2001b). Interspike interval differences can also exist
in sensory systems, such as color vision (Kozak and Reitboeck,
1974), where characteristic, wavelength-specific interval patterns
may be generated by differences in receptor response latencies
and not through time-locked spiking.

Temporal coding of periodicity pitch (a.k.a. musical pitch, low
pitch, F0-pitch) is a strong example of a temporal pattern code at
the level of the auditory nerve (Cariani and Delgutte, 1996a,b;
Cariani, 1999, 2019). Spike timings of auditory nerve fibers in
response to a synthetic vowel are shown in Figure 4. A neural
representation of pitch based on the population-wide distribution
of all-order interspike intervals (time durations between both
consecutive and non-consecutive spikes) predicts, with very
few exceptions, all major monaural periodicity pitch perception
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FIGURE 4 | Temporal coding of pitch and timbre (vowel quality) in the auditory nerve. (A) Synthetic single formant vowel stimulus waveform (F0: 80 Hz, F1: 640 Hz,
60 dB SPL, 100 repetitions). (B) Post-stimulus time spike histograms of 42 auditory nerve fibers arranged by their characteristic frequencies (CFs). (C) Stimulus
power spectrum. (D) Rate-place profile. (E) Stimulus autocorrelation function (ACF). (F) Population-interval distribution (PID) histogram of all-order interspike intervals
of the whole ensemble. Delay intervals associated with major PID peaks closely correspond to the period of the perceived voice pitch (fundamental period
1/F0 = 12.5 ms). The pattern of minor peaks (0–5 ms) robustly encodes vowel formant structure and perceived aspects of timbre related to spectral shape. The PID
provides a general purpose, neural representation of the stimulus autocorrelation function. The systematic first spike latency shifts in B are due to cochlear delays.
From Cariani (1999).

phenomena below the 4 kHz limit of phase locking (Meddis and
Hewitt, 1991; Meddis and O’Mard, 1997; Cariani, 1999): pure
tones, harmonic and inharmonic complex tones with and without
energy at the fundamental, repeating noise, musical dyads and
triads, and spectral edge pitches. The F0-pitch that is perceived
is accurately predicted (<1% error) by the predominance in the
auditory nerve of interspike intervals corresponding to the same
frequency and its subharmonics.

The temporal code for periodicity pitch at the level of the
auditory nerve thus appears to be a population representation
that relies entirely on the mass statistics of temporal spiking
patterns and not at all on channel identities, i.e., it does not matter
which neuron produced which spike train. One can discard
all cochlear place information with essentially no functional
consequence for the encoding of pitches below 4 kHz (cochlear
place information is likely needed for pure tone frequencies above
this limit).

Distributions of all-order intervals are equivalent to
autocorrelation functions of spike trains. By virtue of phase-
locking, each population-interval distribution also closely
resembles the autocorrelation function of the acoustic stimulus
(Figure 4E), enabling it to serve as precise and robust temporal
representations of both the stimulus autocorrelation function
and its power spectrum. Whenever stimulus-locked spiking
exists, temporal pattern codes are well suited to provide
autocorrelation-like representations of stimulus periodicities
and low-frequency power spectra. Such representations can

also encode overall stimulus intensity (loudness) using the
ratio of stimulus-driven, synchronized spiking to uncorrelated,
spontaneous activity (Cariani, 1999).

Temporal codes need not be synchronous across neural
populations. In the auditory nerve example above (Figure 4B),
if the spikes were summed together to form a population-post-
stimulus time histogram, cochlear delays would smear out the
fine timing patterns that exist from 200 Hz to ∼4 kHz such
that the whole population response would only show timing
information up to ∼200 Hz. Thus an absence of synchronous
temporal patterning at the population level does not rule out
higher frequency or asynchronous temporally patterned activity
at lower, single neuron and ensemble levels.

Codes based on complex temporal patterns in the form of
spike interval sequences, such as spike triplets (Strehler and
Lestienne, 1986; Lestienne, 1996, 1999) and longer interval
sequences (Emmers, 1981), are also possible. Spike timing, even
at the cortical level, can be quite precise, in the sub-millisecond
to millisecond range (Lestienne, 2001; Shmiel et al., 2005, 2006).

5.4 Time-of-Arrival Codes
Time-of-arrival or spike latency codes are based on the relative
timings of spikes across different channels or to a pattern
of spike latencies following some specified reference time
(Nádasdy, 2000). Whereas temporal pattern codes are indifferent
to the precise times of occurrence of spike patterns, time-of-
arrival codes depend entirely relative spike timing (Figure 5).
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Cross-channel latency codes use differences in spike latencies
across channels to encode attributes such as sound direction. For
example, those neurons in auditory cortex with the earliest first
spike latencies provide the best information for sound location
(Stecker and Middlebrooks, 2003). Temporal reference points
can consist of spike timings in other (sets of) channels or spike
latencies relative to onset responses or bursting patterns. Onset-
based codes can be based on first-spike latencies (Figure 5A),
complex spike latency patterns, or oscillatory phase (Figure 5C).
Spike latency statistics, such as absolute latency, temporal
dispersion, and degree of synchronization within a population,
can convey information related to the intensity of a stimulus. The
ordering of spike latencies permits ordinal, channel-sequence
codes. Likewise, synchrony-based codes can be regarded as spike
Latency codes can be regarded as “synchrony-based” under the
senses of synchrony that involve specific relative delays between
spikes and that involve spike timing relative to a temporal
framework.

5.4.1 Cross-Channel Relative Time-of-Arrival
Whenever there exists stimulus-locked spiking, spike latency
codes are well suited to produce temporal cross-correlation-
like representations of stimulus times-of-arrival at different
sensory surfaces located at different places on the body
(Cariani, 2001b).

A textbook example of spike relative latency coding involves
sound localization in the horizontal plane. Sounds arriving
at the two ears from different directions cause interaural
time differences of up to hundreds of microseconds. By
virtue of phase-locking, the interaural time differences produce
spike timing differences between corresponding auditory nerve
fibers that innervate right and left cochleas. Direction can
then be inferred from an array of different delay paths that
innervate interneural spike timing delays via neural coincidence
detectors in the auditory brainstem that compute binaural cross-
correlation functions (Cariani, 2011). Although spike jitters
in single mammalian auditory nerve fibers are on the order
of ∼100–200 µs, humans can discriminate interaural delays
differing by ∼10–20 µs that correspond to differences of
∼1–2 degrees of azimuth. By comparison, best human pitch
perception is on the order of 0.1% for 1 kHz pure tones, which
corresponds to a period difference of 10 µs. Neural temporal
correlation mechanisms for echolocation in bats and cetaceans
and electroreception in weakly-electric fish are much more
precise even than this.

5.4.2 Time-of-Arrival Relative to a Reference
Comparative spike latencies across channels (latency-place
codes) can also encode differences in response times of different
receptors and tuned elements in their associated neural pathways.
Population-wide distributions of spike arrival times relative
to some reference time, such as an onset volley of spikes
associated with stimulus onset and/or the beginning of an
oscillatory period, can convey information about the relative
activation of different classes of receptors. In this manner, relative
ratios of class activations can potentially be computed from
the temporal distribution of spike times without the necessity

of keeping track of which neurons produced which particular
spike latencies.

5.4.3 Absolute First-Spike Latencies
Absolute response latencies relative to some reference time
(which can be an early population response) can serve as
indicators of stimulus intensity in different sensory channels (the
more intense the stimulus, the shorter the response latency).
Shorter first spike latencies are often correlated with higher firing
rates, making the two codes sometimes difficult to disambiguate
(Stecker and Middlebrooks, 2003). Relative average latencies
across populations that are differentially sensitive to different
aspects of the stimulus can indicate the relative ratios of those
aspects. Temporal dispersion of first spike responses (variances
of first-spike times, i.e., how temporally compact is the response)
following the onset of a stimulus transient can serve as a measure
of stimulus intensity.

5.4.4 Complex Latency Patterns
Complex, spike latency spike patterns are also possible (Nádasdy,
2000). The patterns shown in Figure 6B were typical spiking
responses of individual neurons to different modalities of
stimulation on the tongue (Emmers, 1970). Emmers also reported
finding evidence for a thalamic spike interval sequence code for
pain in which multiple sequences were interleaved within the
same spike trains (Emmers, 1981). These codes involved interval
sequences with characteristic latencies that followed an onset
burst, which appeared to serve as a temporal reference for the
subsequent pattern (Middlebrooks et al., 1994, 1998).

Evidence for temporal pattern coding of taste qualities
has been found in the gustatory pathway along with other
labeled line, channel-pattern, and coarse temporal population
rate codes (Hallock and Di Lorenzo, 2006; Ohla et al.,
2019). The temporal codes are thought to be functional
because corresponding temporal patterns of electrical stimulation
produce characteristic orofacial behavioral signs of different taste
classes (Di Lorenzo et al., 2009).

Yet another possibility would be temporal volley patterns
that spanned different neurons in an ensemble or population,
as might be produced in a synfire chain (Nádasdy, 2000).
Although synfire chains are usually considered in terms
of sequences of specific channel activations, each chain
also produces characteristic temporal volley patterns
that correspond to delay-coincidence paths. These volley
patterns might also serve as complex temporal pattern and
latency pattern codes.

5.4.5 Oscillatory Phase-Offset Codes
Oscillatory phase-offset codes (Figure 5C) utilize the timings
of spikes relative to a population oscillatory response to
encode different types of information (Hopfield, 1995).
These codes have mainly been studied in connection with
olfaction and memory.

A host of oscillations related to sniffing cycles, attentional
odor sampling, exist in the olfactory system (Buonviso et al.,
2009; Kay et al., 2009). Phase-offset or onset-latency relative
to sniffing cycles appears to provide a concentration-invariant
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FIGURE 5 | Neural codes based on spike latencies relative to onset responses and oscillations. Onset responses of whole populations or subpopulations of onset
responders can serve as a reference time. (A) Onset-based latency coding. First-spike latency, order of firing, or post-onset ensemble volley pattern can encode
profiles of attributes such as relative intensity, by marking specific channels. (B) Time division multiplexing. Different time post-onset time windows encode different
event attributes, here encoded by different response channels or combinations of them. (C) Phase-offset latency coding. Spike timings at different oscillatory phases
encode presence of different attributes. Alternately successive oscillatory cycles can temporally discretize population rate responses to convert to rate-sequence
codes. (D) Nested oscillations with common onsets (phase resets). Three common oscillatory frequencies are shown. Nested oscillations can serve as coding
frameworks for onset-based latency codes, time-division multiplexing, and phase-offset coding. They can also selectively activate different subpopulations. They
potentially provide a common temporal framework for hierarchical temporal grouping of events such as the recognition of spoken words, phrases, and sentences.
Oscillation-based codes can convey multiple attribute distinctions.

code for odor identity (Schaefer and Margrie, 2012). Whether
population-wide oscillations, as observed in local field potentials,
are obligatory or facilitative has been a question. Abolition of
some oscillatory behavior, such as abolition of theta rhythms by
picrotoxin injection into the locust mushroom body, degrades
fine, but not coarse, odor discrimination (Stopfer et al., 1997;
Kauer, 1998; Lestienne, 1999). Likewise, manipulation of sniffing
cycles and their mechanosensory correlates, also appears to
degrade fine, but not coarse, odor discrimination.

Oscillatory phase-offset codes could operate in several ways.
First, they could function as frameworks for time-division
multiplexing in which different attributes, olfactory dimensions
or perceptual features associated with a given place, could
be encoded in successive gamma cycles. The gamma cycles
would be nested within slower rhythms, within each sniffing
cycle in olfaction and within theta cycles in hippocampus.
Second, gamma cycles could discretize temporal rate responses,
converting coarse temporal firing rate patterns into channel-
based rate-sequence codes. Third, the codes themselves might be
relative latency codes that are independent of the oscillations,
but that the oscillations might improve temporal coding
fidelity by reducing membrane noise, leading to lower spike
timing jitter (Schaefer et al., 2006). This might explain why

smell is only impaired but not abolished when olfactory
oscillations are eliminated.

Oscillations and oscillatory phase-offset codes have been
prominent in hippocampal memory research for several decades
now (Skaggs et al., 1996) and have served as canonical examples
of how neural codes might depend directly on population
oscillations. A large literature has developed around phase-offsets
in nested theta-gamma oscillations (Lisman, 2005; Dragoi and
Buzsáki, 2006; Nádasdy, 2010; Buzsáki and Watson, 2012; Lisman
and Jensen, 2013; Sanders et al., 2019).

Beginning in the 1970’s, hippocampal “place cells” were
discovered that respond when rats enter a particular maze
location, such that specific sequences of place cells fire when
a particular path through the maze is traversed (Pavlides and
Winson, 1989). In the late 1980’s it was discovered that the
hippocampus produces these firing sequences during sleep stages
(Pavlides and Winson, 1989), when short-term memory traces are
consolidated into long-term memory stores. It was subsequently
discovered that the hippocampus produces sped up, sequences of
place cell firings during slow wave sleep (Lee and Wilson, 2002) in
bursts of activity called sharp-wave ripples. The process has been
labeled “hippocampal replay” (Findlay et al., 2020). A 20-fold
time-compression has been recently observed in waking humans
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(Buch et al., 2021). “Time cells” that fire at times corresponding
to when rats traversed different maze locations were discovered
in hippocampus, cerebral cortex, and striatum (Eichenbaum,
2014). Time cells span a wide range of timescales (Howard and
Eichenbaum, 2013) and the same hippocampal population can
multiplex timing information on multiple timescales (Mau et al.,
2018). In addition to pure place and time cells, units that respond
to both place and time are found.

These findings beg the question of how all of the attributes
related to navigation, are represented (neurally coded) and stored
in memory (Howard et al., 2014; Eichenbaum, 2017; Lisman
et al., 2017), presumably in one common representational form
(Howard et al., 2014). Representations based on sequences
of places, which could utilize channel order-of-firing codes
and internally generated sequences (Buzsáki, 2013), would
be possible. Alternately, representations that preserve metrical
timing, such as channel-latency and temporal pattern codes,
could also incorporate temporal context (Eichenbaum, 2017) and
whole timelines of events. From conditioning studies, it has long
been appreciated that brains have general mechanisms for reward
prediction that assemble coherent timelines of unrewarded and
rewarded events, even if only pairwise fragments of event
sequences are presented (Miller and Barnet, 1993). Constructed
timelines then can support prediction not only that a reward will
occur, but also when in future time (Figure 2E). Hippocampal
time compression appears to be roughly scale-invariant (Liu et al.,
2019) enabling memories of past experiences to anticipate time
courses of events so as to usefully guide prospective behavior
(Tiganj et al., 2019).

Although great strides are being made in understanding the
roles of place and time in navigation-related tasks, the problem
of the neural coding of place itself is still unsolved. As Howard
Eichenbaum remarked,

“The previously described studies provide compelling
evidence that identifies the networks of neurons that
encode memories and shows the specificity of particular
sets of neurons that participate in an engram. However,
these studies tell us nothing about the specific information
encoded by the activated cells. They tell us nothing about
the features of the learning events that are encoded by
particular neurons or about the temporal patterns of
activity in neurons and net- works that embody the
information represented within the engram. They leave
open the key question, what is the “memory code”?”
(Eichenbaum, 2016).

5.5 Firing Order Codes
Ordinal, firing order codes rely on relative spike latencies of
different channels to rank-order spikes (Figure 5A) (Thorpe,
1990; Nádasdy, 2000). Although both codes rely on spike
latencies, firing order codes are grounded in ordinal time,
whereas spike latency codes operate in metrical time (Figure 2).
Whereas absolute latency and latency-pattern codes need not
entail channel-coding, ordinal codes require the retention of
channel-identities.

Spike ordering may require an onset event, such as an
onset-triggered wave of inhibition, to provide a temporal reset
or it can also be achieved by ordering spikes that occur in
temporal clusters.

In contrast to rate codes, firing order codes enable extremely
fast read-outs based on the earliest spiking responses that is
needed to account for the rapidity of auditory, visual, and
somatosensory discriminations, classifications, and recognitions
(Gautrais and Thorpe, 1998; VanRullen et al., 2005). They work
well in situations where only one spike is elicited per stimulus
presentation (Van Rullen and Thorpe, 2001), where a spike rate
is, strictly speaking, not even well-defined. Such codes have been
proposed for vision and olfaction.

Such codes produce combinatorically-large numbers of firing
order patterns (McCulloch, 1969) that can be discriminated by
known neural mechanisms (Thorpe et al., 2001), and the ordinal
sequences, like many percepts, are highly invariant with respect
to time-warping transformations.

5.6 Multiplexed Coding Schemes
Multiplexing is the concurrent transmission of multiple
independent signals over the same transmission line or
channel (Figure 6). Multiplexing allows systems to gracefully
handle high-dimensional representations. In neural contexts,
multiplexing is most often conceived on the single neuron
level, where a given spike train can convey multiple types of
information over a single axonal transmission channel.

Perhaps the simplest examples involve temporal pattern
interspike interval codes in which multiple types of information
are carried via different interval periods (Figure 6A), that either
alternate (Chung et al., 1970) or can also be interleaved (Emmers,
1981). Patterns related to multiple attributes of auditory events,
such as loudness, pitch, timbre as well as rhythm are all present in
spike trains of single auditory nerve fibers as well as in their mass
statistics at the population level (§ 5.3, Figure 4). Multiplexed
control of muscle extension and force has been found in
invertebrate motor systems (Bittner, 1968). Multiplexing in
axonal branches is also possible (Raymond and Lettvin, 1978;
Waxman, 1978; Cariani, 1995a).

The mass statistics of temporal spike patterns can carry
multidimensional information, as the example of the population-
interval representation in the auditory nerve demonstrates
(Figure 4). Multiplexing can also exist at the level of neuronal
ensembles and populations, when the same sets of channels
participate in concurrent representation of multiple objects.
This can be realized by grouping spikes by different specific
times (Figure 5B), oscillatory phases (Figures 5C, 6D),
temporal patternings (e.g., burst patterns), or interneuronal
synchronies (Figure 6C).

Multiplexing of signals can also exist at sub-neuronal and
single neuron levels. To the extent that neuronal spike initiation
and propagation through axonal branches is unitary, all inputs
are summed together, and the resultant spike trains inherently
reflect mixtures of signals. However, if there exist multiple
independent sets of synaptic inputs capable of initiating spikes,
multiple coincidence detection processes in (active) dendritic
trees, or selective conduction failures in axonal branches
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FIGURE 6 | Types of multiplexing of pulse-coded signals. (A) Frequency-division multiplexing in which different attributes (A1, A2) are represented by different spiking
periodicities (interspike intervals). Intervals associated with the different attributes can either alternate or interleave within spike trains. (B) Code- or pattern-division
multiplexing. Spiking patterns associated with different cutaneous and gustatory tongue sensations (Emmers, 1969, 1981). The proposed codes involve
characteristic latency-interval patterns relative to onset bursts. Such codes could be multiplexed in single neurons, ensembles, and populations.
(C) Synchrony-based multiplexing. Synchronized spikes can support binding of attribute combinations associated with separate objects. Here spike synchronies
across channels bind together channels (C1 – C3) that code for specific attributes (A1 – A3) associated with different objects (O1, O2). (D) Oscillation-based
multiplexing. Top waveforms depict two population oscillations (f1 = 4 Hz, F2 = 5 Hz). Summing the waveforms produces an additional beat periodicity at
(f2 – f1 = 1 Hz). Multiplying them produces two beat periodicities or sidebands (f2 – f1 = 1 Hz; f1 + f2 = 9 Hz), characteristic of the cross correlation of the two
oscillations. Multiplicative combinations of frequencies create new frequencies.

(Waxman, 1978; Cariani, 1995a), then individual spikes in the
same spike train may be parts of different larger spike patterns
that are interleaved.

A general advantage of pure temporal codes over channel
codes is that they can convey information without the necessity of
retaining specific channel identities through specific transmission
paths and connection weights. Population codes based on the
mass statistics of temporal patterns of spikes liberate neural
signals from specific transmission lines, making them resistant
to disruption. In the population-interval coding example (§ 5.3,
Figure 4), all channel information can be discarded without
significant loss of function.

More complex temporal pattern and spike latency codes are
possible in which multiple attributes can be represented in the
same spike train. Combined with appropriate neural processing

architectures, temporal codes permit multiplexing of signals at
the single neuron level, such that multiple pulse-coded attributes
can be conveyed in the same spike train. In contrast, rate-channel
codes and rate-integrating neurons do not enable multiplexing
at the single neuron level, because of the inherently scalar, one-
dimensional nature of spike rates.

Multiplexing of information permits a given neuronal element
to convey multidimensional information and allows one element
to contribute to the representation of multiple perceptual objects,
provided there is a means of associating signals (binding them)
with the particular objects. Because there can be multiple signals
transmitted through the same neural paths, multiplexing enables
much more flexible communication than “switchboard” style
networks (John, 1972). Because neural assemblies can pass
through irrelevant signals and selectively respond to relevant
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ones, broadcast-based neural integrations and co-ordinations
are also enabled.

5.6.1 Time- and Frequency-Division Multiplexing
In terms of neural pulse code schemes, three strategies for
multiplexing signals are time-division, frequency-division, and
code-division multiplexing (Figure 6). Depending on how their
neural signals are interpreted, oscillation-based coding schemes
(Figure 6D) can fall under either frequency-division or time-
division categories. In order not to conflate the two distinct senses
of “frequency” as periodicity vs. temporal rate of discrete events
(“spike frequency” codes based on firing rate) or prevalence in a
sample (statistics), here we use the term strictly in its first sense,
as in frequency-domain.

In time division multiplexing, time is divided into segments
that can carry distinctions related to different attributes or
attribute values. The segments can depend on the timing
following a reference onset event or on a phase time position
within a cycle. The cycle, such as a gamma cycle, may also
be nested within a longer, theta cycle (Figure 5D), the same
channels participate in the encoding of multiple objects albeit
at different times. If objects are represented by patterns of
channels (e.g., feature detectors) then common spike timing in
subsets of channels can be used as a principle for grouping
The lines remain labeled to signify the features they encode,
while the time domain is used to signify which channels are
grouped or separated. The temporal label can involve either
timing relative to a reference wave or spike synchronization
between channels.

Different types of information can also be multiplexed
using multiple oscillatory frequencies of ensembles and
populations to encode specific types of information. An example
is “the spectral fingerprint hypothesis, which posits that
different frequencies of oscillations underlie different cognitive
operations” (Watrous et al., 2015).

In frequency-division multiplexing (Figure 6A), different
signals utilize different frequency bands such that they can
be mixed together in transmission channels and separated by
receivers on the basis of their respective frequencies. In a
pulse code, inter-pulse intervals can directly encode different
frequencies. The population-interval representation of low
frequency sounds discussed above (Figure 4) is a frequency-
multiplexed system in that interspike intervals associated with
different stimulus periodicities are concurrently conveyed by the
same overlapping sets of auditory nerve fibers. In the visual
system of the frog, different multiplexed intervals also can convey
information about different aspects of the visual scene (Chung
et al., 1970; Wasserman, 1992).

Whether multiple intervals must be alternated or whether
they can be interleaved depends on the nature of the receivers
that interprets the pulse trains. If the receiving system resets
after each incoming pulse (first order interspike intervals), then
intervals must alternate to avoid destructive interference. If the
receiving system can register all-order intervals, i.e., between
consecutive and non-consecutive spikes in an autocorrelation-
like analysis, then it will be impervious to interleaving of
different intervals.

5.6.2 Oscillation-Based Multiplexing
Modulation of spiking by population-level behavior, through
subthreshold inputs from synapses, gap junctions, or emphatic
effects, enables multiplexing of neural signals and controls via
dual local- and population-level paths (Kopell and LeMasson,
1994). The modulatory, oscillation pattern is superimposed
on driven behavior, be it rate- or temporally-coded. Neural
oscillations can potentially support all three types of multiplexing
in time-, frequency-, and temporal pattern domains. Oscillations
divide and discretize time, such that each oscillatory period
can become a separate time division for differentiating different
attributes (Figure 5B) or discretizing temporal trajectories of
values, such as those related to relative stimulus intensities
(Shamir et al., 2009).

Packets of time-divided attributes or attribute-trajectories
can be associated with each discrete event by virtue of their
membership within a common oscillatory structure that is
demarcated by its frequency and timing. If oscillatory frequencies
encode attributes, then multiple concurrent oscillations can
carry multiple attributes associated with events and objects.
The multiple oscillations can be bound by temporal contiguity,
common phases (e.g., common trigger, phase reset times). If
faster oscillations are nested within slower ones and scaled (e.g., n
gamma cycles/theta period), then harmonic relations can also be
a potential basis for grouping. Finally, interacting oscillations can
potentially produce complex temporal oscillatory patterns that
can serve as representations of conjunctions of attributes. For
example, two spike train signals can be multiplexed by convolving
them, and demultiplexed by deconvolution operations (Longuet-
Higgins, 1989). Analogous operations on oscillatory patterns are
discussed further below.

5.6.3 Code-Division Multiplexing
In code division multiplexing used in cell phone and internet
networks, packets of encoded information are transmitted
via dynamically changing paths though the networks. The
packets include a header that includes information about signal
identity (here, its ultimate destination and protocols for message
handling) and a payload that carries the information content of
the packet, which represents either analog signals or symbolic
digital message content. Code division multiplexing through
packet switching permits flexible routing of information through
a network, freeing the sender from the necessity of specifying a
specific transmission path.

Code-division multiplexing in the form of packet-based
communications have been hypothesized to support cortical
coding through a mixture of characteristic neural response
timings and average firing rates (Luczak et al., 2015). In a
neural pulse code implementation, headers and payloads can
be signaled by characteristic patterns of pulses. Code-division
multiplexing could be implemented via complex temporal
pattern and spike latency codes. Here multiple attributes have
sets of different associated complex pulse patterns that may
be alternated or non-destructively interleaved. The mixtures
of pulse patterns can then be broadcast widely and selectively
received by neuronal assemblies tuned to respond to particular
patterns or types of patterns. Multiple types of signals might
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then be asynchronously sent over each transmission line
and demultiplexed by appropriate receivers (see discussion of
transceivers and radio systems below).

5.7 A Latency-Pattern Coding
Framework for Multiple Attributes
Eventually, neuroscience will need to come to grips with the
problem of how the sets of attributes associated with events
and objects are encoded, integrated, processed, and stored
and retrieved both in short-term and long-term memory.
The attributes include not only basic perceptual distinctions,
but also cognitive recognitions, emotional contexts, cognitive
imperatives (current goals and tasks), perceived affordances, and
prospective actions.

For individual, isolated auditory events, basic perceptual
distinctions include loudness, timing, duration, pitch, timbre,
location, and their various aspects (sub-dimensions). For a
musical melodic sequence, each note would have a set of
associated attributes that would include the basic attributes,
plus their temporal context, plus attributes of the sequence,
such as melodic, timbral, and rhythmic/metrical sequence
and interrelations. The sequence can also produce cognitive
recognitions (a familiar melody), emotional responses, aesthetic
and motivational effects, and prime subsequent behavior.

We take as a working hypothesis that all those attributes can
be organized, and if relevant, retained in short- and long-term
memory. Other kinds of information such as visual percepts
and motor responses (e.g., if the musical sequence is danceable)
should also be capable of being integrated into working
representations and memory traces. This begs the question of
how all this information might be organized into a coherent
whole, which in turn suggests the hypothesis of a common
coding framework that can handle all kinds of informational
distinctions. What is needed is a coding framework that is open-
ended, capable of adding new attributes, i.e., expandable and
annotative. The codes need not be interpretable throughout the
whole system. There could well exist local codes in sensory areas
that are modality specific, such that their readout requires the
neural populations that initially produced them. Binding of local
codes could be achieved though common, multimodal rhythmic
patterns on global levels (Geiser et al., 2014).

A putative onset-based latency coding scheme for encoding
attributes of auditory events and sequences of them is outlined
in Figure 7. For individual auditory events (Figure 7A), such
as an isolated musical note, a population onset response is
followed by temporal patterns encoding different attributes
such as intensity (loudness), periodicity (pitch), spectral shape
(timbre1), attack (timbre2), and auditory location (direction).
These temporal patterns are likely to only be partially
visible at the population level, i.e., in evoked potentials. The
end of the event is marked by an offset response with
the interval between onset and offset responses encoding
duration. The onset response encodes the timing of the event.
A sequence of such events would be encoded by a time-
series of pulse-coded packets, with the rhythmic pattern of
the sequence being encoded by the temporal pattern of onsets

(Figure 7B). The tonal structure of the melodic pattern would
be encoded through interactions of the pitch portions of the
individual events.

For speech (Figure 7C), we propose a ramifying annotative
system in which incoming auditory neural representations are
subjected to a series of pattern recognition operations carried out
by neuronal assemblies. Upon recognizing a phonetic pattern, the
assemblies emit a characteristic temporal pattern annotation. In
this framework, top-down inputs can prime particular neuronal
assemblies at any stage of processing. Later incoming inputs can
also override earlier ones. Higher-level patterns of phonemic and
syllabic tags are recognized as words by other neural assemblies,
and lexical tags are subsequently emitted that activate spreading
sets of concept nodes associated with the activations of still
other neural assemblies. The concept nodes interact, resonate,
and interfere to dynamically form an emergent, stabilized,
compositional interpretation (meaning).

The inherent hierarchical structure of speech and language
creates a natural test bed for analyzing and understanding spatio-
temporal neural responses and relationships at multiple scales
and levels. Starting at low level acoustic features, such as phones,
(exemplars above), they progress to higher levels (e.g., Sahin
et al., 2009; Singer, 2021): words (Marinković et al., 2003; Baker
et al., 2011), sentences and semantic concepts (Mitchell et al.,
2008; Chan et al., 2011). Evidence from fMRI, EEG, MEG, and
eCoG, clearly support that both speech and language constructs
are widely distributed over many cortical regions. They are
dynamically and redundantly evident in time and space across
the cerebral cortex (Blumstein and Amso, 2013; Ding et al., 2016;
Hamilton et al., 2021; Stephen et al., 2021).

6. EXPERIMENTAL AND
METHODOLOGICAL PRECEPTS

Through our experiences in neuroscience and engineering, we
offer some suggestions to researchers seeking to understand
how brains work. We recognize that change is often
hard, but necessary.

(1) See the trees and the forest. If possible, observe the system
at multiple levels. In order to observe the presence of
precise temporal spike patternings, recording of spike
trains from single and multiple units is essential, which
necessitates invasive methods (ECoG, animal single unit
studies) that drastically limit the numbers and types of
experiments that can be done. Nevertheless, precise spiking
patterns that have been observed in such experiments can
serve as existence proofs for the possibility of temporal
pulse codes, not only in sensory peripheries but in central
stations as well.

(2) Try not to rule potential codes out of hand. One good
example, if it can be reliably replicated, constitutes an
existence proof. It is difficult to experimentally rule
out many of the pulse coding schemes proposed above,
especially if they are asynchronous, local temporal codes,
i.e., not based on spiking that is synchronous at the
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FIGURE 7 | Proposed cortical latency-pattern coding framework for auditory events and speech reception. Onsets are neuronal bursts associated with transient
acoustic contrasts. (A) Coding of perceptual attributes of auditory events by means of post-onset complex temporal spike patterns. (B) Coding of rhythmic patterns
by temporal patternings of onset responses. (C) Coding of phones, syllables, words, and higher order syntactic and semantic relations in terms of onset-referenced
latency-pattern codes in successive cortical regions. At each stage of the hierarchy, neural assemblies produce characteristic spike pattern markers associated with
the recognition of acquired phonetic and linguistic distinctions.

population level. For the most part neuronal oscillations
have been observed via gross electrical potentials and
magnetic fields that reflect the synchronized component
of population activity. Whereas any temporal structure
that is observed at the population level necessarily reflects
temporally patterned activity at subpopulation, ensemble,
and individual neural levels, an absence of temporal
patterning at the population level does not rule out
temporally patterned activity at lower levels.

(3) Use methods of characterizing neural systems that are
not biased toward particular types of neural codes.
Linear system identification methods commonly used at
cortical levels to characterize spectro-temporal receptive
fields (STRFs) would completely miss interspike interval
information in the auditory nerve that is highly predictive
of pitch perception (§ 5.3, Figure 4).

(4) If you do not look, you will not see. The vast majority
of single-unit studies do not look for embedded complex
and interleaved, spike temporal patterns or cross-channel
volley patterns because these are often not obvious in
spike raster plots or post-stimulus time histograms. Such

patterns have been found when investigators have looked
for them with appropriate methods (Abeles et al., 1993;
Abeles and Gat, 2001; Lestienne, 2001).

(5) If you filter out potentially relevant information, you can
miss important things. Low-pass filtering of raw data in
the belief that there is no observable or relevant structure
there in higher frequencies is a pervasive problem.
Electrical gross potentials and magnetic signals are often
low-pass filtered at 200 Hz or below, eliminating any
opportunity for observing temporal responses on finer
scales than 10 ms, the Nyquist frequency being 100 Hz.
As much as possible, we should maintain signal temporal
resolution and integrity and examine the raw waveform
data. Temporal resolution can often be improved simply by
maintaining adequate sampling, avoiding under-sampling,
by keeping sampling rates of the raw data at least 5–
10 kHz. These measures would enable additional analysis
and make possible the discovery of hitherto overlooked
temporal fine structure.

(6) Although definitive answers to problems of neural coding
may ultimately lie in spike train data, ongoing efforts a to
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improve the temporal resolution of non-invasive recording
methods allow better visualization of fine time structure in
population responses that can in turn suggest subsequent,
higher resolution single and multi-unit experiments.

(7) Use as many alternative representations of stimuli and
neural responses as possible. Each description may
illuminate another aspect of the problem. Looking in
the frequency-domain doesn’t preclude or replace time-
domain descriptions and analyses. Combination, multi-
domain descriptions are always possible.

(8) Keep things interpretable. Aside from making neural
responses more difficult to interpret, excessively complex
signal processing of neural data, especially using filtering
operations, can generate frequency-domain artifacts that
can be misinterpreted as oscillatory activity (Jones, 2016).
Processing expediency and ingrained habits shouldn’t drive
research. Be wary of data processing that is too complicated
to be fully understood.

(9) Report precise values of response periodicities, i.e., in Hz
with standard deviation error bars, and not just gross
frequency ranges that span an octave or more.

(10) Use stimuli and tasks that are appropriate for what you seek
to explain. Stimuli should be simple if the basic operation
of the system is not yet well-understood. However, if
one is seeking to understand how the system works in
natural contexts, with all confounds and clues, then use
natural stimuli. For speech there is a gamut of stimuli
that range from clicks and tones to synthesized phones
to isolated words and sentences to running, connected,
conversational speech.

(11) If you don’t use at least some natural signals, you may miss
whole aspects of neuronal response (Chan et al., 2014).

(12) Don’t assume that current models of neurons capture
all functionally-relevant processes. Be wary of standard
neural models. Our understanding of neurons is still not
exhaustive. Textbook models often oversimplify. Some
examples are: bidirectional gap junction synapses, axonal
conduction blocks (Waxman, 1978), superexcitable phases
of membrane recovery (Raymond and Lettvin, 1978),
microtubule and molecularly mediated mechanisms,
combined analog-digital signaling (Alle and Geiger, 2006,
2008), and inhibitory rebound effects on spike timing
(Boudkkazi et al., 2007; Goel and Buonomano, 2016) and
network synchrony (Rama et al., 2015).

(13) Be wary of predetermined anatomical structures and
localized functions (function X occurs exclusively
in structure Y or region Z). Don’t focus on only
one prespecified region of interest (ROI). Don’t
rule out involvement of connections with other,
remote brain regions.

(14) Recognize that ideas are hard to change, on both individual
psychological and social levels. The biggest impediments
may the conceptual barriers inside our minds that need
to be broken. Try not to reject out of hand ideas that go
against conventional wisdom. Maintain a critical attitude
toward all ideas, conventional and novel. Differentiate
assumptions with weak evidentiary support from those

with strong support. Provisionally trust, but continually
test, established truths.

(15) Reject arguments based on authority rather than evidence.
Nobody is infallible.

(16) Theorize like a physicist, experiment like a biologist, invent
like an engineer.

(17) Try everything, test it, and keep what works
(Thessalonians 5:21).

Our general precept is to try hard to maintain open minds
about the nature of neural information processing, and whenever
possible, to use methods that widen vision rather than narrow it
with experimental and methodological blinders.

7. NEURAL CODES AND NEURAL
NETWORK ARCHITECTURES

Different types of neural codes require different types of
neural signal processing architectures for their interpretation,
i.e., readout that switches functional state or behavior. Within
the coding typology of Abeles (1982a), basic types of neural
processing architectures can be considered: (1) those that rely on
dedicated lines (Abeles) and “switchboards” (John, 1972), such as
traditional connectionist networks, (2) those that rely on “mass
action,” i.e., statistical orders in neural populations (John, 1967b;
Freeman, 1975), and (3) those that rely on delay-coincidence
paths such as time-delay neural networks, synfire chains
(Abeles, 1982a, 1990, 2003), polychronous networks (Izhikevich,
2006; Szatmary and Izhikevich, 2010), and neural timing nets
(Cariani, 2001a, 2004, 2015).

By far, connectionist neural networks that are based
entirely on channel-coding, have been most highly developed,
culminating in contemporary many-layered, deep neural
networks (DNNs). Channel codes are interpreted by architectures
that can reliably distinguish channels with specific tunings or
switch output channels that have consequent behavioral effects
by virtue of specific channel connectivities. An example would
be the mapping of movement direction neurons in motor cortex
in which a direction-tuned neuron activates a combination
of muscles that causes movement in a particular direction
(Georgopoulos and Carpenter, 2015). Temporal pattern and
spike timing codes are interpreted by architectures that have
offsetting interneural delays that can either drive specific
channels, as in time-delay neural networks and synfire chains,
or produce temporally-structured output signals, as in neural
timing nets. The population-interval coding of pitch (Figure 4)
is an example of mass action in the form of population-wide
interspike interval statistics. The kinds of complex, multiplexed
spike latency pattern codes discussed above would presumably
require decoding by networks that incorporate, one way or
another, precise delays- and coincidence elements.

Sequential, purely connectionist networks discretize time into
sequences of inputs and processing steps, operating on ordinal
successions of time steps (machine cycles) rather than metrical
time (Figure 2). Recurrent connectionist networks, while not
explicitly introducing metrical time into their architectures,
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can, through recurrent loops, create discretized memories for
sequences, as in the “nets with circles” of (McCulloch and
Pitts, 1943) and the dynamic processing memory of recurrent
networks of Elman (1990). Such networks can find structure in
event sequences.

However, not all deep neural networks are based entirely
on sequential channel-coding (Sejnowski, 2018). The broad,
expansive category of DNNs can encompass subnetworks that
incorporate time delays and coincidence elements as well as more
traditional channel-based connectionist layers. In particular,
convolution networks that adaptively configure their front-
ends, and hence their feature primitives, can incorporate
time- and frequency-domain representations and operations
so as to deal with any temporal structure in their inputs
that may be informative and robust. Such networks provide
a partial solution to the unavoidable problem of choosing
feature primitives that is many orders of magnitude more
expedient than the time-consuming strategy in biological
evolution of adaptively modifying or creating entirely new
physical sensors (Cariani, 2012). Through adaptive modification,
selection, and addition of feature primitives, highly complex,
high dimensional classification problems under one feature
set can be transformed into much simpler, lower dimensional
problems in another.

As with the code types themselves, these types of functional
architectures are not mutually exclusive, such that the nervous
system could use fundamentally different types of neural
information processing in different places or at different
processing stages to realize different types of functions
(Luczak et al., 2015).

We list in turn some general types of neural architectures
that could handle the coding schemes discussed above: time-
delay neural networks, oscillatory networks, synfire chains, wave
interference networks and neural timing nets.

7.1 Time-Delay Neural Networks
Time-delay neural networks (TDNNs) consist of networks
of interneural delays, coincidence detectors, and coincidence
counters that interconvert patterns of spike timings into
channel-activations and vice versa. Depending on their internal
organization, TDNNs can act as pattern analyzers and pattern
generators. By appropriate arrangements of delays, any incoming
temporal pattern can be converted to a unique set of channel
activations and any specific pattern of channel activations can
be converted to a specific temporally-patterned output. Activated
channels can be marked by differences in spike rates (coincidence
counts) or the timing of output spikes. Time-delay networks
can thus interconvert all three major types of codes discussed
above (§5): channel, temporal pattern, and spike timing codes.
Temporal patterns can also be transformed into ordinal firing
sequences which can then be transformed to channel-coded
outputs (Thorpe et al., 2001). Thus, all of the codes discussed
above could be converted to channel- and rate-codes via TDNNs.

The first neural network models to successfully account for
significant bodies of perceptual phenomena were the time-delay
architectures of Jeffress (1948) and Licklider (1951). The Jeffress
Model (Jeffress, 1948) aimed to explain how auditory localization

could be achieved on the basis of interaural timing cues,
whereas Licklider’s duplex place-time architecture (Licklider,
1951) provided a theory of the auditory representation of
periodicity pitch and power spectrum. Whereas the Jeffress
architecture computed a binaural cross-correlation function,
Licklider’s duplex computed spike autocorrelations within a set
of spectral, cochlear place channels.

The signal processing stages of Jeffress model entailed phase-
locking of primary and secondary neurons in right and left
auditory pathways, a set of brainstem conduction delay lines, a set
of spiking binaural coincidence detectors, followed coincidence-
counting stage (spike rate integrator). Through this architecture,
the direction of a sound in the horizontal plane is inferred from
a peak in the rate-channel profile of coincidence counts. The
signal processing stages of the Licklider model similarly relied on
phase-locked spikes in each cochlear frequency channel, an array
of chains of synaptic delays, and coincidence detectors, followed
by coincidence counters. Licklider’s later “triplex” (Licklider,
1959) and Cherry’s “two ears” (Cherry, 1961) architectures
integrated monaural temporal autocorrelations and rate-place
power spectra with binaural cross-correlations.

In the years following these early neural time-delay networks,
analogous networks were proposed for cerebellar timing
functions (Braitenberg, 1961, 1967, 2000) and visual pattern and
motion detection (Reichardt, 1961). Networks with adaptively
modified conduction delays were also proposed (MacKay, 1962).

Neural delays can come from a variety of processes,
including synaptic, conduction, integrate-and-fire dynamics,
and rebound from inhibition. By appropriate arrangements
of delays, essentially any temporal pattern of spikes can be
offset by corresponding delays to produce temporal pattern
detectors selective for that pattern (Torras, 1985; Gutig and
Sompolinsky, 2006), thus effecting time-to-channel or time-
to-rate transformations (Tank and Hopfield, 1987; Hopfield,
1996). Likewise, activation of an appropriately structured TDNN
by one trigger can generate any temporal pattern, a basic
capacity of brain function (Singer, 2019). Interneural delays
can be adaptively modified by selectively increasing synaptic
weights associated with particular delays. Effective connectivities
between neurons could also potentially be modified by adaptively
changing neural path delays, through alterations of axonal
conduction velocities or timings of inhibition rebounds, that
optimize particular rewarded coincidences.

7.2 Synfire Chains and Polychronous
Networks
Synfire chains are general neural networks that consist of a set
of delay paths and coincidence elements (Abeles, 1982a, 1990,
2003; Lestienne, 1999). The coincidence elements have short, sub-
millisecond to milliseconds, spike integration times. As such, they
are similar to time-delay networks, but without spike counters
that read-out firing rates. They can incorporate both excitatory
and inhibitory couplings. In feedforward synfire chains, volleys
of spikes percolate through network delay paths to realize
successive sets of temporal synaptic coincidences that produce
output spikes that then propagate further through the network.
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Feedforward chains produce waves of volleys that can support
onset-latency and firing order codes and whose interactions
can be considered in terms of wave-interference networks. In
recurrent, synfire cycles, activity can be self-sustaining, and
therefore potentially capable of supporting reverberating short-
term memory (Moradi, 2004).

Depending upon how their spiking outputs are interpreted
by the rest of the system, synfire chains can potentially support
different types of neural codes: channel coding (which particular
neurons are activated), channel-sequence coding (firing
order amongst neurons), latency and temporal pattern codes
(temporal volley patterns of spikes), and combination channel-
temporal codes (specific across-neuron “spatiotemporal” volley
patterns). Potential drawbacks of synfire networks concern
their robustness in the face of internal and external noise, but
these may be surmountable if there are many such networks
operating in parallel.

Compositionality and systematicity are fundamental
capabilities of representational systems in perceptual, cognitive,
mnemonic, and motor domains that are readily implementable
through classical logics (Bienenstock and Geman, 1995;
Touretsky, 1995). Following the resurgence of “connectionist”
neural networks in the mid-1980’s under the banner of parallel
distributed processing (PDP), a debate ensued about whether
neural networks might be capable of realizing these mental
functions. Early on it was proposed that binding operations
based on neural synchrony might be adequate to support such
functions (Ajjanagadde and Shastri, 1991). Parallel theoretical
studies of synfire networks have also been undertaken (Abeles
et al., 2004; Hayon et al., 2005).

Polychronous networks are “spiking networks that can
polychromize, that is exhibit reproducible time-locked but
not synchronous firing patterns with millisecond precision,
as in synfire braids. The network consists of cortical spiking
neurons with axonal conduction delays and spike-timing-
dependent plasticity (STDP, §3.2)” (Izhikevich, 2006). This
work emerged from large scale, 100k element, neuronal
simulations (Izhikevich et al., 2004). Neuronal ensembles
and populations in polychronous networks support multiple,
concurrent synfire braids (waves) and therefore can multiplex
signals encoded in the various synfire chains. Recurrent
polychronous networks are assemblages of synfire cycles
that can potentially support asynchronous spatiotemporal
spike-timing patterns in reverberating, working memory
(Szatmary and Izhikevich, 2010).

7.3 Wave Interference Networks
Spatiotemporal waves of spiking are observed in many sensory
systems and as a rule, low frequency brain rhythms are not
stationary but travel in waves from region to region (Nunez, 2000;
Nunez and Srinivasan, 2006; Thorpe et al., 2007; Bhattacharya
et al., 2022) and within structures such as the cerebellum
(Braitenberg et al., 1997) and basal ganglia. As with onset events
and stationary oscillations (Pouzzner, 2020), spatiotemporal
waves can provide reference timings for both spike latency
codes and ordinal, firing sequence codes. As with interactions
between oscillatory frequencies and phases, interactions

of waves can potentially be used for neurocomputational
operations, such as informational organization and integration
and the creation of new, emergent, more complex temporal
patterns (§ 8).

Wave interference networks are neural networks that utilize
the dynamics of interacting waves of spikes and population
responses to encode and process information (Heinz, 2004, 2010;
Izhikevich and Hoppensteadt, 2009; Kashchenko, 2015; Highland
and Hart, 2016). Perhaps the earliest wave interference network
was the “grassfire model” proposed by (Beurle, 1956). Wave
interference networks can be regarded in terms of traveling
wave oscillations that operate in “wave time” (Figure 2D). Wave
interference networks potentially provide means of decoding
latency-place codes as well as those based on oscillatory frequency
or phase-offsets.

7.4 Oscillatory Networks
Cyclic, oscillatory behaviors are ubiquitous in biological systems.
Early conceptions of brain functions imagined neural signals
as miniscule vibrations, “vibratuncles” (Wade, 2005). Individual
neurons can be modeled as non-linear oscillators with natural
resonances and firing modes (Izhikevich, 2001). The repetitive
motor actions that subserve most animal movement directly
suggests pattern generation mechanisms consisting of systems of
oscillatory elements (Gallistel, 1980). Consequently, networks of
neural oscillators have been proposed both as general models for
brain function (Greene, 1962; Amit, 1989; Hoppensteadt, 1997;
Kashchenko, 2015) and for specific mental functions such as
rhythm perception (Tal et al., 2017) and visual scene analysis
(Baldi and Meir, 1990).

7.5 Neural Timing Nets
Whereas synfire chains and polychronous networks were devised
from the bottom up, starting with the behavior of ensembles
and populations of hypothetical neurons, neural timing nets were
developed with specific perceptual functions in mind: problems
related to auditory temporal coding of pitch and rhythm,
perceptual invariance and equivalence, extraction of common
pitch irrespective of timbre and vice versa, and separation of
auditory objects of different fundamental frequencies (Cariani,
2001a, 2002, 2004).

Neural timing nets, like synfire chains, consist of arrays of
interneural delays and coincidence detectors, albeit with delays
arranged in a systematic fashion to facilitate interpretation
and understanding. Timing nets take temporally-coded pulse
trains as inputs and output other temporally-coded trains. The
coincidence detectors multiply pulse inputs (AND operations).
How the neural delays are realized biophysically (e.g., through
axonal conduction, synaptic transmission, membrane recovery,
and integrate-and-fire) does not affect the behavior of the
networks. Operating entirely in the time domain, the networks
compute auto-correlation, cross-correlation and convolution
operations on pulse train inputs. An output set of spike trains is
produced whose population-interval (summary autocorrelation)
can serve as a representation of periodicity and timbre. Neural
timing nets permit mixtures of temporal pulse patterns to
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be disambiguated, enabling demultiplexing of interleaved spike
patterns.

Neural timing nets have been applied to problems of speaker
separation by means of different fundamental voice pitches (F0s),
with patterns of performance that resemble those of human
listeners. They have been applied to the problem of rhythmic
pattern induction, the grouping of repeating, arbitrary temporal
patterns of musical events into a “groove” and the collateral
expectancies that are produced.

As such, neural timing nets represent an analog, time-domain,
relational, correlational approach to neural signal processing.
By retaining temporal patterns of spikes in a reverberating
memory and using them as matched filters for incoming signals,
highly sensitive discriminations can be achieved. Such networks
are “signal-centric” rather than “connection-centric” in that the
computations involve signal interactions rather than structured,
weighted connections between channels of feature detectors
and association units (Figure 8). Virtually all of the action is,
as in the auditory nerve example in § 4.3, in the temporal
patterning of spikes.

Temporal codes and timing nets provide examples of how
signals and signal processing need not be tied down to particular,
identified neural channels, thus “liberating neural signals from
wires” and enabling radio-like broadcast and selective reception
strategies for neural communications, integrations, and co-
ordinations.

Although conceived with auditory neural representations and
Gestaltist grouping processes in mind, to the extent that central
neurons are primarily coincidence elements and that central
temporal codes exist, i.e., “temporal coding all the way up,”
neural timing nets can be posited as the basis for alternative
temporal theories of brain function (Cariani, 2015, 2017). These
alternatives rely on principles of mass action, signal multiplexing,
broadcast communication, active regeneration of signals in
reverberant delay loops using complex temporal ensemble and
population codes and dynamic, adaptive delay-computations
effected in synfire chains.

This perspective bears similarities to Lashley’s ideas of non-
local representations, mass action, and neural interference
patterns (Lashley, 1998), John’s statistical temporal orders (John,
1972; Thatcher and John, 1977; John and Schwartz, 1978),
Lorente’s and Kubie’s reverberating circuits (Kubie, 1930; Lorente
de Nó and Fulton, 1949), Pribram’s holonomic orders (Pribram,
1971, 1991), and Longuet-Higgins’ holographic storage of time
patterns (Longuet-Higgins, 1987a, 1989). To these ideas, we
add the notion of a system based on local asynchronous
temporal pattern codes stabilized through dynamically facilitated
polychronous synfire cycles. Event- and object-related temporal
representations from local regions would be bound together at
global levels through common coarse temporal rhythmic patterns
(cf. Geiser et al., 2014).

If everything can be kept in the time domain, encoded in
spike temporal patternings and sequences, then “tape recorder”
memory mechanisms are made possible in which temporal
memory traces actively regenerated in reverberating circuits
can be read out in faster-than-real time, as in hippocampal-
cortical replay (Buch et al., 2021), to serve as anticipatory

FIGURE 8 | Pattern-resonance scheme for neural signal dynamics. Complex
temporal patterns of spikes percolate through synfire delay-coincidence
networks activating pattern resonances, forming characteristic spike
interference patterns. Grouping is achieved through common spike
sub-patterns at local levels and event-rhythm patterns at global levels.
Spreading activation creates provisionally stable standing wave patterns in
recurrent synfire-chain delay loops. Temporal patterns associated with current
goals are injected into the network to amplify task-relevant patterns and
suppress irrelevant signals and circuits. Temporal patterns in reverberating
short-term memory activate similar patterns and sub-patterns in long-term
memory traces that encode “tape-recorder” event-and-reward sequences
that serve as anticipatory guides for prospective behavior (Cariani, 2017).
Schematic from (Cariani, 2015).

guides for effective action (Cariani, 2017). Temporal memory
traces containing neural encodings of past events, actions taken,
and reward outcomes can then predict future consequences of
present courses of action based on past experience. A molecular
mechanism for non-labile, long-term memory storage of
temporal patterns is also conceivable if temporal spiking patterns
can be mapped onto spatial patterns of side-chains in linear
polymers. Disparate fragments of temporal sequences would be
assembled into whole timelines through iterative interactions
between traces with overlapping spike patterns. As with the
genetic code, by keeping information in one temporal framework,
many fundamental organizational problems of communication,
coordination, and memory can be radically simplified.

8. TOWARD AN INTEGRATED SYSTEMS
VIEW OF BRAIN FUNCTION

Despite decades of painstaking work that have produced a
tremendous and rapidly growing body of specialized knowledge
about the brain, we still lack integrated frameworks that compile
and coalesce our functional knowledge of neurocomputational
representations and operations into a coherent whole. We do not,
by any means, claim to have discovered this holy grail, or even a
sure path toward it. However, we can point to and suggest some
new approaches for exploring this space with reference to some
specific metaphors, models, and methodologies that we believe
will be helpful.
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FIGURE 9 | Schematic of a generic radio superheterodyne receiver.

These next sections outline the operations and characteristics
of radio communication systems, transceivers, heterodyne
receivers, reverberant circuits, and holography. It relates
and contrasts these with comparable neural operations
including temporal codes, multiplexing, phase-locking,
oscillations, synchrony, memory, attention, anticipation,
perception, and cognition.

8.1 Dynamic Transceiver Model
Functions and Elements
The Dynamic Transceiver Model (DTM) is a conceptual
mechanistic network architecture. It compares and contrasts
the more elusive functions and elements in the brain with
similar functions and elements of well-understood and tested
broadcast transmission systems. The ubiquity and proven success
of broadcast transmission systems such as cell phones, radio, and
satellites, merit examination of DTM’s fundamental mechanisms,
strengths and weaknesses. Despite obvious differences between
these artificial and biological systems, at all scales of their
operations, there are striking parallels that may provide insights
that lead to better understanding the functions and capabilities of
communications systems and brains.

Radio metaphors for the brain are not new though
they typically have been applied to single components or
operations within a communications system (Hoppensteadt and
Izhikevich, 1998; Shanahan, 2008; Izhikevich and Hoppensteadt,
2009; Highland and Hart, 2016; Soman et al., 2018). The
metaphors operate on several levels of structure and function,
to compare radio components, circuits, and networks with
neurons, ensembles, and populations and radio signals and signal
processing operations with neural codes and computations. A key
rationale for looking at the radio communications metaphor
described here is that it comprises a complete end-to-end systems
perspective, with integrated components.

In particular, it is hoped that this model may suggest
rigorous experiments, especially for the roles of temporal coding,
phase-locking, oscillations, synchronicity, temporal coupling,
integration of time- and frequency-domain operations, memory
access/retrieval, signal-to-noise ratio (SNR) enhancement,
information integration, etc. Given the striking advances in
neuroscience tools and computational processing, such studies
are progressively feasible.

8.1.1 Radio Analogy
A basic radio broadcast transmission system takes a given audio
source signal from a microphone or recording, modulates its
amplitude (AM), or frequency (FM), with or without phase
modulation (PM), and combines it with a designated channel
frequency carrier signal (Figure 9). The primary signal, the audio
signal that contains the information of interest is combined
with the carrier through modulation, i.e., a modification of the
carrier’s amplitude (AM), frequency (FM), or phase (PM), to
produce a composite modulation signal that contains both the
audio source and the carrier. This composite modulation signal
is then amplified, and wirelessly broadcast from a transmission
tower. In the process of transmission, this modulation signal can
be propagated, possibly through multiple amplification relays,
before it is picked up by the antenna of a given radio receiver.
The antenna is typically exposed to thousands of different signals.
The radio receiver uses multiple tuning circuits to precisely
select from all these signals, a designated carrier wave frequency
with which it resonates. Matched filters and correlation receivers
optimize SNR. A demodulator then takes the modulated signal
wave and filters out the carrier signal and other unwanted signals
from it. Finally, an amplifier then amplifies the original source
signal for output through speakers or headphones.

Many radio receivers improve performance, accuracy,
and reduce power requirements by also incorporating
superheterodyne circuits that combine modulation signals
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with local oscillator frequencies to create higher sum (F2 + F1)
and lower frequency difference (F2 − F1) sideband signals
for subsequent processing. Typically the higher frequency
sideband is low-pass filtered out, effectively downsampling and
reducing the dimensionality of the modulation signal being
transmitted. Multiple “intermediate filter” (IF) stages can be
added to iteratively narrow bandwidth, thereby sharpening the
tuning, and enhancing SNR performance. This process efficiently
converts high frequency signals to lower frequency signals while
maintaining informational integrity as well as reducing noise.

Transmitters and antennas can be designed for directional
or omnidirectional operation. Devices that combine both
transmitters and receivers for concurrent bidirectional
communication (like telephones which enable users both
to speak and listen at the same time, using separate carrier
frequencies), are called “transceivers.”

8.1.2 Characteristics of Radio and Neural
Transceivers
Radio communication systems and neural systems demonstrably
share many comparable functions at multiple levels. In addition
to broad similarities in broadcasting, receiving, and transmitting
signals, they share similar operations. These include the broad
distribution of signals, modulating and demodulating them,
suppressing noise, filtering, amplification, precision tuning, etc.
Although the techniques clearly differ, examining parallels can
be instructive in better understanding the signals and the
mechanisms for manipulating them.

The signals of the two systems can be compared. Wireless
radio waves are electromagnetic in nature, and can penetrate
through many physical materials and obstructions. They span
a frequency range of about 3 kHz–300 GHz. In wireless
transmission systems, the radio waves travel close to the
speed of light. By contrast, the electrical spikes propagated by
mammalian nervous systems have velocities of ∼0.3–120 m/sec,
with myelinated axons an order of magnitude faster than
unmyelinated ones. For example, auditory nerve fibers show
typical conduction velocities of ∼15 m/sec. Multistage neuronal
paths and circuits incur delays at each synapse of roughly
half a millisecond.

Our contemporary communications systems are largely
wireless, whereas nervous systems are largely wired. A vast
variety of radio communication systems includes RFID chips,
radio and TV broadcasts, cell phones, GPS, wireless networking,
WiFi, Internet, radar, satellite communications, etc. Although
traditional landline phones use wires for signal transmission,
newer units with wireless handsets, combine wired connections
with short distance wireless radio transmissions between base
units and handsets. Aside from local electrochemical influences
and local field potentials, the nervous system of higher order
animals, is densely wired, in series and in parallel, within an
integrated network of networks. Interconnected cell populations
and ensembles operate both locally and remotely, to serve
specialized functions within the global network.

Temporal coupling of associated networks, especially via
phase-locking, is widely observed across the brain and nervous
system (Gupta and Bahmer, 2021). It is a critical mechanism

for initiating and coordinating spatio-temporal coding, event
detection, state changes, resetting voltage, and synchronization.
In the context of radio systems, phase-locking is a fundamental
operation, broadly used to detect, track, synchronize, and
demodulate signals.

In contrast to radio systems, the brain and nervous system
are highly adaptive and plastic. Neural circuits can progressively
and autonomously produce more powerful signals as they
are repeatedly activated. The circuits are also subject to
degradation with disuse or damage. Although radio transmitters
can broadcast with stronger or reduced power, and can be
damaged, they do not change their broadcast power as a
function of activation.

At multiple levels, neural systems dynamically change their
characteristics and behaviors, including their connectivities
and activations, as a function of their operations over time.
Understanding the dynamics of neuronal networks, is key to
understanding neural mechanisms and operations (Kopell et al.,
2014).

The biological system, as a whole, can assume different
modes e.g., awake, attentive, sleep, etc. Most neurally mediated
autonomic functions, such as breathing control, digestive
functions, etc., operate across all these modes. Although
not bounded by it, this discussion of the DTM focuses on
communications and behaviors of the system in the awake,
attention-driven mode.

External sensory signals bombard the organism with an
ongoing barrage of visual, auditory, etc. inputs. The organism is
also bombarded by an ongoing barrage of internal physiological
signals as well as by internally generated goals, thoughts,
emotions, etc. By quelling most of this cacophony, the organism
can focus and extract salient features from this environment for
further processing (conscious and unconscious) and subsequent
actions. Attentional mechanisms are responsible for directing
an action-driven focus on relevant internal and external
information. Analogous functions in radio communications
systems, are served by transceivers, antennas, filters, lock-in
amplifiers, tuning circuits, etc. that suppress noise, tune in and
amplify signals of interest.

8.1.3 Communications Operations in Radios and
Brains
Communication system components typically consist of
transducers, modulators/demodulators, transmitters, receivers,
storage buffers, relays, amplifiers, automatic gain controllers,
filters, mixers, tuning circuits, signal detectors, and antennas.
Neural system analogs to each of these components are described
below. Analogous operations are italicized.

In the nervous systems, sensory organs detect stimuli,
transduce and code them into temporally patterned pulse trains
of electrical spikes. In sensory systems, afferent pathways relay
these spike sequences to more central processing sites, and
efferent pathways relay spike sequences back from more central
stations. Each station is a transceiver that can both transmit and
propagate such signals afferently, up the pathway, and efferently,
back down the pathway. Lateral paths within each station and
local interneurons can provide cross-channel communication,
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which may influence subsequent transmissions. The spike train
signals themselves may be modulated by underlying temporal
or frequency carriers in the form of neuronal synchronies
or oscillations.

Endogenous oscillations (e.g., alpha, beta, gamma, delta, and
theta) are routinely observed, though there is great debate about
their sources, mechanisms, roles, etc. (Siegel et al., 2009; Zoefel
et al., 2018). Such oscillations can be coupled, and correlated
with observable brain functions (Buzsáki and Wang, 2012). These
oscillations are likely instrumental in serving different functions
(e.g., amplifiers, carriers, modulators, etc.) at multiple levels.
More speculatively, they may be related to or emergent from
signal correlation and tuning operations, analogous to radio
mixer local oscillators generating intermediate frequencies from
interacting (e.g., mixing) with modulated signals (Figure 9).
Brain heterodyne-like operations might be key to shifting, tuning,
and matching networks with different operating characteristics
across levels. Such a mechanism could efficiently and flexibly
couple disparate reverberant networks both locally and remotely,
temporally and spatially.

As previously described, heterodyning is a flexible mechanism
for shifting (e.g., downsampling) and coupling signals operating
over different frequencies, typically by multiplying a modulation
signal with a higher frequency local oscillator (Figure 6D). This
operation generates two sideband frequencies, one at a sum
frequency (F1+ F2), and one at a difference frequency (F2− F1).
Typically the sum frequency sideband is filtered out, leaving a
single sideband at the lower difference frequency (Figure 9).

Consider a hierarchical system, roughly analogous with a
speech/language understanding system, characterized by a series
of 6 lower level (higher frequency) to higher level (lower
frequency) stages of integration; e.g., (1) sounds/phones, (2)
phones/syllables, (3) syllables/words, (4) words/sentences, (5)
sentences, (6) concepts/understanding. Suppose the signals from
each stage in this hierarchy interact with the signals at the
next higher level stage (e.g., a sequence of incoming phones
gets integrated into syllables, syllables integrated into words,
etc.). Hypothetically, each lower level signal might act as a
local oscillator to correlate (e.g., multiply) their signal with
those at a higher level. Suppose the modulated signals for the
sounds/phones (lowest level) stage are characterized by a 45 Hz
(gamma oscillation), and that successive levels of integration are
characterized at approximately 22 Hz (beta), 12 Hz (alpha), 7 Hz
(theta), 2.5 Hz (delta), and 1.5 Hz (low delta), respectively. If
each stage is iteratively pairwise combined (e.g., mixed) with
its next higher level stage, then the low frequency side band
(beat) oscillations will be at 45, 23, 11, 4, and 1.5 Hz. This
sideband oscillation sequence approximately recapitulates the
standard sequence of endogenous oscillations itself, eventually
downsampling by∼30x.

A wide variety of inter-relationships of endogenous
oscillations have been proposed; such as feed forward theta-
gamma nesting to reflect hierarchical grouping of information
for speech processing (Ghitza, 2020), bottom-up gamma
combined with top-down beta (Noda et al., 2017) for predictive
timing and error correction, theta-gamma codes for memory
processes (Lisman and Jensen, 2013), and system level temporal

dynamics for regulating attention and knowledge access
(Klimesch, 2012).

In terms of the radio metaphor, neuronal cell ensembles
create functional units that are in effect broadcasting spike train
signals and their aggregated derivative features (e.g., firing rate
temporal envelopes), throughout the network. Different channels
constitute different delay lines. Temporally precise neuronal
rebound processes also impose neural delays. Multiple neuronal
pathways in cell ensembles provide robust redundancy though
parallel distribution. A process where an input signal is modified
through different network paths that are later synchronized
and compared, can act as an error detection system. A given
input signal processed through multiple parallel network paths
can stimulate both fast responses as well as more extensively
processed slower responses. The vast numbers of neurons, their
dense interconnectivity, and plasticity create a dynamic self-
organized infrastructure well–suited to support virtually any
network functionally needed.

Neuronal elements may be excitatory or inhibitory and
most neuronal circuits consist of both. The combination and
interaction of these opposing influences determine the operations
and behaviors of the neural system.

In multistage neuronal pathways, early stage neurons make
synaptic connections both with lateral and later stage neurons at
synaptic junctions. Trees of branching synaptic relays themselves
can be regarded as broadcast transmitters. The post-synaptic stage
can be regarded as a receiver of signals from the presynaptic stage.
Signals of different strengths may or may not be adequate to be
propagated by the next level. If the electrochemical characteristics
of the two stages are conducive; that is, suprathreshold levels
are obtained, the signal can continue to propagate to later stages
for further transmission. When suprathreshold levels are not
met, the post-synaptic stage may become more or less excitable,
with subthreshold facilitation or inhibition that predisposes its
responses to subsequent activations.

Neuronal junctures or synapses of all types, serve as relays, and
are necessary in the configuration of multistage transmissions
and channel circuits. At the synaptic junctures, the signal may be
amplified, attenuated, or otherwise modified. Such modifications
can effectively operate as modulation or demodulation processes.
As in AM radio, a phase-locked envelope detector could
serve as a simple half-wave (single side-band) rectifier to
demodulate such signals.

In multichannel radio transmission systems, multiple data
buffers may be incorporated for temporary data storage.
Analogously, echoic (e.g., iconic visual and haptic) memory
and working memory could operate as such temporary data
storage buffers. Sensory memory buffers can range from less
than a 1 s (iconic) to several seconds (haptic and echoic).
Working memory, involving higher level executive functions,
lasts longer, about 10–15 s.

In a radio system, a data controller directs traffic, selecting
the number and type of radio channels to be utilized. Since
the flow of incoming information can be irregular, the data
controller manages the flow of buffered data through the radio
channels to enable smooth transmission and reception. In
neural systems, analogous informational gating and control
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mechanisms based on synchronies and oscillations could
serve similar functions. Such a role has been proposed for
cerebellar coordination of neuronal oscillation coherence
in communications across multiple cortical structures
(McAfee et al., 2021).

8.2 Content-Addressable Associative
Networks
In radio broadcast systems, incoming signal information
is automatically coded, transmitted, modulated/demodulated,
and subsequently extracted. In the brain, incoming signal
information is analogously automatically coded (e.g., through
spike train sequences, phase-locking, spectral characteristics,
etc.), transmitted, modified through multiple stages, and
subsequently extracted.

Analogously, sensory organs transduce incoming stimuli into
electrical spike pulses, for multistage processing locally and
throughout the brain. Such processing ultimately results in the
production of a variety of perceptions, memory creation and
consolidation, as well as a broad array of cognitive, motor, and
other activities.

For semantic processing and knowledge representation, sets
of salient signal attributes or parameters are progressively coded,
bound, and integrated in networks, for extraction at higher levels
(e.g., concepts and engrams). Such sets or profiles of co-occurring
attributes represent the informational content of such signals in
functional circuits.

In the brain, these attributes can include object and
event features, action characteristics, semantic and syntactic
relationships, concepts, valence, conation, affect, and memory,
as embodied in concept and knowledge representation networks
(MacKay, 1987; Baker et al., 1997; Klimesch, 2012).

Such attributes are encoded with different and adaptable
saliences, that is the color of a banana has less salience than its
identity as a kind of fruit. Learning, emotional states, etc. enable
the expansion/deletion and/or modification of these attributes.
Subsets of attributes can be more or less independent of each
other. The color or odor of a typical banana is more closely tied
to its state of ripeness than its length or heft. The brain can be
regarded as an elaborate search engine that dynamically encodes
and retrieves information related to any of these dimensions.
Note that this is a much richer set of parameters than is utilized
in any text search engine.

Common sets of such significant attributes could plausibly
be embodied and maintained in recurrent reverberant circuits
in cortical and subcortical structures (Kubie, 1930; Lorente
de Nó and Fulton, 1949; Johnson et al., 2009). Brains can
be regarded as self-organized networks of reverberant delay
paths and cycles (loops). Thought to be associated with short-
term memory and plasticity functions and facilitated by NMDA
receptors, reverberating circuits are dynamic and maintained in
a constant state of readiness through spontaneous activity, such
that they are capable of rapidly changing their communications
and connectivity.

As functional neural assemblies, these reverberant
neural circuits are analogous to different radio channels.
Both sets of entities are well-determined, and utilize

precise tuning mechanisms to achieve high selectivity in
communication transmissions.

A radio tuning circuit selects among the many channels
picked up by its antenna, matched filters, etc., and locks onto
a designated frequency channel in order to receive its signal.
A key difference between radio communication systems and
neural reverberant circuit networks, is that the neural circuits
are also content-addressable and modifiable. The reverberant
circuits can dynamically interact with each other. Except for local
interference effects, radio channels do not change their contents
as a consequence of interacting with each other.

8.3 Reverberant Circuits
A reverberant neuronal circuit can selectively lock onto particular
attributes encoded by different patterns of neural activity.
Combinations of attributes can be selected on the basis of
more complex combinations of neural patterns. The profiles
of incoming neural signals may be compared (e.g., cross-
correlated) with those in existing reverberant circuits. This
matching operation constitutes a content-addressable memory
mechanism. With memory or knowledge circuits, one or more
of these reverberant circuits are selected for activation if a close
match is found. If a close, though not exact match, is found, an
existing reverberant circuit may still be partially activated or be
provisionally modified to incorporate additional attributes or to
drop inessential features.

When no resonant match is attained for a novel neural
activity pattern associated with a new kind of object or event,
then a new reverberant circuit may be established to be
used for future scans. This is an automatic self-organizing
mechanism by which memory consolidation and learning, even
with only one exemplar, (e.g., unsupervised “1-shot learning”)
could be represented. The matching operations themselves are
conditioned by physiological states, salience, volition, and other
attentional factors. These kinds of reverberant architectures can
be regarded as time- and frequency-domain analogs of the
channel-coded adaptive resonance architectures that have been
refined and applied to a wide array of psychological phenomena
(Grossberg, 2021).

Like radio channels that are close in frequency, two or
more reverberant circuits that share common features, can
interfere with each other to cause the analogs of radio static:
ambiguity, confusion, poor resolution, etc. More powerful
channels can interfere with or dominate weaker ones (e.g.,
masking or blocking).

Creating new reverberant neural circuits is analogous to
establishing new radio broadcast channels de novo, including
low-powered pop-up “pirate channels.” As with memories and
concepts, the process of adding channels is open-ended (Piaget,
1980; Cariani, 2012), such that there is no intrinsic limit to the
number of these that can be established.

Associative networks are comprised of a set of reverberant
circuits that share some attributes in common with each
other. As in spreading activation networks, sufficiently activated
reverberant circuits may in turn successively activate additional
reverberant circuits that have attributes in common. Reverberant
circuits are dynamically reinforced by repeated activation.
Repeated reinforcement of these reverberant circuits increases
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their relative power within the network, as well as the likelihood
of their subsequently triggering other matched reverberant
circuits. Chains of successively triggered associative reverberant
circuits could conceivably support eventual, delayed recall of
memory through an ongoing, iterative search process.

Like high powered radio broadcast transmitters that reach
further distances than lower powered broadcast transmitters,
reverberant circuits that have been recently reinforced through
high salience or reward, acquire a greater ability to activate
additional associated circuits.

Relay stations, whether for radio or neuronal signals, enable
the amplification and propagation of modulated signals for
robust, remote, and redundant distribution.

There are many ways in which signals may interact. As
discussed above regarding multiplexed codes (§5.6), neural
signals from multiple modalities can be interleaved and
propagated together. Similarly in the radio domain, Code
Division Multiple Access (CDMA) enables multiple transmitters
to send their separately coded signals over a given channel
simultaneously. This technology has been broadly applied from
cell phones to radar. Indeed, radio signals and communications
systems themselves are fundamentally based on well-defined
operations and manipulations of signal interactions.

8.4 Hologram-Like Operations and
Representations
Ideas related to holographic representations, despite being on
its margins, have a long history in theoretical neuroscience.
Non-local distributed neural representations, interference
networks and memory traces were envisioned by Lashley in the
1930’s and early 1940’s (Lashley, 1942, 1960; John, 1982; Pribram,
1982; Orbach, 1998; Nadel and Maurer, 2020). While working
on electron microscopy in the late 1940’s, Gabor (1949) invented
holograms, for which he subsequently received the Nobel
Prize in Physics in 1971. Subsequently Pribram (1971, 1982),
Freeman (1975), Thatcher and John (1977), John (1982),
Longuet-Higgins (1987a, 1989), and others (Pietsch, 1981;
Willshaw, 1981; Heinz, 2004, 2010) proposed hologram-like
brain theories. Distributed, quasi-holographic channel-coded
representations based on circular convolutions for support of
pattern completion and compositional operations have also been
proposed for artificial associative neural networks (Plate, 1995,
2003). Whereas all holographic memories are distributed, not
all distributed memories are necessarily holographic in the strict
sense of utilizing signal interferences based on relative phase,
frequency, timing, and/or temporal pattern.

The operations required for holographic devices are fairly
straightforward. The output response of a stored signal pattern
is effectively an autocorrelation convolved with an incoming
signal pattern [see also the optical autocorrelatograms of Meyer-
Eppler in Lange (1967)]. In optical laser holography, a single
coherent source signal is split into two identical signal beams,
one of which, the object beam, is subsequently altered by
bouncing off a physical object, and then reflected back to a
common receiver (e.g., photographic plate), with the other, the
reference beam, which is not. The coincident arrival of these two
signal streams, like intersecting wave fronts constructively and

destructively combining, create a cross correlation interference
pattern containing the combined information of both signal
beams in phase and amplitude relations. The new information
(e.g., object image) can be decoded by convolving the interference
pattern with the original signal beam.

Significantly, this interference pattern is distributed across
all of the photographic plate. The entire object image can be
recovered from any piece of it, albeit with lower resolution as
the piece diminishes in size. Furthermore, the hologram plate
can be similarly exposed to multiple scenes prior to development.
Although the resolution of the hologram decreases as the number
of scenes increases, each of the original scenes can be recovered
by exposing the hologram to a portion of any given scene, i.e., a
process of pattern completion.

Pribram (1971) neatly summed up optical holography as
“an instantaneous analog cross correlation formed by matched
filters,” and noted that:

“In the brain correlation can take place at various levels. In
more peripheral stations correlation occurs between successive
configurations produced by receptor excitation: the residuals left
by adaptation by decrementing from a buffer memory register to
be updated by current input. At more central stations correlation
entails a more complex interaction: at any moment input is
correlated not only with the configuration of excitation existing
at any one locus, but also with patterns arriving from other
stations.”

Although interacting signals need not be synchronous or
coherent, some special objects and functions can be derived
when they are. Separately, Longuet-Higgins (1969, 1987b, 1989)
also championed holographic long-term memory storage and
retrieval mechanisms using time-domain correlations.

Longuet-Higgins extended these principles to describe
a holophone, where distributed memory can be encoded,
associated, and retrieved by interference patterns created
by temporal sequences. In his implementation, the holophone
records a temporal signal via the variable gains from each channel
of a bank of narrow bandwidth filters. These filters function as
oscillators, that can later be activated, amplified, and combined
for play out. Memory of the recorded signals is incorporated
in the sequences of channel gains. Subsequent excitation of
this filter bank by a segment of the original recording, should
then enable the entire original recording to be regenerated
(pattern completion).

Although positing that the cochlea may be able to meet
the tight timing requirements for such a mechanism, Longuett-
Higgins warns that this holophone design “must not be taken
too literally,” due to noise, lack of invariance to tempo shifts,
limited bandwidth, etc. He does, however, “suggest that the
general principles underlying its operation should be given
very serious consideration in connection with the brain”
(Longuet-Higgins, 1969).

9. SUMMARY

The brain is a remarkably, multifaceted complex machine. It
is a dynamic self-organizing, autoencoding, change-detection,
pattern correlation, network machine that takes in information
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and converts it to perception, memory, cognition, motor actions,
and more. The neuroscience community has set for itself the
daunting task of reverse-engineering it. How the brain works is
one of the most fundamental unsolved problems in all of science.

Drawing on the collective knowledge of neuroscientists
past and present, the consolidated “bottom-up, top-down”
approach taken here focuses on key components, comparing and
contrasting them to systems with similar operations, in order to
point to promising avenues for further advancement.

The roles of time, neural codes, and signal processing
operations are critical to understanding the functional
mechanisms of the brain and nervous system. Outlined here
are observed and putative neural codes, phase-locking, temporal
patterns, recurrent timing networks, synchronies, oscillations,
temporal coupling, the interactions of these with each other, and
possible functions and roles they play within and across levels.
Some experimental and methodological suggestions to focus
and facilitate such research are proffered. Finally, an end-to-end
systems level approach examines radio communications systems,
in terms of individual components, signal processing operations,
and possible relations to specific cortical functions. Recurrent
timing nets, associative reverberant networks, and holographic
functions are proposed as mechanisms for consideration in
prospective neural architectures.

Intriguingly, the brain and these systems all share
common mathematical descriptions of their operations,
including time/phase coherence, logical AND/OR/NOT
relations, autocorrelations, cross correlations, and convolutions.
Simple signal processing operations are remarkably powerful
in characterizing and emulating many functional roles
in neural systems.

Going into the future, it is suggested that research should
consider and explore:

(1) The roles of complex time codes and their integration at
multiple levels.

(2) Autoencoding, self-organizing modulation/
demodulation mechanisms.

(3) New modes of pattern generation via self-organizing,
self-referential autocorrelations and cross correlations.
New patterns may be subsequently combined and
(de)convolved with others, both to carry feed-forward
information as well as to incorporate predictive
information and corrective feed-back.

(4) Associative reverberant networks for dynamic memory
encoding and retrieval,

(5) Yet unforeseen possible functional roles for interacting
oscillations and waves, including heterodyning analogs, for
signal representation, processing, temporal coupling, and
tuning,

(6) Holographic techniques that encode and recover objects
in time and space by creating correlational, interference
patterns of coherent signals that are split, resynchronized
and compared after taking separate trajectories. Sufficiently
coherent population signals in the brain, similarly split
and synchronized, could each provide reference beams
for the other. As with optical holograms, information can
in principle be redundantly encoded and retrieved both
locally and globally.
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