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We propose that to fully understand biological mechanisms underlying pathological

brain activity with transitions (e.g., into and out of seizures), wide-bandwidth

electrophysiological recordings are important. We demonstrate the importance of

ultraslow potential shifts and infraslow oscillations for reliable tracking of synaptic

physiology, within a neural mass model, from brain recordings that undergo pathological

phase transitions. We use wide-bandwidth data (direct current (DC) to high-frequency

activity), recorded using epidural and penetrating graphene micro-transistor arrays in

a rodent model of acute seizures. Using this technological approach, we capture the

dynamics of infraslow changes that contribute to seizure initiation (active pre-seizure

DC shifts) and progression (passive DC shifts). By employing a continuous–discrete

unscented Kalman filter, we track biological mechanisms from full-bandwidth data with

and without active pre-seizure DC shifts during paroxysmal transitions. We then apply

the same methodological approach for tracking the same parameters after application

of high-pass-filtering >0.3Hz to both data sets. This approach reveals that ultraslow

potential shifts play a fundamental role in the transition to seizure, and the use of high-

pass-filtered data results in the loss of key information in regard to seizure onset and

termination dynamics.

Keywords: neural mass model, continuous-discrete unscented Kalman filter, DC-coupled electrophysiological

recordings, synaptic physiology, infraslow oscillations

INTRODUCTION

This article illustrates the importance of wide-bandwidth electrophysiological recordings,
specifically the inclusion of ultraslow potential shifts and infraslow oscillations, for tracking the
evolution of synaptic physiology during the paroxysmal transition into and out of seizure. We
illustrate that removing (or ignoring) infraslow changes can have a significant effect on inferring
neural generators from data, which in turn could influence designing an effective treatment strategy
for neurological disorders such as epilepsy. In this study, we neither aim to explore or elucidate
true causes of phase transitions from brain activity nor develop new methods to infer physiological
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parameters. Instead, we provide case examples of reconstructing
synaptic parameters from real data to demonstrate the limitations
of high-pass-filtered (>0.3Hz) data sets to infer mechanisms
underlying seizure transition.

Infraslow oscillations by definition refer to oscillations in
the frequency ranges [0.01, 0.1] Hz in electrophysiological
recordings. These slow waves were first captured by implanted
electrodes in animal studies (Aladjalova, 1957). Biological
generators causing these oscillations could be very complex
(Watson, 2018). Proposed mechanisms include neuronal sources
[e.g., slow after-hyperpolarisation resulting from dynamic
changes in Ca2+and K+ conductance (Kandel and Spencer, 1961;
Hotson and Prince, 1980; Jahnsen and Llinás, 1984; Traub et al.,
1993)], activity of neurovascular coupling units and glial cells
(e.g., induction of long-lasting hyperpolarising potentials due to
changes in astrocyte buffering of extracellular K+) (Jefferys, 1995;
Yamada et al., 1998; Kuga et al., 2011; Kaiser, 2020), and more
widespread network dynamics (Steriade et al., 1993a,b; Drew
et al., 2020). The mechanisms underlying infraslow oscillations
have been explored in specific brain conditions, for example,
sleep rhythms (Achermann et al., 1993; Ruskin et al., 1999;
Lemieux et al., 2014; Van Putten et al., 2015), resting states
(Damoiseaux et al., 2006; Van Someren et al., 2011), or epilepsy,
where fast oscillations may be recruited/modulated by slow
activity (De Goede and Van Putten, 2019; Hashimoto et al.,
2020, 2021; Bonaccini Calia et al., 2021). In particular, ultraslow
potential shifts and slow oscillations may provide valuable
clinical information, which may be useful as a biomarker for
detecting an epileptogenic zone (Ikeda et al., 2020; Lundstrom
et al., 2021).

In addition to experimental studies, computational
neuroscientists have established detailed biological, mean
field, and phenomenological models to infer mechanistic insights
into the underlying generators of infraslow brain signals. Selected
examples of biological models include (i) reproducing ultraslow
oscillations by short-term synaptic plasticity mechanisms due
to the action of dopamine (Kobayashi et al., 2017); (ii) network
models of cortical patches based on a model of single neurons
for exploring the correlation between slow and fast neuronal
activities (Lundqvist et al., 2013); (iii) elucidating the role of
Ca2+ and K+ dynamics in generation of slow waves during
resting states (Krishnan et al., 2018); and (IV) exploring the
role of neurovascular coupling in production of slow activity in
health (Wade et al., 2011; Kozachkov and Michmizos, 2017) or
diseased brain states (Tuckwell and Miura, 1978; Kager et al.,
2000; Schiff, 2011; Ullah et al., 2015). Mean field models and
phenomenological models developed to explain large-scale brain
activity [synchronized activity in a cortical column (Jansen
and Rit, 1995)] have also been used to propose mechanisms
underlying the generation of slow oscillations. These include
(i) a model of thalamocortical interactions, which can generate
slow waves important for sleep rhythms (Wilson et al., 2006);
(ii) or considering slow regulatory mechanisms with mean field
models that induce DC shifts in simulated brain activity (Liley
and Walsh, 2013; Jirsa et al., 2014; Lundstrom, 2015; Jafarian
et al., 2019a,b; Stefanovski et al., 2019).

The aim of this study is to introduce neither a fundamentally
different way to infer a mechanism underlying slow oscillation
generation (or its relations to fast oscillation) nor a new
mathematical model (or estimation technique) that can emulate
transitions into and out seizures with DC shifts. Instead, we
aim to illustrate the importance of wide-bandwidth data for
capturing the evolution of biological parameters that model
critical transitions in brain dynamics. For this, we use a data
set obtained from a mouse model of chemoconvulsant-induced
seizures using state-of-the-art flexible graphene transistor arrays
(Bonaccini Calia et al., 2021). This recording device captures
ultraslow potential shifts to high-frequency oscillations from
awake brain (Bonaccini Calia et al., 2021), free from movement
artifacts. This makes it possible to conclude that recorded
ultraslow potential shifts and oscillations result from neuronal
dynamics. For the experiments in this study, we choose to model
two electrographic traces that captured the transition to seizures
either with or without a prominent pre-seizure DC shift. We
also high-pass-filtered these data (at 0.3Hz) to emulate recordings
that are conventionally available in clinical practices. We infer
neural dynamics from these data sets using nonlinear unscented
Kalman filter method (Sitz et al., 2002; Voss et al., 2004; Sarkka,
2007). We finally compare the ensuing estimate of synaptic
physiology from each data sets and show that for the data where
the DC shift is small, or removed with high-pass-filtering, the
outcome of estimations is well correlated, whereas in data with
a significant infraslow pre-seizure component, the estimated
synaptic physiology is considerably different. These simulations
in turn suggest that wide-bandwidth recordings are best suited
to track changes in synaptic parameters from data that capture
paroxysmal transitions.

In summary, in this study, we establish novel simulation
platforms to demonstrate the necessity and importance of
wide-bandwidth electrophysiological recordings (DC shifts and
infraslow activity to fast oscillation) for tracking the evolution
of synaptic physiology in a biologically informed model. We
use an unscented Kalman filter method to track the dynamics
of key synaptic physiology in a mesoscale model of brain
activity using real animal brain activity (in vivo) with paroxysmal
transitions that may or may not be accompanied with DC
shifts. We show that high-pass-filtered versions of these brain
recordings (which are conventionally available to clinicians) are
not reliable for inferring biological parameters. Therefore, we
demonstrate the necessity of DC shifts and infraslow activity
in electrophysiological data for inferring intrinsic mechanisms
related to the transition to seizure.

MATERIALS AND METHODS

Chemoconvulsant Animal Model of
Seizures
Animal experiments in this study were conducted in accordance
with the U.K. Animal (Scientific Procedures) Act 1986, with
approval from Home Office (license PPL70-13691) and the
local ethics committee at the Institute of Neurology, University
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College London. The data were recorded in a chemoconvulsant
animal model of seizures (using 4-aminopyridine drug) from
awake, unanaesthetisedmice. Recently developed state-of-the-art
graphene-based transistor arrays were implemented for wide-
bandwidth electroencephalography recordings from the surface
of cortex (epicortical grids of 4 × 4 which are placed over the
somatosensory cortex), as well as laminar recordings through a
cortical column, in the visual cortex (intracortical depth electrode
with 14 recording sites) (see Bonaccini Calia et al. (2021) for
further details).

Animals were group-housed (to acclimatize for at least 1 week
before surgery) on a 12-h/12-h dark/light cycle, where food and
water were given ad libitum. A surgery was performed to implant
a head bar on the mouse skull to allow stable attachment of
the animal to a Neurotar chamber for reliable (and effectively
movement artifact free) data recordings both from epidural
and intracortical columns with a sampling frequency of 9.6 kHz
(Bonaccini Calia et al., 2021). Focal injection of 4-aminopyridine
(4-AP) (50mM; 350 nL into the somatosensory cortex region)
was performed at a depth of ∼500µm into the cortex using a
33-gauge needle (see Figure 1).

The epi-/intracortical electrodes capture the neuronal activity
during the entire experiment. The spread of drug is locally
restricted to the site of injection (Rossi et al., 2017). For the
aim of this study, we use data from the superficial layers of
the cortex located close to the injection site. The trace of the
wide-bandwidth and high-pass-filtered data is shown in Figure 1.
An interesting feature in these data is that some seizures are
accompanied with DC shifts and some without DC shifts.
Therefore, a key hypothesis for the data in this study is that there
could be differences between biological generators of seizures that
are accompanied with or without DC shifts.

Neural Mass Model
A neural mass model (NMM) describes the electrical activity of a
cortical column (which is captured using electroencephalography
techniques) through a low-dimensional biological informed
dynamical systems (Wilson and Cowan, 1972; Jansen and Rit,
1995). Assumptions that contribute to driving NMM formulation
are as follows: (i) synchronized firing of neurons in a cortical
column induce observable electrical activity (Mountcastle, 1957;
Hubel and Wiesel, 1963; Felleman and Van Essen, 1991), (ii)
neurons within cortical columns can be clustered into few
populations (because at each layer of the cortex, effectively
one type of neurons resides), mean activity of each of which
could be modeled independently, and (iii) the mean activity
of different populations interacts and shape the mesoscale
electroencephalogram recordings (this assumption is supported
by the statistical mean field theory) (Cowan, 1969; Deco et al.,
2008; Faugeras et al., 2009).

NMMs are minimally biologically informed dynamical
systems that approximate interactions between (collective)
activities of neurons in a cortical column with few neuronal
populations. NMMs are low-dimensional, with few biological
parameters (compared to networks of interconnected neurons)
and can well recapitulate electrophysiological data (Jansen and
Rit, 1995). Crucially, there are formalmathematical links between

an interconnected network of single neurons and an NMM
(Deco et al., 2008; Faugeras et al., 2009; Veltz and Faugeras,
2010; Faugeras and Inglis, 2015). Collective dynamics of neurons
are well approximated by NMMs, while they retain biological
realism. The low-dimensional representation of NMMs is well
suited for either designing biologically motivated control systems
to suppress seizures (Schiff, 2011) or understanding interactions
between different brain regions in cognitive tasks (Friston et al.,
2011, 2019; Schwartenbeck and Friston, 2016; Shaw et al.,
2017; Jafarian et al., 2019c). Therefore, NMMs are suitable
for a variety of translational neuroscience applications and
can be implemented to study biologically motivated hypothesis
regarding underlying generators of brain activity.

One could show (both theoretically and experimentally) that
dynamics of a population of many neurons can be governed
(or summarized) by static conversion of input mean synaptic
activity to firing rates (average of action potentials) and firing
rates to mean synaptic activity (scaled by anatomical connection
strengths between populations or cortical layers), which is input
to other populations (Wilson and Cowan, 1972; Freeman, 1975;
Jansen and Rit, 1995).

Mathematically, synaptic potential (V) into firing rate
conversion is modeled by a sigmoid transformation (σ (.)) as
previously described (Wilson and Cowan, 1972).

σ (V , Vth) =
e0

1+ exp
(

−ρ( V − Vth

)

)
(1)

In Equation (1), e0 is the maximum firing rate, ρ is the slope of
the transformation, and Vth is the firing threshold (when input
potentials reach half maximum firing rates).

The conversion of the firing rate to the mean postsynaptic
membrane potential is modeled by a second-order low-pass filter

with an impulse response h (t) = A t
T e

− t
T where t ≥ 0, A

is a maximum postsynaptic potential (also known as synaptic
gain), and T is a synaptic time constant (Freeman, 1975).
Postsynaptic potential V that is generated by firing rate σ (.)
can be calculated simply by convolving the input firing with
synaptic kernels, V (t) = h

⊗

σ (the symbol
⊗

represent
the convolution), which is equivalent to the following second-
order differential Equation (note the second-order differential
equation can be equivalently written in terms of two first-
order systems)

(

1+
1

T

d

dt

)2

V (t) = A σ (t) (2)

The input–output relations that govern the dynamics of a
neuronal population are largely similar among different NMMs,
although the number of neural populations and their connections
(scale factor to synaptic potentials) to each other can be
varied between NMMs. In this study, we use an NMM that
was developed by Jansen and Rit (1995) and is shown in
Figure 2.

This NMM explains the activity of a cortical column through
interactions of three populations, namely, (i) excitatory spiny
stellate cells (denoted by ex in model equations) situated in layer
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FIGURE 1 | Schematic and examples of the animal recordings. In this experiment, seizures were induced by injection of 4-aminopyridine. Epicortical (using a grid of 4

× 4) and intracortical (14 laminar locations) neuronal recordings are performed using graphene solution-gated field-effect transistors (gSGFET) from the

somatosensory cortex (SC) and visual cortex (VC), respectively. The right panel shows a 30-min trace of wideband intracortical (top) and its high-pass-filtered (0.3Hz)

(bottom plot) data that were recorded from the superficial layers of the cortex.

FIGURE 2 | Neural mass model by Jansen and Rit (1995). This NMM has three populations of inhibitory, excitatory, and pyramidal cells, as shown in (A). The intrinsic

connections between populations can be excitatory (black lines) or inhibitory (red lines). The membrane potential of pyramidal cells is considered as simulated EEG

data. (B) Illustrates a conversion operator within a population. Each population in the NMM receives synaptic inputs from other populations (scaled by inter-regional

connections (C.)). The inputs are then converted to the mean firing rate using sigmoid transformations (average of action potential of many neurons with thresholds

Vth). The ensuing firing rate is then converted into postsynaptic potentials using second-order low-pass with kernel h (t) = tAT (−1) exp (tT (−1)) (where A is the maximum

postsynaptic potential and T is the synaptic time constant). The postsynaptic potential is then scaled by intrinsic connectivity and drives other populations. The list of

parameters in the model and their expected range are provided in Table 1. The equivalent mathematical equations is shown in (C).

4 of a typical cortical column, and they receive endogenous input
from other regions; (ii) inhibitory cells (denoted by i in model
equations) that are distributed across the columnar organization;

and (iii) pyramidal cells (denoted by p in model equations) whose
activity is predominantly captured by recording electrodes. The
equation of the NMM associated with the structure in Figure 2
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TABLE 1 | Parameters of the NMM and their variation range.

Acronyms Description

Ap,ex Maximum PSP of pyramidal and excitatory population [2.5–10] mV

Ai Maximum PSP of inhibitory population [3–100] mV

Ti Synaptic Time constant of inhibitory population 1/50 (s)−1

Tp,ex Synaptic Time constant of pyramidal and excitatory population

1/100 (s)-1

C Connectivity constant [60–1,350]

Vth Firing threshold [2–7] mV

ρ Slope of sigmoid function 0.56 (s)−1

e0 Maximum firing rate 5 (s)-1

ω Endogenous random Gaussian fluctuation with mean µ [160–260]

and variance 6 = 1.

can be written as follows:

ẋp = xp∗

ẋp∗ =
Ap

Tp
σ (xex − xi) −

2
Tp

xp∗ −
1
T2
p
xp

ẋex (t) = xex∗

ẋex∗ =
Aex
Tex

(ω + (0.8 × C)× σ
(

C × xp
)

)− 2
Tex

xex∗ −
1
T2
ex
xex

ẋi (t) = xi∗

ẋi∗ (t) = Ai
Ti
((0.25 C)× σ

(

0.25× C × xp
)

)− 2
Ti

xi∗ −
1
T2
i

xi

(3)

In Equation (3), the vector [xp, xp∗ , xex, xex∗ , xi, xi∗ ] ∈

R
6 represents the physiological states, either the synaptic

activity of the populations (xp, xex, xi) or their first-order
derivative (xp∗ , xe∗ , xi∗ ). The fixed parameters in Equation (3) are

synaptic parameters for each population
(

A.,
1
T.

)

, inter-region

connections which are defined by scaling the universal constant
C, and parameters of sigmoid transformations. The endogenous
input to the model is ω, which can be a random, constant, or
smooth function (see Table 1 for the range of variations for
NMM parameters). The membrane potential of pyramidal cells
is considered simulated electroencephalogram data. Hereinafter,
we rewrite the NMM equation in the form of a general canonical
dynamical systems as follows:

ẋ (t) = f (x, θ) + n(t)

θ̇ = 0
(4)

In Equation (4), x = [xp, xp∗ , xex, xex∗ , xi, xi∗ ] ∈ R
6 and

represents the biological states, the right hand side of equation
3 is denoted by a nonlinear function f (.) ∈ R

6, the vector
n(t) is the endogenous fluctuations (which can be modeled as a
constant number, smooth function, or noise), and θ is the set of
constant parameters in the model (thereby their derivative is zero
as written in the second line of the Equation (4).

The most obvious way to explore the origin of the oscillations
in the brain using the NMM is forward simulation of different
sets of parameters and initial conditions. For instance, in Jansen

and Rit (1995), the model was simulated for different values
of connections between populations (the universal connection
constant C was varied from 68 to 675) and brain rhythms, such
alpha and spike wave discharges, were replicated. The NMM is
used to explore a path between normal and pathological activity
in parameter space by changing the balance between maximum
postsynaptic responses of excitatory and inhibitory connections
(e.g., Wendling et al., 2002, 2005). Motivated by these studies
and electrophysiological knowledge about the animal model of
seizures in this study, we assume that an underlying cause for the
transitions can be explained by changes of postsynaptic potentials
of inhibitory populations (Ai).

Sophisticated mathematical analysis such as bifurcation can
be performed to formally study the behavior of the NMM as
some parameters (one or two) are changed (e.g., Grimbert and
Faugeras, 2006; Spiegler et al., 2010; Touboul et al., 2011).
Despite valuable information informed from bifurcation analysis,
practically, it can only be applied to one of two parameters.
In addition, this form of analysis can only be applied to a
deterministic NMM (i.e., the input to the model is a constant).
In other words, the interpretation of the bifurcation structure
of random bifurcation is still in its infancy (e.g., Crauel and
Flandoli, 1994, 1998; Callaway et al., 2017). However, it is
possible to prove that the solution of the NMM is stationary
for a constant set of parameters, with stationary noise as
its input (Faugeras et al., 2009; Veltz and Faugeras, 2010,
2011; Faugeras and Inglis, 2015). In this study, we re-confirm
these findings by simulating the global invariant measures
of the NMM for different parameters to illustrate that only
one type of activity can be viewed using an NMM with
fixed parameters.

In this study, first, we estimate constant parameters of the
model based on spectral features in a stationary segment of
data using dynamic causal modeling (also known as variational
Bayesian inversion of a nonlinear system under Laplace
assumption) of spectral response (Friston et al., 2012; Jafarian
et al., 2021). The assumption in dynamic causal modeling
of cross-spectral response is that neural dynamics rest at a
stable equilibrium and oscillations (finite deviation from baseline
equilibrium) are induced due to random exogenous input (Lopes
Da Silva et al., 1974; Friston et al., 2012). [See Friston et al. (2012)
for details of procedures].

We used the ensuing identified model and tracked changes
of postsynaptic potentials of the inhibitory population in
an NMM using a continuous–discrete unscented Kalman
filter (UKF) (Voss et al., 2004; Jafarian et al., 2019b) from
data that exhibit transitions into and out of seizures. The
UKF is a class derivative-free stochastic filter that can
recursively estimate hidden states of partially observed nonlinear
dynamical systems from real data. The UKF approximates
posterior estimates of states using Gaussian distribution,
which in turn makes this filter computationally efficient
while accurate (Sitz et al., 2002; Voss et al., 2004; Sarkka,
2007).

The generative model for tracking the inhibitory gain in the
NMM for a given data using the unscented Kalman filter (UKF)
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FIGURE 3 | Forward simulation of NMM. (A) Forward simulation of the noise-driven NMM for different connectivity constants as shown in each plot (fixed parameters

among these simulations are given in Table 2). (B) Illustrates the power spectral response (PSD) of the simulated EEG data using the NMM in panel I, as well as

three-dimensional phase space of the model based on finite time simulation (P, I, and E denote activity of pyramidal, inhibitory, and excitatory cells). (C) Shows a

projected bifurcation plot (i.e., with respect to the output of the model) when input to the model is changed (connectivity constant 120). In addition, we plot the

invariant measure of the model (projected into two dimensions of the excitatory and inhibitory cells) which illustrates that the solution of the NMM would not exhibit

transitions. The bifurcation diagram was produced using MatCont software (KuznetSOv et al., 2019), and invariant measures were produced using GAIO code

package (Fiedler, 2012).

is as follows:

ẋ (t) = f (x, θ) + n(t)

θ̇ (t) = 0+ n∗ (t)

yn = H [x (tn) , θ (tn)]
′

+ e

(5)

The first line of Equation (5) is similar to the general equation of
the NMM. The second line expresses the dynamics of inhibitory
gains, which is recovered from data using the UKF method.
We consider additive uncertainty (with very small variations
n∗ ∼ N(0, 10−8) to the equation of motions of θ(= Ai) to allow
the UKF algorithm to adjust the values of the synaptic gains from
the data (Schiff, 2011; Jafarian et al., 2019a). It should be noted
that in the context of state estimations from data using any form
of Kalman filter, the role of noise in hidden states is interpreted
as uncertainty (Sitz et al., 2002; Voss et al., 2004). The left hand
side of the third line of Equation (5) is discrete real data (sampled
recordings), and the right hand side expresses how the solution
of the generative model is linked to observational data (here, the
membrane potential of pyramidal cells which is defined by the
vector H = [0 0 1 0 −1 0 0]’), and e is the random effect which
has a normal distribution.

RESULTS

Forward Simulation of NMM
We performed forward simulation of a noise-driven NMM
akin to Jansen and Rit (1995) for different values for intrinsic
connections (C = 68, 128, 135, 270, 675) and replicated alpha
rhythms and spike wave discharge, as shown in Figure 3. NMM
is simulated using a stochastic RK method as explained in Wilkie
(2004). In Figure 3, we also show the global attractor of the
NMM for alpha rhythm and spike wave activity. The shape of
the global attractor illustrates the region in the model phase
space that is almost certainly occupied by the noise-driven model
in the limit. Because the phase space that is occupied by the
global attractor is similar to its finite time simulations, one
could assume that the noise-driven model for different fixed
parameters could generate alpha and epileptic discharge without
any transitions. Finding the global attractor can be seen as a
complementary analysis to recent mathematical proof that the
noise-drivenNMMcould generate stationary solutions with fixed
parameters (Faugeras et al., 2009; Veltz and Faugeras, 2010,
2011). Here, we also provide a local bifurcation plot of the NMM,
similar to Grimbert and Faugeras (2006), which can be used to
study the system equilibrium properties as its input is altered. As
mentioned, the conventional bifurcation analysis can be applied
to deterministic systems and could reveal information relevant
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FIGURE 4 | Simulation of a slow–fast neural mass model (A). The equation of the NMM is augmented with slow dynamics for the synaptic gain of the inhibitory

population (B). The dynamics of inhibitory gain resemble changes of synaptic plasticity and are modeled by Ȧi = ǫ (−αAi + βσ (V )+ n(t)), where the recovery time

constant of the gain is denoted by α(Hz) and fast- to slow-state constant is denoted by β, noise at the slow scale is denoted by n(t), and time-scale separation

parameter is ǫ. (In the absence of any firing rate input, the synaptic gain converges to a constant value with the rate of α). The slow equation of motion in this

simulation is Ȧi = 0.1 (−0.06Ai + 5 σ (V )+ n(t)) (n ∼ N(0, 10−6)). The simulated EEG trace shows transitions into and out of seizures, as well as DC shifts as the result

of increasing synaptic plasticity at the seizure onset, which is decreasing toward the end of seizures. The termination of the second seizures displays post-ictal

silencing and has less variance than pre-seizure activity. This phenomenon is conventionally understood as a lack of energy in neuronal activity. The fixed parameters

of this simulation are given in Table 2.

to the underlying mathematical features that support different
sorts of activities. For instance, in the bifurcation plot in Figure 3,
one could argue that limit cycle activity may be associated with
epileptic activity.

To simulate transition into and out of seizures, we equipped
the NMM with slow dynamics of postsynaptic gain of inhibitory
populations, as shown in Figure 4. In this simulation, the
inhibitory gain is regulated by input firing rates and also has a
period of recovery time. This effectivity resembles alteration of
synapse gain and plasticity (e.g., Jafarian et al., 2021). As can be
seen in Figure 4, this slow–fast NMMcan show transitions to and
from seizures, as well as alterations in DC shifts as the plasticity
of inhibitory populations is altered.

Tracking Synaptic Physiology Using
Wide-Bandwidth and High-Pass-Filtered
Data
We infer baseline parameters (noise inputs and synaptic gains),
while others are fixed (see Table 2 for details) from a stationary
segment of real data using dynamic causal modeling of cross-
spectral density (Friston et al., 2012). We assume that all ensuing
baseline parameters remain unchanged during transitions to
seizures in data, except the synaptic gain of the inhibitory

population. This effectively models pathological alterations
of excitatory-inhibitory balance during paroxysmal transitions
(Wendling et al., 2002).

We employed an unscented Kalman filter to track changes of
inhibitory gain in two sets of real data (scaled by a factor of 104

to make its variance in the range of the NMM output) and their
high-pass-filtered version (which mimics data that are usually
available from conventional electrographic devices). We start by
tracking the inhibitory gains for the full-bandwidth data with a
small DC shift. This effectivity implies that the high-pass-filtered
version and original wide-bandwidth data are very similar. The
outcome of tracking the dynamics of inhibitory gain is shown
in Figure 5 for both wide-bandwidth and high-pass-filtered data.
The inferred trajectories of inhibitory gain have very similar
behavior. In this case, the inferred inhibitory gain is altered as the
large spikes appear in the data and increase during the recurrence
of seizures.

We repeat the analysis for the wide-bandwidth data with
significant DC shifts and for the same-signal subsequently
high-pass-filtered data. The inferred inhibitory gains for both
wide-bandwidth and high-pass-filtered data are shown in
Figure 6. In this simulation, there are significant differences
between behavior (effectively in the opposite direction) of the
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recovered slow evolution of inhibitory gains from both data.
In the high-pass-filtered version of the data, the synaptic gain
increases before paroxysmal transitions and returns to its baseline
after seizures. The recovered trajectory of the inhibitory gains
from wide-bandwidth data shows a totally different behavior as
it starts to decrease during the pathological activity and then
increases during seizures.

These four examples may be seen as a proof of concept that
all information in the recorded data needs to be considered
for capturing the underlying dynamics of biological generators
of data, particularly when modeling data with paroxysmal
transitions into and out of seizures, which requires information
about all frequency ranges from slow to very high.

TABLE 2 | Fixed parameters of the NMM in different simulations of this study.

Parameter Figure 3 Figure 4 Figures 5, 6

Ap (mV ) 3.25 3.25 3.147

Aex (mV ) 3.25 3.25 2.831

Ai (mV ) 22 22 26.072

Ti (s) 50 50 50

Tp(s) 100 110 100

Tex (s) 100 110 100

Vth(mV ) 6 6 5

C [68–675] 145 190

ρ(Hz) 0.56 0.56 0.56

e0 (Hz) 5 5 5

ω ∼ ℵ (µ, 6 ) (Hz) ℵ(220, 1.5) ℵ(160, 1.5) ℵ(200, 1.2)

DISCUSSION

In this study, we illustrate the importance of wide-bandwidth
data for translational neuroscience applications, in particular
for modeling data with paroxysmal transitions into and out
of seizures. The importance of ultraslow potential shifts and
oscillations has been known for many years, and their potential
clinical usage, for example, improving localization of the
epileptogenic zone, has been proven. Unfortunately, due to the
poor performance of standard electrodes used clinically to record
these slow brain signals accurately and with high fidelity, they
are seldom recorded, reported, or studied. Here, we discuss a
potential advantage of wide-bandwidth DC-coupled data over
conventional recording settings for inferring parameters in a
biological model through simple but intuitive examples. We
show that the DC shift in data provides a different estimation
of the synaptic physiology from that of high-pass-filtered data
and thus lacking ultraslow information. As shown in this article,
the estimation from high-pass-filtered and wide-bandwidth DC-
coupled data may provide a totally different picture regarding
underlying generators of data.

There are limitations to modeling the study presented in
this article, and therefore, our findings should be considered
only as proof of concept to motivate usage and uptake of
wide-bandwidth DC-coupled data for translational neuroscience
applications. We assume only one parameter in the NMM is
responsible for transitions into and out of seizures (despite
this, the modeling approach can replicate the pathological
imbalance between excitation and inhibition). The excitation–
inhibition balance is a generic hypothesis that has been be

FIGURE 5 | Tracking seizures dynamics from wide-bandwidth (effectively without DC shifts) and high-pass-filtered data with paroxysmal transition. The left panel (A)

shows the wide-bandwidth data at the top and inferred synaptic gains of inhibitory population at the bottom using the UKF approach (the uncertainty around the

inhibitory gain in Equation (5) is n ∼ N(0, 10−8) in this simulation). The synaptic gain tracks changes of the slow wave discharges and increases during the seizures.

The right panel (B) shows the high-pass-filtered version of the wide-bandwidth data and the inferred trajectory of inhibitory gains. Comparing the behavior of the

inferred synaptic gains suggests a similar behavior, which is due to the fact the DC shift in the wide-bandwidth data set is small. The fixed parameters of the NMM

used in this simulation are given in Table 2. These data are a part of the recording trace in Figure 1.
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FIGURE 6 | Tracking seizure dynamics from wide-bandwidth data (with a DC shift) and its high-pass-filtered with paroxysmal transitions. The left panel (A) shows the

wide-bandwidth data at the top and inferred synaptic gains of inhibitory population at the bottom using the UKF algorithm (the uncertainty around the inhibitory gain in

Equation (5) is n ∼ N(0, 10−8) in this simulation). The synaptic gain tracks changes of the infraslow activity and increases during the seizures. The right panel (B) shows

the high-pass-filtered version of the data and the inferred trajectory of inhibitory gains. The behavior of the inferred synaptic gains suggests an increase during the

paroxysmal transitions and return to baseline after seizures. Comparing the results suggests that infraslow changes potentially play a key role for understanding

underlying generators of the data. In fact, the inferred synaptic gains from the wide-bandwidth data show a totally different behavior from that of high-pass-filtered

data. The fixed parameters of the NMM used in this simulation is given in Table 2. These data are a part of the recording trace in Figure 1.

studied as a local network of interconnected neurons, as well
as mesoscale or macroscale models under the same principals
to explain brain activity in health and disease. Alteration of
the excitation–inhibition balance in the NMM (Wendling et al.,
2002) is an intuitive approach to explain seizure initiation and
termination. The goodness of this hypothesis can be assessed and
refined (by selecting different sets of connections in the model)
through predictive validity tests (i.e., whether the prediction
of the model is similar to observations made from animal
data). There may be different biological contributors to the
initiation and termination of seizures (Kramer et al., 2012; De
Curtis and Avoli, 2015), which need to be considered. The
key message of this article is that wideband data are required
for modeling the underlying causes of paroxysmal transitions,
irrespective of parameter selection. It should be noted that we
consider only one parameter to explain transitions into and
out of seizures. Having said that, application of the UKF (or
any forms of Bayesian filtering) for tracking of more than
one parameter could be ill-posed due to symmetry problems.
This refers to compensation of evolution of one parameter
by other parameters in statistical inference of parameters in
partially observed dynamical systems (Haykin, 2004; Simon,
2006). In the animal model used in this study, we assume
that seizures initially arise focally in the region injected by
chemoconvulsant. Therefore, we only investigate changes of
parameters associated with the first induced seizures and from
one region of the brain. Having intra- and epicortical data
using our novel recording technology, we expect spatial–
temporal neuronal modeling can unpack more about the relation

between ultraslow potential shifts, infraslow oscillations, and
paroxysmal transitions.

As future research, one could employ the bifurcation theory
to explore regions in the parameter space in which seizures
are accompanied with/without DC shifts (e.g., similar to Saggio
et al., 2020), although this information can only be investigated
for a limited number of parameters. The ensuing finding can
potentially be useful for model inversion (for instance, in
data with paroxysmal transitions without DC shifts, one could
restrict the parameter search space to those in which seizures
are not accompanied with slow potential changes). One could
also consider slow evolution for parameters and investigate the
onset/offset of seizures with infraslow oscillations. Potentially,
one could apply a similar approach to this study and investigate
underlying bio-generators of the data (e.g., Jafarian et al. (2019a),
Jafarian et al. (2019b)). Based on the assumption that the
recording contact is in the seizure onset zone, rather than an area
of propagation, several points can be made. It may be possible
to conceptualize differences between underlying generators of
these seizures where the insights into evolution of biological
parameters (i.e., extracellular potassium buffering vs. decrease
in inhibition) can play a key role for designing treatment.
Clinicians may use insights from modeling patient-specific
seizures and then apply different interventions (classes of drugs
or neuromodulatory stimulations) (Schiff, 2011)] to optimize
the therapeutic efficacy of seizure suppression. In theory, we
could specify/assign slow dynamics to different parameters in the
neuronal model, performmodel inversion, and by using Bayesian
model comparison explore the likely model of seizures with and
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without DC shifts. The likely model can be experimentally tested
by assessing specific ways to control animal seizures and refined
based on the outcome of the perturbations (Schiff, 2011).
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