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Brain Computer Interfaces (BCIs) consist of an interaction between

humans and computers with a specific mean of communication, such

as voice, gestures, or even brain signals that are usually recorded by an

Electroencephalogram (EEG). To ensure an optimal interaction, the BCI

algorithm typically involves the classification of the input signals into

predefined task-specific categories. However, a recurrent problem is that

the classifier can easily be biased by uncontrolled experimental conditions,

namely covariates, that are unbalanced across the categories. This issue led

to the current solution of forcing the balance of these covariates across the

di�erent categories which is time consuming and drastically decreases the

dataset diversity. The purpose of this research is to evaluate the need for this

forced balance in BCI experiments involving EEG data. A typical design of

neural BCIs involves repeated experimental trials using visual stimuli to trigger

the so-called Event-Related Potential (ERP). The classifier is expected to learn

spatio-temporal patterns specific to categories rather than patterns related

to uncontrolled stimulus properties, such as psycho-linguistic variables (e.g.,

phoneme number, familiarity, and age of acquisition) and image properties

(e.g., contrast, compactness, and homogeneity). The challenges are then to

know how biased the decision is, which features a�ect the classification the

most, which part of the signal is impacted, and what is the probability to

perform neural categorization per se. To address these problems, this research

has two main objectives: (1) modeling and quantifying the covariate e�ects

to identify spatio-temporal regions of the EEG allowing maximal classification

performance while minimizing the biasing e�ect, and (2) evaluating the need

to balance the covariates across categories when studying brain mechanisms.

To solve the modeling problem, we propose using a linear parametric analysis

applied to some observable and commonly studied covariates to them. The

biasing e�ect is quantified by comparing the regions highly influenced by

the covariates with the regions of high categorical contrast, i.e., parts of the
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ERP allowing a reliable classification. The need to balance the stimulus’s inner

properties across categories is evaluated by assessing the separability between

category-related and covariate-related evoked responses. The procedure is

applied to a visual priming experiment where the images represent items

belonging to living or non-living entities. The observed covariates are the

commonly controlled psycho-linguistic variables and some visual features of

the images. As a result, we identified that the category of the stimulus mostly

a�ects the late evoked response. The covariates, when not modeled, have a

biasing e�ect on the classification, essentially in the early evoked response.

This e�ect increases with the diversity of the dataset and the complexity of

the algorithm used. As the e�ects of both psycho-linguistic variables and

image features appear outside of the spatio-temporal regions of significant

categorical contrast, the proper selection of the region of interest makes the

classification reliable. Having proved that the covariate e�ects can be separated

from the categorical e�ect, our framework can be further used to isolate the

category-dependent evoked response from the rest of the EEG to study neural

processes involved when seeing living vs. non-living entities.

KEYWORDS

bias avoidance/control, covariates analysis, parametric design, BCI,

natural-manufactured, ERP, EEG

1. Introduction

The use of BCIs extends to an increasing variety of

applications requiring signal processing algorithms to extract

more and more information from neural signals. Given its high

temporal resolution, EEG arouses much interest in recording

brain activity. However, its poor spatial resolution makes it

difficult to understand the neural mechanisms from the recorded

signals. In this context, many neuroscientists use repeated

experimental trials based on well-defined stimuli to trigger the

so-called ERP. The categorical contrasts, i.e., the differences

between the ERPs of different categories, serve as a basis for

hypotheses about the inner mechanisms underlying the studied

task. The principle of BCI applications is to classify, in real time,

each EEG trial into predefined categories related to a specific

task. Nowadays, this classification is increasingly performed by

machine learning algorithms that learn to identify regions of

high categorical contrast from a set of labeled ERPs. An often-

seen problem is the generalization of such a classifier to unseen

stimuli from subordinate categories, which relates to ensuring

the classifier really learns what differs between the categories of

stimulus instead of biases specific to the training dataset. In fact,

stimulus properties can co-vary with the categories being studied

so that the classification could focus on these uncontrolled

properties, called covariates, instead of the neural processes

that are meant to be measured, as shown by Rousselet et al.

(2007). The issue of characterizing the effect of uncontrolled

EEG temporal correlation on classification performance has

raised many controversies, cf. the case opposing Li et al. (2021)

to Palazzo et al. (2020).

To limit the biasing effect on neural mechanism studies,

neuroscientists traditionally balance critical known covariates

across experimental conditions to minimize their impact on

the averaged timelocked ERP signal (Simoes Loureiro and

Lefebvre, 2016a). The latter is commonly used to interpret the

mechanisms underlying a studied condition. Many studies aim

to quantify the covariate effects on the EEG instead of just

limiting them by experimental tricks. Thus, Hauk et al. (2006)

proposed using a parametric design evaluating the relationship

between the data (e.g., P300 ERP peak) and the covariates

(e.g., lexical frequency). This parametric design allows the

experimenter to keep tight control of the covariates along a

continuous space. Applied by Rousselet et al. (2008) to human

face processing, this method has revealed that image-noise phase

coherence influences the ERP dynamics in spatio-temporal

regions of significant categorical contrast (around N170 ERP

peak). Similarly, we propose a regression process to separate the

categorical effect from the covariate effects and to evaluate how

they influence the ERP signal (cf. Sections 2.5, 2.6). This pipeline

is developed using the two-level hierarchical linear modeling

method of the LIMO EEG toolbox (Pernet et al., 2011).

As demonstrated by Warrington and Shallice (1984) and

Tyler and Moss (1997), significant differences in neural

processes appear when seeing living things compared to non-

living things. This scientific consensus makes the classification

between natural living entities and manufactured objects a good

candidate to evaluate the influence of uncontrolled covariates

on a known task of high neural contrast. In this research, we

use EEG data from a priming experiment (Simoes Loureiro

and Lefebvre, 2016a) in which two images (the primer and
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the target) are shown sequentially to a subject who has to

answer a question about the target image. The variations in

the properties of both images give the opportunity to study

the influence of a wide range of covariates on the ERP of both

categories. These covariates are chosen among psycho-linguistic

variables (as defined by Alario et al., 2004), image visual features

(e.g., contrast, homogeneity, compactness), and primer-target

relation as described in Section 2.4.

Through the proposed framework, we aim to characterize

how the studied covariates modulate the EEG signal by

identifying spatio-temporal regions in the ERP significantly

affected by this modulation and evaluating the separability

between category-related and covariate-related evoked

responses. This solution can be applied (1) by BCI experimenters

to identify regions of minimal biasing effect and maximal

categorical effect to focus the classification process on and

(2) by neuroscientists to extract the part of the EEG that is

related to categorical effect only. By doing so, they can study

unbiased signals without requiring the balance of the covariate

values across categories, leading to a higher diversity in the

dataset they can use and a significant speed-up in the design of

their experiment.

2. Materials and methods

A detailed description of the proposed method from EEG

recordings to statistical analysis is provided, along with freely

accessible code at https://github.com/numediart/Covariates_

Analysis in order to improve the reproducibility and the

extension of this study to other BCI experiments. Figure 1 gives

an overview of the full process divided into three main sections:

measurements, design, and statistics.

The chosen use case is a priming experiment described in

Section 2.2 for which the feature of interest is the target image

a priori category: natural (i.e., living entity) or manufactured

(i.e., non-living object). The selected covariates, whose influence

on the distinguishability between both categories on the ERP

is studied, are described in Section 2.4. Once the information

from the trials is properly formatted, the ERP of each category

FIGURE 1

Method overview: (blue) Electroencephalogram (EEG) recordings, (green) design of the model to include all the needed trials information in a

standardized way, (red) statistical analysis of the regressed ERP to identify covariates influence.
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is regressed subject by subject as described in Section 2.5.

Then, the contrast between regression factors (referred to

as beta estimates) from both categories is used to extract

regions of significant difference between ERP related to

manufactured and natural items. By comparing regions of

significant categorical contrast and regions where a specific

model significantly explains the variance, we can identify

which covariates impact the distinguishability between the EEG

signals from each category. Finding regions of maximal contrast

between categories and minimal covariates influence is highly

valuable for the design of future BCI experiments. In addition,

a method to separate category-related ERPs from covariate-

related ones allows neuroscientists to validate their hypotheses

using minimally biased data and speeding-up the design of

their experiment. The available code is developed using the

open-source FieldTrip (Oostenveld et al., 2010) and LIMO EEG

(Pernet et al., 2011) toolboxes.

2.1. Participants

Fifteen women and fifteen men healthy right-handed

participants (age range 18–35 years old, µ = 24.73, σ =

3.94), who spoke French as a native language with normal

or corrected-to-normal vision, were recruited in the central

region of Belgium to participate in this study. The sociocultural

level was measured according to the highest level of education

using the Poitrenaud scale (Hogonot-Diener, 2022) (1 =

Elementary School; 2 = Middle School; 3 = High School; 4

= Bachelor Degree; 5 = Master Degree; 6 = Doctoral Degree)

resulting in a mean level of 3.8 (σ = 0.4). Handedness was

assessed using a French version of the Edinburgh Handedness

Inventory (Oldfield, 1971) with all participants being right-

handed. Regarding the inclusion criteria, individuals who

experienced substance abuse, epilepsy, neurological, and/or

psychiatric backgrounds were systematically excluded from the

study. All subjects gave their informed written consent after the

nature and the potential consequences of the experiment were

explained. This study (design and protocol) was approved by

the Ethical Board Faculty of Psychology and Education of the

University of Mons (Belgium) and was conducted in accordance

with the Declaration of Helsinki. The participation was on a

voluntary basis without financial compensation.

2.2. Stimuli and experimental task

The experimental task consists of a semantic priming

paradigm, i.e., the participants make a decision about a target

picture while ignoring a formerly presented primer picture

(Simoes Loureiro and Lefebvre, 2016b). The two images are

shown sequentially with the primer being displayed for 90 ms.

The requested task was to answer the question: “Is the target

FIGURE 2

Examples of stimuli for each answer to the task. (A) Existing item

(correct answer = yes) being either a natural item or a

manufactured one, (B) Non-existing item (correct answer = no).

picture an existing entity?.” Figure 2 shows examples of stimuli

for each expected answer to the task. The primer and target

images were selected from a common dataset containing natural

entities, manufactured objects (cf. Figure 2A), and abstract

shapes, i.e., control stimuli (cf. Figure 2B). The participants

answered through two manual press-buttons (yes or no). This

experimental design allows multiple effects to be studied by

defining categories focused on the items themselves or the

relationship between the primer and the target images through

the wide object sequence variety of the 431 trials conducted

by the subject. Our analysis focuses here on the a priori

categorical differences on the “existing” target objects only and

consequently included 114 trials per subject, each of the studied

categories being represented by half of the trials.

2.3. Data acquisition, preprocessing, and
epoching

Electroencephalogram data were recorded at a sampling

rate of 2,048 Hz with a Biosemi Active-Two system from

64 active Ag/AgCl electrode sites, with a Biosemi EEG cap

following a 10–20 montage. The Electrooculogram (EOG) was

recorded bipolarily from the outer canthi of both eyes and above

and below the left eye. The ground electrode was placed on

the forehead between Fp1 and Fp2. Electrode impedance was

kept below 10k� through measurements just before and after

the experiment.

Segmented EEG trials with minimal noise level and artifacts

are required for optimal processing of the data inducing

the need for a proper preprocessing pipeline, which code is

freely available at https://github.com/numediart/PreprocEEG.

The preprocessing steps were performed in the open source

FieldTrip software (Oostenveld et al., 2010) following good

practice recommendations from the OHBM COBIDAS MEEG

committee (Pernet et al., 2020). It is sequenced in eight different

steps:

1. Bad channels are removed by visual inspection.
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2. Ocular artifact rejection is performed through a multi-

channel Wiener filter (Somers et al., 2018) that requires

a manual initialization by annotating some artifactual

segments. The filter parameters are then automatically tuned

to detect the targeted artifacts and remove them while

minimizing the degradation of the “true” neural signal. This

step is first applied to blinking artifacts and then to eye

movements.

3. Detrending, demeaning and low pass filtering (4th order

Butterworth, 200 Hz) are applied.

4. Data are epoched as segments starting 500 ms before and

ending 1,000 ms after the target onset and downsampled to

512 Hz.

5. The “Zapline” algorithm (de Cheveigné, 2020) is applied on

each segment to reduce power line noise using a combination

of spectral and spatial filtering.

6. Muscle artifacts are removed using the EEMD-CCA

algorithm implemented in the ReMAE toolbox (Chen et al.,

2020). Ensemble Empirical Mode Decomposition (EEMD)

transforms the signal into intrinsic modes and every mode

with an autocorrelation value (lag = 1) below a specific

threshold is considered as potential artifactual components

(a high threshold is recommended, we use one of 0.9). A

Canonical Component Analysis (CCA) is then applied to

the potential artifacts to estimate maximally autocorrelated

and mutually uncorrelated sources. All sources with

autocorrelation values (lag = 1) lower than a chosen

threshold (depending on the experimental constraints, we

consider T = 0.5 in this experiment) are treated as artifacts

and are set to zero. The last step consists of an inverse CCA

followed by an inverse EEMD to obtain the cleaned EEG

signal (Chen et al., 2019).

7. A baseline correction considering a baseline window between

500 ms before the target onset and 200 ms before the

same onset is applied. This corresponds to the period of no

stimulation preceding the primer onset. The final retained

segments start 200 ms before and end 500 ms after the target

onset.

8. The signal is finally re-referenced to the common average of

all the electrodes.

2.4. Selection of variables

The proposed method aims to identify the effect of

uncontrolled variables that are commonly balanced across

experimental conditions in EEG experiments due to their high

potential biasing effect on the ERP signals. The scope of this

study is therefore limited to the selected covariates, without

aiming at any extrapolation. The variable selection was done

among the psycho-linguistic variables proposed by Alario et al.

(2004) as well as image properties considering primer and

target items separately (cf. Section 2.2). One additional covariate

TABLE 1 Description of selected covariates with a separation between

psycho-linguistic variables and image properties.1

Covariate name Description

Phoneme number Number of phonemes in the French name of

the item

Lexical frequency How often the item appear in the literature

Movie frequency How often the item appear in movies

Age of acquisition At what age we learn the meaning of the item

Visual complexity Level of detail or intricacy contained within

the image

Familiarity How often we meet the item in our daily life

Imageability How easily the item will evoke a clear mental

image

Entropy Minimal number of bits required to encode

the image

Contrast Difference in luminance of the image

Correlation How correlated neighboring pixels are

Homogeneity How close pixel values are to the mean pixel

value

Energy Measure of the localized change of the image

Compactness How closely packed the pixels of the item are

Ratio Length-width ratio of the item

Number of spectral clusters The variety of frequencies in the image

High frequency energy Energy of spectral cluster with the highest

frequency

Highest frequency Centroid of the spectral cluster of highest

frequency

Maximum spectral distance Distance between spectral clusters of lowest

and highest frequency

Visual similarity How similar the primer and the target picture

shapes are

measured was the visual similarity between primer and target

items. The value of this similarity is defined by a Poitrenaud test

(Hogonot-Diener, 2022) during the pre-test of the experiment (1

= primer has a totally different shape than target, 5 = the shape

of the primer is the same as the target). Table 1 Provides a short

description of each covariate (see text footnote 1).

Having considered many covariates, we first performed

a correlation analysis to select the most useful features in

order to minimize the model dimensionality while retaining

relevant information. This analysis was performed on psycho-

linguistic and image variables independently. In Figure 3A,

we can observe that lexical and movie frequencies are highly

correlated [correlation factor (called c) = 0.878], we, therefore,

performed a Principal Component Analysis (PCA) and kept

1 The complete description and computation method of each image

property are provided in the code available through this repository:

https://github.com/numediart/Covariates_Analysis.
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FIGURE 3

Correlation analysis of covariates. (A) correlation between psycho-linguistic variables, (B) correlation between image properties, and (C)

correlation between selected covariates.

the first component (explained variance = 93.92%) to represent

the common effect. For simplicity, we will call this new

variable “psycho frequency” for the rest of the paper. As visual

complexity and familiarity were anti-correlated (c = –0.560), a

PCA was applied and the first component (explained variance

= 87.01%) was defined as “familiarity.” Phoneme number

and Age of Acquisition (AoA) were weakly correlated with

other covariates and were, thus, kept as such. This analysis

allowed us to go from 7 to 5 psycho-linguistic dimensions.

In Figure 3B, we see that entropy, contrast, energy, and

homogeneity are highly correlated (lowest c = 0.593). The

first component of a PCA was chosen to summarize them,

reflecting “contrast” (explained variance = 63.76%). The number

of spectral clusters, the maximum frequency, and the maximum

distance between spectral clusters are highly correlated (lowest

c = 0.629) and similarly, we used PCA and kept the first

component reflecting “image frequency” (explained variance

= 78.62%). Correlation, compactness, and length-width ratio

were considered as independent covariates regarding their low

correlation score with other features, reducing dimensionality

from 9 to 7. Figure 3C summarizes the correlation between the

12 selected covariates after applying dimensionality reduction.

2.5. Linear modeling

To consider inter-subject variability, the analysis is

performed using a 2-level hierarchical process, as proposed by

Pernet et al. (2011) in the LIMO EEG toolbox. This hierarchical

general linear model consists of a multivariate linear regression

divided into 2 levels of analysis. At the first level, the parameters

are estimated by the subject at each time point and each electrode

separately. Then, at the second level, the parameters estimated

at the first level are integrated across subjects to compute robust

statistics. The inter-subject variance is, therefore, modeled

by the constant term of the regression process at the first

level of analysis, while the statistical tests (second level) are

performed on the regressed parameters (called beta estimates).

This section focuses on the first level analysis that performs

linear modeling of the ERP trials as summarized in Figure 4.

In this research, we analyzed the effect of psycho-linguistic

and image feature covariates on the ERP independently to

identify the most critical one, if there is any difference. To

do so, we performed the analysis using four different models.

As shown in Figure 5, the first model (called “categorical

model,” Figure 5A) only considers the categorical variables, the
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FIGURE 4

Pipeline used for the first level analysis, i.e., the linear modeling, of the dataset.

second model (called “psycho model,” Figure 5B) focuses on

psycho-linguistic variables, the third one (called “image model,”

Figure 5C) only takes into account image features, and the last

one (called “psycho-image model,” Figure 5D) encompasses all

the covariates. Note that we included the visual similarity in the

image model for completeness. The design matrix links each

trial with the corresponding category through binary values,

the first column representing manufactured items and the

second column being related to natural items. The covariates, as

continuous variables, are represented by their z-score computed

throughout all trials. The regression process aims to obtain an

optimal representation of the recorded ERPs for each subject.

Depending on the designed model, the beta estimates give

the linear combination of categorical variables and covariates

that best fits the recorded EEG trials using a General Linear

Model (GLM). The regression is done in a parallel way for each

subject using the LIMO EEG toolbox through the limo_batch

function. The computation of beta estimates is presented in

Equations (1) and (2) where ERP represents the recorded EEG

trials, β the searched parameters, X the design matrix and ǫ the

error term. This operation is performed on one channel at a

time, fitting all trials simultaneously.

ERP = βX + ǫ, (1)

β = diag((XTX)−1XTERP) (2)
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FIGURE 5

Design matrices. (A) Control model (only categories and error terms, 3 dimensions), (B) psycho model (13 dimensions), (C) image model (16

dimensions), (D) psycho-image model (26 dimensions). The two first columns representing the categories are coded as binary values (–1 or 1),

while columns corresponding to covariates have continuous values representing the z-score computed through all the trials.

Figure 6 represents the trimmed mean (20% of trimming)

of the beta estimates across subjects on one electrode

(F6) using the psycho model. This example shows that

categorical variables have a larger weight on the regression

(higher amplitude of the corresponding beta estimates)

than covariates and that the constant term encompasses

the general ERP behavior following the appearance of two

sequential images.
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FIGURE 6

Trimmed mean (20% of trimming) of beta estimates across subjects on F6 electrode using “psycho” model. The two bold lines represent the

categorical variables (manufactured and natural items) while the black dashed line belongs to the constant term. All other signals are related to

the covariates (cf. legend). The arrows on the x-axis show the appearance of the primer and the target images.

By computing the difference between beta parameters

belonging to each of the categorical variables, we can obtain

the categorical contrast effect highlighting the ERP variations

that are mainly due to the origin of the presented item, i.e., the

effect we want to study. Equation (3) shows the computation

of the contrast signal from beta estimates, where c is the

contrast. This operation is performed on each subject and each

electrode separately.

c = βmanufactured − βnatural, (3)

From the contrast parameter, a statistical analysis across

subjects can highlight spatio-temporal regions of significant

difference between both categories, as described in Section 2.6.

2.6. Statistical inference

The statistical inference on the regressed signals enables

the identification of the spatio-temporal regions of the ERP,

allowing a reliable classification between categories and regions

prone to covariate bias. The process is summarized in

Figure 7.

LIMO EEG proposes tools to perform robust statistics on

regressed parameters, such as the Yuen t-test (i.e., t-test on

trimmed mean) alongside bootstrap to account for multiple

tests [spatio-temporal clustering and Threshold Free Cluster

Enhancement (TFCE)—Pernet et al., 2015] Based on these

methods, the second level analysis allows us to identify clusters

of significant effect. Highlighting spatio-temporal areas of high

categorical contrast is essential to know the regions a BCI

algorithm will target to perform the classification task. One-

sample t-tests were, therefore, run across subjects on the contrast

parameters obtained from the categorical model as well as from

the psycho-image model, followed by a Multiple Comparison

Correction (MCC) using spatio-temporal clustering to identify

regions that can be targeted by the classifier. Then, a study of

the percentage of the ERP variance that is explained by a model

is necessary to reveal the regions where the model properly fits

the data. To establish a fair comparison between the explained

variances (R2) of the different models, the effect of the increase

of dimensionality must be controlled. For this purpose, we

introduced new models (called “naive” models) whose aim is

to simulate the effect of changing the model dimensionality.

To build a naive model, we use a design matrix on which the

two first columns replicate the initial model (to keep the same

category for each trial), and the covariate columns are generated

as random vectors from a multivariate normal distribution

whose mean is zero for every column (as we used the z-score

in the initial models) and the covariance matrix has the same

rank as the corresponding model. This design matrix is then

used to perform the ERP regression as previously described. This

process is repeated 30 times with the same categorical design

but different random values for each naive model type. The beta
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FIGURE 7

Pipeline allowing the identification of the regions of interest for the classification and the regions prone to covariate bias.

estimates corresponding to the categories are averaged over the

30 repetitions to allow the study of the effect of the increase

in dimensions on the categorical effect, and the R2-values are

averaged over repetitions to quantify the increase of explained

variance that is due to the dimensionality effect. We, therefore,

created three naive models corresponding to the psycho, image,
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FIGURE 8

Geometrical representation of the combination of the di�erent models. The left part relates to the ideal situation where the categorical e�ect,

the e�ect of the psycho covariates, and the image covariates e�ect are orthogonal to each other, while the right part represents the real-life

case of non-orthogonality. (A,B) Vectorial representations of the categorical, psycho, image, and psycho-image models and the di�erent e�ects

resulting from their combination, with a focus on the e�ect of the psycho covariates. (C,D) The corresponding projections on the π planes

where the R2-values are computed for a given data set and represented as segments in their corresponding directions. The correlation e�ect

causing the loss in explained variance is represented in red in (D).

and psycho-image models used in the study. The way the

explained variances of the different models are combined in the

statistical analysis is summarized in Figure 9 considering the

example of the study of the effect of psycho-linguistic variables

on the explained variance. The explained variance belonging

to a specific model is computed as the difference between the

explained variance of the model and that of the corresponding

naive model. By applying a one-sample t-test to the explained

variance across subjects followed by an MCC using spatio-

temporal clustering, regions where the covariates influence the

way a model fits the ERP can be identified. In fact, as the

categorical effect is modeled identically in both the actual and

the naive models, the only remaining effect is the influence of

the covariates.
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FIGURE 9

R2 combination for statistical inference. Example of the study of the e�ect of psycho-linguistic variables on the explained variance.

2.7. E�ects separability

To evaluate how separable the biasing covariate effect

is from the desired categorical effect, we have to quantify

how their potential correlation affects the variance that can

be explained by the regressed signals. Figures 8A,B provide

a graphical representation of how the different models are

combined to extract the contribution of the partial effects

required to compute the statistical effects of interest. In

Figures 8C,D, a representation of the differences explained

variances, as segments in the associated directions, is given.

The correlation effect is totally absent in the ideal case of

orthogonality, i.e., zero correlation, between the categorical

effect, the psycho covariates effect, and the image covariates

effect as shown in Figures 8A,C. However, this correlation

effect is responsible for a loss in explained variance when

considering non-orthogonality between the different effects as

Figures 8B,D illustrate. For sake of clarity, we intentionally

omitted the dimensionality effect from Figure 8 as adding it

would lead to a 4-dimensional problem and would therefore

require an additional computation step to obtain the loss in

explained variance, as shown in Figure 9. When considering

all the dimensions, this loss in explained variance due

to the correlation between categorical and covariate effects

(R2 loss) is computed as the difference between the total

categorical effect (identified using the categorical model) and

the computed categorical effect. The block diagram presented

in Figure 9 illustrates that the R2 loss can be computed using

Equations 4a and b where the “computed” psycho effect is

the one used to derive the R2 distribution (cf. Figure 12B).

R2computed_categorical_effect

= R2psycho_model − (R2psycho_image_model − R2image_model)

= R2psycho_model − R2computed_psycho_effect (4a)

R2loss = R2categorical_model − R2computed_categorical_effect (4b)

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2022.900571
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


La Fisca et al. 10.3389/fncom.2022.900571

FIGURE 10

Statistical analysis of the psycho-image model. (A) Trimmed mean of the explained variance (R2
− R2

naive
) across subjects with corresponding

regions of significant explained variance (red bands) and significant categorical contrast (green band). For each highlighted area, the topological

view is shown (bottom). On the channel corresponding to the maximum R2 (PO8 electrode), the averaged ERPs of both categories (top right)

and the R2 timecourse (bottom right) are displayed. (B) Trimmed mean of the categorical contrast across subjects with significant regions

highlighted and the corresponding topological views (bottom). On the channel corresponding to maximum contrast (F5 electrode), the

averaged contrast parameter (βman. − βnat.) is displayed.

As illustrated in Figures 8A,B, the “computed” psycho

effect is obtained by subtracting the image model effect

from the psycho-image model effect. This “computed” psycho

effect can be considered as part of the effect of the psycho

covariates that are not correlated to the categorical effect.

Therefore, when subtracting this “computed” psycho effect from

the psycho model effect, only the categorical effect remains.

This “computed” categorical effect is composed of the actual

categorical effect and the part of the psycho covariate effect

that is correlated to the categories. The latter component is
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FIGURE 11

Thresholded maps of the categorical contrast showing spatio-temporal regions of significant categorical contrast using a one-sample t-test

followed by an MCC with spatio-temporal clustering. These regions are extracted from the categorical model (A), the psycho-image model (B),

and the naive psycho-image model (C).

responsible for the deviation between the categorical model

effect and the “computed” categorical effect and can be obtained

as the vectorial difference between both. These operations can

directly be done on the R2-values as the explained variance of a

joint effect, e.g., psycho model effect that combines categorical

and psycho covariate effects is equal to the sum of the explained

variances from each of these effects in the ideal case of

orthogonality. However, when correlated, this sum is affected by

the non-orthogonal part of the considered effects and a loss in

R2 starts to be propagated across the computations.

The separation between the categorical effect and a specific

covariate effect is possible if the R2 loss is significantly lower

than the variance explained by the categorical model. This

comparison is done within the spatio-temporal cluster of interest

using a specific covariates model.

Having proved the separability between categories and

covariates, we identify the spatio-temporal regions in the ERP

where the categorical effect does not overlap with regions of

significant covariate effects. These regions can therefore be

used to perform an unbiased classification between the studied

categories whatever the balance in the covariate values across

those categories.

3. Results

As the objective of this study is to reveal the influence

of the experimental covariates on the distinguishability of the

categorical effect on the EEG, we first ran the statistical analysis

described in Section 2.6 on the psycho-image model to extract

both categorical and covariate effects when considering all

the selected variables. Using this model, we ensure that the

identification of significant categorical contrast was not biased

by the experimental covariates. Figure 10 shows the explained

variance (Figure 10A) and the categorical contrast (Figure 10B)

of the psycho-image model along with the 20% trimmed mean

ERP. The one-sample t-test followed by an MCC using spatio-

temporal clustering reveals a cluster of significant categorical

contrast from 326 to 371 ms (max T-value 5.16 at 334 ms on

channel F5, corrected p = 0.01) and four clusters of significant

R2: cluster 1 starts at –62 ms and ends at –14 ms (max T-value

4.78 at –30.42 ms on channel C2, corrected p = 0.03), cluster 2

starts at 14 ms and ends at 75 ms (max T-value 4.57 at 68.12

ms on channel PO4, corrected p = 0.03), cluster 3 starts at 133

ms and ends at 247 ms (max T-value 6.29 at 190.73 ms on

channel PO8, corrected p = 0.01) and cluster 4 starts at 383 ms

and ends at 408 ms (max T-value 5.61 at 391.21 ms on channel

C1, corrected p = 0.02). As the regions where the variance is

significantly explained by the values of the covariates do not

overlap the cluster of significant categorical contrast, we could

assume that the identified categorical effect is not influenced by

the chosen covariates when using the psycho-image model.

To identify spatio-temporal regions of the ERP that can

be wrongly interpreted as clusters of significant categorical

contrast if the covariate effects are not modeled, Figure 11

shows the thresholded maps of the categorical contrast obtained

when using the categorical model (Figure 11A), the psycho-

image model (Figure 11B), and the naive psycho-image model

(Figure 11C). We can observe that, on top of the actual region of

high contrast between the studied categories, the 3-dimensional

categorical model detects two more clusters: one between 43 and

95 ms (max T-value 6.37 at 67.14 ms on channel F1, corrected

p = 0.01), overlapping with the second R2 cluster of the full

psycho-image model, and the other one between 137 and 163ms

(max T-value 5.99 at 156.98ms channel FC1, corrected p = 0.04),

overlapping with the thirdR2 cluster of the psycho-imagemodel.

When using the 26-dimensional naive model, similar clusters in

excess appear with the first cluster ranging from 43 to 75 ms
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FIGURE 12

Explained variance quantization. (A) Trimmed mean of the explained variance (R2
− R2

naive
) across subjects for categorical, psycho, and image

models. Regions of significant explained variance (red bands), significant categorical contrast when using the categorical model (dark green

bands), and significant categorical contrast when using the psycho-image model (light green band) are highlighted. (B) Explained variance

distribution for each of the identified categorical clusters. The gray zones within the box plots represent the confidence interval of the variance

explained when using the corresponding naive model.

(max T-value 6.01 at 51.51 ms on channel FCz, corrected p =

0.02) and the second one from 147 to 167 ms (max T-value

4.49 at 160.89 ms on channel FCz, corrected p = 0.02), but an

additional region between 446 and 489 ms (max T-value 5.63 at

483.15 ms on channel F3, corrected p = 0.01) is also considered

a cluster of significant categorical contrast. These results show

that existing biases in the dataset can be badly exploited in the

regression process and this biased effect becomes higher as the

complexity of themodel used increases, as discussed in Section 4.

The quantization of the variance that is explained by the

different types of covariates was performed by analyzing the

R2 distribution across the spatio-temporal regions of significant

contrast identified in Figure 11 using the psycho and image

models separately (Figure 12). Figure 12A highlights the regions

of significant categorical effect on top of the explained variance

maps, with the displayed R2 values resulting from the difference

between the R2 of the considered model and that of the

corresponding naive model. A one sample t-test followed by

the MCC run on the R2-values gives us the spatio-temporal

regions of the ERP where the variance is significantly explained

by the focused type of covariates. For the psycho model, the first

significant cluster appears between 151 and 177ms (maxT-value

5.61 at 158.9 ms on channel FCz, corrected p = 0.01) and the

second significant cluster ranges from 319 to 490 ms (max T-

value 9.01 at 367.9 ms on channel F7, corrected p = 0.01). For

the image model, the first significant cluster appears between
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TABLE 2 Ninety-five percent confidence intervals of the explained

variance of the categorical model compared with the part of the

explained variance that is lost in psycho and image models due to the

correlation between the covariates and the categories.

R
2 (%) Cluster 1 Cluster 2 Cluster 3 Cluster 1

(95% CI) (cat.model) (cat.model) (cat.model) (psycho

image

model)

Categorical model 0.72 to 0.82 0.60 to 0.67 0.69 to 0.79 0.66 to 0.75

Psycho model –0.14 to 0.01 –0.17 to 0.08 –0.18 to 0.04 –0.07 to 0.02

Image model –0.05 to 0.11 –0.12 to 0.01 –0.18 to 0.06 –0.10 to 0.03

–52 and –9 ms (max T-value 4.71 at –22 ms on channel O2,

corrected p = 0.02), the second significant cluster ranges from 16

to 38 ms (max T-value 4.47 at 18.3 ms on channel O2, corrected

p = 0.01) and the third significant cluster starts at 174 ms and

ends at 210 ms (max T-value 6.79 at 203.8 ms on channel POz,

corrected p = 0.02). Comparing the spatio-temporal regions of

significant explained variance with the clusters considered of

high categorical contrast by the model used allows areas where

the classification can be biased by the experimental covariates to

be detected. In fact, if a spatio-temporal region whose variance

is mainly explained by the covariate values overlaps a cluster of

high categorical contrast, an algorithm could use the covariate

information to perform the classification instead of the actual

categorical information.

To measure this overlapping effect, Figure 12B shows the

distribution of the explained variance of each model as well

as the confidence interval of the variance explained by the

corresponding naive model within each categorical cluster. The

explained variance from which the distribution is displayed is

computed as the difference between the R2 of the psycho-image

model and the R2 of the model not concerned, e.g., R2
psycho

=

R2
psycho−image

− R2image. In this way, the part of the variance

that is explained by the categorical effect is excluded from the

comparison, allowing a focus on the effect of the covariates only.

The 95% confidence interval of the corresponding naive R2-

values shows the part of the variance that is explained by the

increase of the model dimensionality. The categorical effect is

displayed separately to provide a reference point. In the first

cluster of significant categorical contrast obtained from the

categorical model, the inter-quartile range of the R2-values from

the image model (from 15.41 to 16.65%) stands above the 95%

confidence intervals of the R2-values from the corresponding

naive model (14.99 to 15.36%). The same behavior is observed

in the second categorical regions of interest (ROIs) (categorical

model) for the psycho model with the interquartile range

spreading from 15.88 to 17.24% and the confidence interval

from the naivemodel between 15.21 and 15.58%.When focusing

on the third categorical cluster (categorical model) or the ROI

extracted from the psycho-image model, none of the covariates

explain a significant part of the variance as the 95% confidence

intervals of the R2 of both naive models are included in the

inter-quartile ranges of the R2-values from the covariate models.

To validate that the categorical cluster found in the late

ERP response can be used to perform a reliable classification

between categories, the separability between the categorical

and the covariate effects should be proven. As described in

Section 2.7, the separability can be evaluated by quantifying

the part of R2 that is lost due to the correlation between

the categories and the covariates in the regressed signals. We

computed the loss in R2 using Equation 4 within each categorical

cluster separately and by adapting the computations to each

model. The results are shown in Table 2. As the part of lost

R2 is significantly lower than the explained variance of the

categorical model, the covariate effect can be considered almost

orthogonal to the categorical effect, meaning their effects can

be easily separated when properly modeled. We can note that

negative values in Table 2 are mainly due to the correlation

between the psycho-linguistic variables and the image features,

knowing that the lost R2 is computed as the combination

of both.

The full analysis of the explained variance highlights the

influence of the image features on the regressed ERP around 70

ms and the influence of the psycho-linguistic variables around

150 ms. The late evoked response around 350ms exhibits high

independence to the covariate effects, making it a good candidate

to perform a reliable classification between living and non-living

entities from the EEG trials.

4. Discussion

The aim of this research is to inform the experimenter

about the uncontrolled factors influencing the neural process

of interest. As such, we have investigated how some psycho-

linguistic variables and image features impact the EEG signals

recorded during a visual priming task with a focus on the

represented item origin (natural vs. manufactured). In other

words, we have represented the difference between the EEG trials

of both categories as a contrast trial and extracted the spatio-

temporal areas where the chosen covariates significantly affect

the regression process.

When the information on covariates is not modeled by

the regression algorithm, any bias on these variables in the

dataset, i.e., improper balance in both categories, can be

exploited by the BCI algorithm in charge of performing

the classification of the EEG trials, leading to the increased

probability of misclassification as the algorithm bases its

decision on some covariate values instead of the categorical

effect itself. This effect increases with the complexity of the

model as can be observed in Figure 11 by comparing the

clusters wrongly considered as regions of high categorical
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contrast. In the late evoked response, the cluster of significant

contrast is indeed wider when using the naive psycho-image

model (26 dimensions) than with the categorical model (3

dimensions). Knowing that all the models used in this study

are linear models, the biasing effect could be even worse in

BCI applications that use more complex algorithms. As an

equal balance of covariate values in the different categories

is impossible to reach if we want to keep an acceptable

diversity of stimuli in the experiment, a solution is to model

the covariate effects as we propose in this study through

our hierarchical linear modeling. The modeling solution can

be used by neuroscientists to separate category-related from

covariate-related responses without balancing covariate values

across categories only in the case of demonstrated separability.

As we proved in this study, the separation can be done in

the case of visual stimulation by natural vs. manufactured

items, but this demonstration has to be reiterated for other

experimental conditions.

The quantization of the variance explained by each of

the covariate types separately, as shown in Figure 12, revealed

that both psycho-linguistic variables and image features have

an effect on the ERP, but these effects appear outside of

the spatio-temporal regions of significant categorical contrast

between both categories. A BCI experiment aiming to classify

EEG trials into evoked responses induced by natural or

manufactured item visual stimulation can therefore take

advantage of this finding to perform reliable classification

based on the regions of dominant categorical information.

Similar to in other BCI experiments, spatio-temporal regions

of maximal categorical contrast and minimal covariate effects

has first to be identified using rigorous statistical tests, as

proposed in the present framework, to state that a reliable

classification is possible without requiring specific experimental

design considerations. Naturally, this assumption is only

valid in the case that the studied covariates are properly

chosen and fairly represent the most known potential biasing

effects. The discovery of novel stimulus properties impacting

the classification will further improve the efficiency of the

proposed pipeline.

This research has been led in a reproducible way and

the code has been developed using the open-source FieldTrip

(Oostenveld et al., 2010) and LIMO EEG (Pernet et al.,

2011) toolboxes. Therefore, any other task inducing an evoked

response can be analyzed by following the presented method

to identify experimental features affecting the distinguishability

of the differences in the EEG induced by stimuli of distinct

categories. Depending on the type of stimuli and the studied

categories, other covariates can be considered in the design

of the model to extract their impact on the corresponding

ERP. However, as the covariates selection is a critical step of

this framework, it should be done carefully by considering

the psychological effects related to the experimental task.

The presented experimental design being a semantic task, the

study of psycho-linguistic features was necessary. The selected

variables are those proposed by Alario et al. (2004) who

demonstrated their influence on the ERPs related to picture

naming tasks. Moreover, as the experiment involves visual

stimulation by displaying pictures on a screen, the inner image

properties were worth examining. The spatial and spectral

features that are traditionally studied such as entropy, energy,

and maximal frequency were computed and included in the

analysis. Special attention should be paid to the number of

selected covariates as more variables could catch a more

uncontrolled effect, but decreases the significance between

the effect of increased dimensionality and the covariate effect

itself. On the contrary, fewer covariates could lead to missing

significant covariate effects. The model dimension is also limited

by the number of trials available by the subject as performing

a regression with more parameters than observations results

in overfitting. As the categories are exclusive, the minimum

number of trials can be found by multiplying the number of

covariates by the number of categories. The number of different

subjects will affect the significance of the computed statistical

values as these computations are performed at the second level

of the hierarchical modeling.

The proposed method should be fully integrated into the

design of a BCI experiment by performing a preliminary test

with a first set of participants to identify the spatio-temporal

regions of significant categorical contrast and evaluate the

separability between the covariate and the categorical effects

in those regions. In the case of proven separability, the BCI

classifier can be trained using the identified regions of interest

only. Otherwise, an additional process consisting in balancing

the biasing covariates across categories should be done before

starting the training procedure.

We draw special attention to the extent of this study.

The provided method does not give any insight into internal

brain processes responsible for discriminating information

coming from specific categories or covariates. It rather aims to

unveil the impact of uncontrolled variables on the ability to

identify parts of an ERP that exhibits a high contrast between

experimental conditions.

The EEG signal being highly complex to interpret and linked

to actual brain processes, future work will consist of performing

covariate analysis on brain source activity obtained from the

recorded EEG signal by source reconstruction techniques.

Furthermore, as the proposed framework limits the analysis

to the temporal response, the further spectral analysis would

allow unknown frequency domain or non-timelocked effects to

be revealed.

We hope this research will pave the way to discovering

as many experimental biases as possible and optimize the

process of designing BCI protocols. In that direction, future

study will consist of building a common database with results

from different applications. We encourage authors to add their

contributions as they go along.

Frontiers inComputationalNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fncom.2022.900571
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


La Fisca et al. 10.3389/fncom.2022.900571

Data availability statement

The original contributions presented in the study are

publicly available. This data can be found at: Zenodo, http

s://zenodo.org/record/7298746#.Y2kKIXbMK3A, doi: 10.5281/

zenodo.6371466.

Ethics statement

The studies involving human participants were reviewed

and approved by Ethics Committee Erasme Hospital. The

patients/participants provided their written informed consent to

participate in this study.

Author contributions

LLa and CP designed the proposed method. LLa performed

the data analysis. LLa, CP, and VV wrote the paper. EW, AM,

and IS designed the experimental task. EW and AM acquired

the experimental data. CP, BG, LLe, and LR supervised the

research. All authors contributed to the article and approved the

submitted version.

Funding

LLa was funded through a Ph.D. grant from the Fonds pour

la Formation à la Recherche dans l’Industrie et l’Agriculture

(FRIA), Belgium. EW and AM are funded by the French

Community Ministry—general direction of non-mandatory

education and scientific research in Belgium through the

program of Action de Recherche Concertées (ARC), reference

ARC-19/23 UMONS3, Belgium.

Acknowledgments

The authors acknowledge the Belgian French Community

Ministry for the research funding having allowed this study to

be led under the best conditions as well as all the participants

who accepted to take part in the experiment.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Alario, F. X., Ferrand, L., Laganaro,M., New, B., Frauenfelder, U. H., and Segui, J.
(2004). Predictors of picture naming speed. Behav. Res. Methods Instrum. Comput.
36, 140–155. doi: 10.3758/BF03195559

Chen, X., Chen, Q., Zhang, Y., and Wang, Z. J. (2019). A novel EEMD-
CCA approach to removing muscle artifacts for pervasive EEG. IEEE Sens. J. 19,
8420–8431. doi: 10.1109/JSEN.2018.2872623

Chen, X., Liu, Q., Tao, W., Li, L., Lee, S., Liu, A., et al. (2020). ReMAE: User-
friendly toolbox for removing muscle artifacts from EEG. IEEE Trans. Instrum.
Meas. 69, 2105–2119. doi: 10.1109/TIM.2019.2920186

de Cheveigné, A. (2020). ZapLine: a simple and effective
method to remove power line artifacts. Neuroimage 207, 116356.
doi: 10.1016/j.neuroimage.2019.116356

Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., and Marslen-
Wilson, W. D. (2006). The time course of visual word recognition as
revealed by linear regression analysis of ERP data. Neuroimage 30, 1383–1400.
doi: 10.1016/j.neuroimage.2005.11.048

Hogonot-Diener, L. (2022). Guide pratique de la consultation en gériatrie, 4 Edn.
Elsevier: Masson.

Li, R., Johansen, J. S., Ahmed, H., Ilyevsky, T. V., Wilbur, R. B., Bharadwaj,
H. M., et al. (2021). The perils and pitfalls of block design for EEG
classification experiments. IEEE Trans. Pattern Anal. Mach. Intell. 43, 316–333.
doi: 10.1109/TPAMI.2020.2973153

Oldfield, R. (1971). The assessment and analysis of handedness: the Edinburgh
inventory. Neuropsychologia 9, 97–113. doi: 10.1016/0028-3932(71)90067-4

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2010).
FieldTrip: open source software for advanced analysis of MEG, EEG, and
invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869.
doi: 10.1155/2011/156869

Palazzo, S., Spampinato, C., Schmidt, J., Kavasidis, I., Giordano, D.,
and Shah, M. (2020). Correct block-design experiments mitigate temporal
correlation bias in EEG classification. arXiv:2012.03849 arXiv:2012.03849 [cs, q-
bio]. doi: 10.1101/2020.12.05.403402

Pernet, C., Garrido, M. I., Gramfort, A., Maurits, N., Michel, C. M., Pang, E.,
et al. (2020). Issues and recommendations from the OHBM COBIDAS MEEG
committee for reproducible EEG andMEG research.Nat. Neurosci. 23, 1473–1483.
doi: 10.1038/s41593-020-00709-0

Pernet, C. R., Chauveau, N., Gaspar, C., and Rousselet, G. A. (2011). LIMO
EEG: a toolbox for hierarchical linearMOdeling of ElectroEncephaloGraphic Data.
Comput. Intell. Neurosci. 2011, 831409. doi: 10.1155/2011/831409

Pernet, C. R., Latinus, M., Nichols, T. E., and Rousselet, G. A. (2015).
Cluster-based computational methods for mass univariate analyses of event-
related brain potentials/fields: a simulation study. J. Neurosci. Methods 250, 85–93.
doi: 10.1016/j.jneumeth.2014.08.003

Rousselet, G. A., Mac,é, M. J.-M., Thorpe, S. J., and Fabre-Thorpe, M. (2007).
Limits of event-related potential differences in tracking object processing speed. J.
Cogn. Neurosci. 19, 1241–1258. doi: 10.1162/jocn.2007.19.8.1241

Rousselet, G. A., Pernet, C. R., Bennett, P. J., and Sekuler, A. B. (2008).
Parametric study of EEG sensitivity to phase noise during face processing. BMC
Neurosci. 9, 98. doi: 10.1186/1471-2202-9-98

Frontiers inComputationalNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fncom.2022.900571
https://zenodo.org/record/7298746#.Y2kKIXbMK3A
https://doi.org/10.5281/zenodo.6371466
https://doi.org/10.3758/BF03195559
https://doi.org/10.1109/JSEN.2018.2872623
https://doi.org/10.1109/TIM.2019.2920186
https://doi.org/10.1016/j.neuroimage.2019.116356
https://doi.org/10.1016/j.neuroimage.2005.11.048
https://doi.org/10.1109/TPAMI.2020.2973153
https://doi.org/10.1016/0028-3932(71)90067-4
https://doi.org/10.1155/2011/156869
https://doi.org/10.1101/2020.12.05.403402
https://doi.org/10.1038/s41593-020-00709-0
https://doi.org/10.1155/2011/831409
https://doi.org/10.1016/j.jneumeth.2014.08.003
https://doi.org/10.1162/jocn.2007.19.8.1241
https://doi.org/10.1186/1471-2202-9-98
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


La Fisca et al. 10.3389/fncom.2022.900571

Simoes Loureiro, I., and Lefebvre, L. (2016a). Distinct progression
of the deterioration of thematic and taxonomic links in natural and
manufactured objects in Alzheimer’s disease. Neuropsychologia 91, 426–434.
doi: 10.1016/j.neuropsychologia.2016.09.002

Simoes Loureiro, I., and Lefebvre, L. (2016b). Retrogenesis of semantic
knowledge: comparative approach of acquisition and deterioration of concepts
in semantic memory. Neuropsychology 30, 853–859. doi: 10.1037/neu00
00272

Somers, B., Francart, T., and Bertrand, A. (2018). A generic EEG artifact removal
algorithm based on the multi-channel Wiener filter. J. Neural Eng. 15, 036007.
doi: 10.1088/1741-2552/aaac92

Tyler, L. K., and Moss, H. E. (1997). Functional properties of concepts:
studies of normal and brain-damaged patients. Cogn. Neuropsychol. 14, 511–545.
doi: 10.1080/026432997381466

Warrington, E. K., and Shallice, T. (1984). Category specific semantic
impairments. Brain 107, 829–853. doi: 10.1093/brain/107.3.829

Frontiers inComputationalNeuroscience 19 frontiersin.org

https://doi.org/10.3389/fncom.2022.900571
https://doi.org/10.1016/j.neuropsychologia.2016.09.002
https://doi.org/10.1037/neu0000272
https://doi.org/10.1088/1741-2552/aaac92
https://doi.org/10.1080/026432997381466
https://doi.org/10.1093/brain/107.3.829
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	Biases in BCI experiments: Do we really need to balance stimulus properties across categories?
	1. Introduction
	2. Materials and methods
	2.1. Participants
	2.2. Stimuli and experimental task
	2.3. Data acquisition, preprocessing, and epoching
	2.4. Selection of variables
	2.5. Linear modeling
	2.6. Statistical inference
	2.7. Effects separability

	3. Results
	4. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


