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Neural firing in many inhibitory networks displays synchronous assembly or

clustered firing, in which subsets of neurons fire synchronously, and these

subsets may vary with di�erent inputs to, or states of, the network. Most

prior analytical and computational modeling of such networks has focused

on 1D networks or 2D networks with symmetry (often circular symmetry).

Here, we consider a 2D discrete network model on a general torus, where

neurons are coupled to two or more nearest neighbors in three directions

(horizontal, vertical, and diagonal), and allow di�erent coupling strengths in

all directions. Using phase model analysis, we establish conditions for the

stability of di�erent patterns of clustered firing behavior in the network. We

then apply our results to study how variation of network connectivity and the

presence of heterogeneous coupling strengths influence which patterns are

stable. We confirm and supplement our results with numerical simulations

of biophysical inhibitory neural network models. Our work shows that 2D

networks may exhibit clustered firing behavior that cannot be predicted as a

simple generalization of a 1D network, and that heterogeneity of coupling can

be an important factor in determining which patterns are stable.

KEYWORDS

inhibitory networks, synchronization, phase models, stability analysis, cluster

solutions, 2D networks, block circulant matrices, connectivity

1. Introduction

In different brain regions, neural firing patterns can be characterized as coordinated

assembly activity, in which individual collections of cells fire synchronously and

not at the same time as other collections of synchronously firing cells (Gray et al.,

1989; Laurent and Davidowitz, 1994; Harris et al., 2003; Dragoi and Buzsáki, 2006;

Muldoon et al., 2013; Barbera et al., 2016). Neural assemblies may consist of spatially

localized neurons (Muldoon et al., 2013; Barbera et al., 2016) or of neurons that are

widespread across one or more brain regions (Gray et al., 1989; Harris et al., 2003).
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For example, neural assemblies have been observed between

neurons in different cortical columns (Gray et al., 1989), within

regions of the hippocampus (Harris et al., 2003; Dragoi and

Buzsáki, 2006), the dentate gyrus (Muldoon et al., 2013),

and between cells in the striatum (Carrillo-Reid et al., 2008;

Adler et al., 2013; Barbera et al., 2016) and the olfactory

bulb (Laurent and Davidowitz, 1994). Understanding the

dynamics and formation of synchronized assemblies within

larger neural networks has gained increasing importance in

neuroscience (Engel et al., 2001) and has been studied both

experimentally (Laurent and Davidowitz, 1994; Harris et al.,

2003; Galán et al., 2006; Muldoon et al., 2013; Barbera et al.,

2016) and using computational modeling (Golomb et al., 1992;

Golomb and Rinzel, 1994; Li et al., 2003; Achuthan and

Canavier, 2009; Canavier et al., 2009; Ponzi and Wickens, 2010;

Kilpatrick and Ermentrout, 2011; Angulo-Garcia et al., 2016).

One approach to understanding the formation of neural

assemblies is through the study of cluster solutions in model

networks of intrinsically oscillating neurons (Golomb et al.,

1992; Golomb and Rinzel, 1994; Li et al., 2003; Galán et al.,

2006; Kilpatrick and Ermentrout, 2011; Miller et al., 2015;

Campbell and Wang, 2018; Ryu et al., 2021). Cluster solutions

are solutions where the network of oscillators breaks into

subgroups. Within each subgroup, the phases of the oscillators

are the same, while oscillators in different subgroups are

phase-locked with some non-zero phase difference. A useful

mathematical framework for studying cluster solutions is the

phase model reduction (Hoppensteadt and Izhikevich, 1997;

Schwemmer and Lewis, 2012). This framework has been used

to study synchronization and clustering in a variety of coupled

oscillator networks (Ashwin and Swift, 1992; Okuda, 1993;

Kopell and Ermentrout, 2002; Saraga et al., 2006; Mancilla

et al., 2007). A complementary approach is to consider a

continuummodel representing the limit of an infinite number of

oscillators (Ermentrout, 1992; Strogatz, 2000). In such models,

which are represented as partial differential equations, cluster

solutions correspond to wave-like solutions, sometimes called

twisted states (Ermentrout, 1992; Wiley et al., 2006; Kazanci and

Ermentrout, 2007; Girnyk et al., 2012; Heitmann et al., 2012;

Heitmann and Ermentrout, 2015).

Cluster solutions have been extensively studied in models

that assume homogeneous, all-to-all connectivity among

oscillators (Sakaguchi and Kuramoto, 1986; Ashwin and Swift,

1992; Hansel et al., 1993; Okuda, 1993; Strogatz, 2000; Zanette,

2000; Kazanci and Ermentrout, 2008; Campbell and Wang,

2018). The number of studies considering cluster solutions

in networks with structured connectivity is more limited and

they primarily focus on networks with neurons arranged in

a 1D ring, of arbitrary size N. In Kazanci and Ermentrout

(2007, 2008), the phase model reduction is used to analyze

how the addition of local (nearest neighbor) gap-junctional

coupling in a network with all-to-all synaptic coupling affects

cluster solutions. They found that gap-junctional coupling can

induce a shift from synchronous or two cluster solutions to

an N-cluster solution. The presence of time-delayed synaptic

connections among all-to-all coupled oscillators was analyzed

using a more general phase model in Campbell and Wang

(2018). They found that time delays can lead to the coexistence

of multiple stable clustering solutions. In a continuum network

model, the existence and stability of cluster solutions when

each oscillator has identical coupling to a subset of its nearest

neighbors was analyzed in Wiley et al. (2006); Girnyk et al.

(2012). In a study considering structured excitatory-inhibitory

coupling in a continuum model (Heitmann and Ermentrout,

2015), the extent of inhibitory coupling was shown to influence

the existence of synchronous or traveling wave solutions in

both 1D and 2D networks. Recently, a phase model analysis

of cluster solutions was extended to 2D networks in Culp

(2021), in which the existence of cluster solutions and stability

conditions of a particular type of clusters (that have identical

phase difference between adjacent oscillators in the horizontal

and vertical directions) were derived on a square torus.

In our previous work (Miller et al., 2015; Ryu et al., 2021),

we used the phase model approach to determine existence

and stability conditions for cluster solutions in 1D, discrete

inhibitory neural networks with various connectivity schemes.

In Miller et al. (2015) we investigated the clustering dynamics of

a network of oscillating inhibitory neurons in which each neuron

is coupled to its two nearest neighbors on each side. Our phase

model analysis showed that changing the connection weights

can change the stability of solutions, confirmed by numerical

simulations. In Ryu et al. (2021), we considered simple non-

monotonic, distance-dependent connectivity schemes in 1D

inhibitory networks. We similarly used the phase model

approach to identify conditions for the existence and stability

of cluster firing solutions in which clusters consist of spatially

adjacent neurons in inhibitory neural networks.

In this paper, we extend our previous work to a 2D,

discrete inhibitory network model on a general torus, where

neurons are coupled to two or more nearest neighbors in three

directions (horizontal, vertical, and diagonal) with different

coupling strengths in all directions. Using phase model analysis,

we derive stability conditions for different patterns of clustered

firing behavior in the networks, and further explore the

effect of heterogeneous coupling strengths on the stability of

cluster solutions. Stability conditions are derived for a general

phase model, but applied to the specific phase model derived

from a biophysical network model consisting of inhibitory

interneurons (Wang and Buzsáki, 1996).We show that the phase

model predictions give an accurate picture of the effect of various

connectivity schemes on the solutions that occur in the full

biophysical model.

Our paper is structured as follows: Section 2 provides

the description of the methodology we employ, including

the reduction from a biophysical model to a phase model

(Section 2.1) and the specific biophysical neuron model used
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for numerical simulations (Section 2.2). Section 3 describes our

analysis of the existence and stability of cluster solutions in

a general phase model. Section 4 describes the application of

these results to the specific phase model corresponding to the

biophysical network and the verification of these results via

numerical simulations. We conclude with a discussion of our

results in Section 5.

2. Methods

2.1. Phase reduction method

In this work, we consider a general neural network model

on a 2D lattice that consists of m × n identical, weakly coupled,

inhibitory oscillating cells with periodic boundary conditions:

dXij

dt
= F(Xij)+ ǫ

∑

p,q

wp,qG(Xij,Xi+p,j+q),

0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1. (1)

Here, each Xij defines a k-dimensional variable. F :Rk → R
k is

the internal vector field of the isolated oscillator and G :R
k ×

R
k → R

k is the synaptic coupling function. W = (wp,q) is the

connection matrix with wp,q > 0 when a synapse exists from

cell q to cell p. We apply the phase reduction method to the

above model to study (i) the existence and stability of certain

cluster solutions on a 2D general torus network, and (ii) how the

coupling structure on the 2D networks can affect the stability of

these cluster solutions.

In the remaining part of this subsection, we will review

the phase reduction method. Interested readers can refer

to Hoppensteadt and Izhikevich (1997); Ermentrout and

Terman (2010); Schwemmer and Lewis (2012) for more details.

Each uncoupled single neuron is assumed to admit an

exponentially asymptotically stable T-periodic orbit, {X̂(t) : 0 ≤
t ≤ T = 2π/�}, and X̂(t) satisfies

dX

dt
= F(X(t)), X ∈ R

k. (2)

By the theory of weakly coupled oscillators (see Hoppensteadt

and Izhikevich, 1997; Ermentrout and Terman, 2010;

Schwemmer and Lewis, 2012), the complete state of each

neuron in the network can be approximately captured by its

phase on the standardized limit cycle θ(t), for 0 ≤ t < 2π . This

decreases the number of equations that describe an uncoupled

single neuron from k equations to one, which in turn can

significantly reduce the dimension of the neural network model.

The phase of the ijth neuronal oscillator is slowly varying and its

dynamics is governed by

dθij

dt
= �+ ǫ

∑

p,q

wp,qH(θi+p,j+q − θij), (3)

where

H(ψ) = 1

T

∫ T

0
Z(t)G[X̂(t), X̂(t + ψ/�)]dt. (4)

The function H, often called the interaction function, measures

the modulation of the instantaneous phase of the ith oscillator

due to its coupling with other oscillators on the network. The

function Z is the unique periodic solution of the linearized

adjoint system

dZ

dt
= −[DF(X̂(t))]TZ,

satisfying the normalization condition

1

T

∫ T

0
Z(t) · F(X̂(t))dt = 1.

2.2. Neural network model

We apply our theoretical results to a biophysical inhibitory

neural networkmodel, where each individual neuron is modeled

by the conductance-based Wang and Buzsáki inhibitory

interneuron model (Wang and Buzsáki, 1996). Networks consist

of N neurons coupled in a 2D lattice structure through

inhibitory synaptic currents withN = m×n. Membrane voltage

of the ith cell, Vi (in mV) is modeled by:

C
dVi

dt
= Iapp

−gNam
3∞(Vi)hi(Vi − VNa)− gKn

4
i (Vi − VK )

−gL(Vi − VL)

−gsyn(Vi − Vsyn)

N
∑

j=1

Wijsj,

= Iapp − Iion(Vi, hi, ni)− Isyn( EV ,Es) = fV ( EV , hi, ni,Es),
dhi

dt
= γ (αh(Vi)(1− hi)− βh(Vi)hi) = f h(Vi, hi),

dni

dt
= γ (αn(Vi)(1− ni)− βn(Vi)ni) = f n(Vi, ni),

dsi

dt
= − si

τinh
+ αinh(Vi)(1− si),

(5)

with

m3
∞(V) = −0.1(V + 35)/(exp(−0.1(V + 35))− 1)

4 exp(−(V + 60)/18)
,

αh(V) = 0.07 exp(−(V + 58)/20),

βh(V) = 1/(exp(−0.1(V + 28))+ 1),

αn(V) = −0.01(V + 34)/(exp(−0.1(V + 34))− 1),

βn(V) = 0.125 exp(−(V + 44)/80),

αinh(V) = α0/(1+ exp(−V/5)),

(6)

where hi is the gating variable governing inactivation of the

inward sodium current, ni is the gating variable governing

activation of the outward potassium current and si is the gating
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TABLE 1 Description of parameters and the values used for the

neuron model.

Parameter Description Value

γ Adjusts reaction rates for temperature 1

gNa Maximal sodium conductance 35 mS/cm2

gK Maximal potassium conductance 9 mS/cm2

gL Maximal leak conductance 0.1 mS/cm2

VNa Sodium reversal potential 55 mV

VK Potassium reversal potential −90 mV

VL Leak reversal potential −65 mV

C Membrane capacitance 1 µF/cm2

Iapp Applied current 0.4 µA/cm2

Vsyn Synapse reversal potential −75 mV

gsyn Maximal synaptic conductance 0.05 mS/cm2

α0 Synaptic maximal activation rate 4 ms−1

τinh Synaptic decay time 2 ms

variable for the synaptic current generated by presynaptic cell i.

Coupling between neurons is dictated by the connectivity matrix

Wij andmaximum synaptic strength is set to gsyn. The definition

of model parameters and their default values are provided in

Table 1.

3. Analysis results

We consider the network on a perfect m × n lattice.

We can define coupling in the network by letting

S={(1,0), (-1,0), (0, 1), (0, -1), (-1, 1), (1,1), (1,-1),

(-1, -1), (2, 0), (-2, 0), (0, 2), (0, -2)}. A network of phase

oscillators with S-coupling means that each neuron is connected

to its 8 nearest neighbors (vertical, horizontal, and diagonal

directions) and 4 more distant neighbors (second nearest

neighbors in the vertical and horizontal directions). An example

showing the 12 neighbors of one neuron is shown in Figure 1.

The network model takes the form of (3). In the above

system of equations and what follows, we assume that all the

horizontal (or vertical) indices are defined under the mod

operation mod n (orm).

Phase-locked solutions of a phase model such as system

(3), will be solutions where all oscillators evolve with the same

frequency. Thus, we look for solutions of (3) in the form

θ̄ij = (�+ ǫω)t + φij. (7)

Substituting (7) into (3) we find

ω =
∑

(p,q)∈S
wp,qH

(

φ(i+p),(j+q) − φij
)

. (8)

Since ω must be constant and (8) should be independent of all

i, j, we consider a special type of solution with constant phase

difference along the horizontal and vertical directions. Let ψh
and ψv be the phase differences between adjacent cells in the

horizontal and vertical directions, respectively. For any ph that

divides n, it follows from the periodic boundary condition that

a ph-cluster solution along the horizontal direction implies that

phψh = 2ℓhπ for some ℓh < ph and gcd(ℓh, ph) = 1. Similarly,

in the vertical direction, for any pv that divides m, a pv-cluster

along the vertical direction implies that pvψv = 2ℓvπ for some

ℓv < pv and gcd(ℓv, pv) = 1. For the network as a whole this

gives a p-cluster solution with p = lcm(ph, pv) (i.e., p is the least

common multiple of ph and pv). Hence, we have the following

existence result.

Proposition 1. Suppose that ph is a factor of n, and pv is a factor

of m. Let p = lcm(ph, pv). Then a torus network of m×n neurons

with S-coupling admits a p-cluster solution with constant phase

differences ψh and ψv between adjacent cells in the horizontal

and vertical directions, respectively. These phase differences satisfy

ψh = 2ℓhπ
ph

andψv = 2ℓvπ
pv

such that ℓh < ph and gcd(ℓh, ph) =
1, and ℓv < pv and gcd(ℓv, pv) = 1.

Wedefine the solutions described in Proposition 1 as (ph, pv)

p-cluster solutions. For such a p-cluster solution with phase

differences ψh and ψv, we have that

ω = w1,0H(ψh)+ w0,1H(ψv)

+w−1,0H(−ψh)+ w0,−1H(−ψv)+ w−1,1H(−ψh + ψv)
+w1,−1H(ψh − ψv)
+w−1,−1H(−ψh − ψv)+ w1,1H(ψh + ψv)
+w2,0H(2ψh)+ w0,2H(ψv)

+w−2,0H(−2ψh)+ w0,−2H(−2ψv)

=
∑

(p,q)∈S
wp,qH(pψh + qψv)

is constant.

We now determine the stability of these (ph, pv) p-cluster

solutions. Let θij = θ̄ij + uij(t). Linearizing (3) about θ̄ij leads to

duij

dt

= ǫ
∑

p,q∈S
wp,q

[

− H′(θ(i+p),(j+q) − θij
)

uij

+H′(θ(i+p),(j+q) − θij
)

u(i+p), (j+q)

]

.

Rewriting the above equation in the matrix form, we have:

dEu
dt

= ǫ(−cIN + Ŵ)Eu, (9)
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FIGURE 1

The connections to the 12 neighbors of the neuron i, j are shown by solid edges. Connections to nearest neighbors in the vertical and horizontal

directions are shown in red. Connections to diagonal neighbors are blue. Connections to second nearest neighbors vertically and horizontally

are green.

where

Eu = (u0,0, u1,0, . . . , un−1,0, u0,1, u1,1, . . . , un−1,1, . . . ,

u0,m−1, u1,m−1, . . . , un−1,m−1)
T ,

ŵp,q = wp,qH
′(pψh + qψv),

c =
∑

(p,q)∈S
ŵp,q,

and Ŵ = bcirc(Ŵ0, Ŵ1, . . . , Ŵm−1) where

Ŵ0 = circ(0, ŵ1,0, ŵ2,0, 0, . . . , 0, ŵ−2,0, ŵ−1,0),

Ŵ1 = circ(ŵ0,1, ŵ1,1, 0, . . . , 0, ŵ−1,1), Ŵ2 = ŵ0,2I,

Ŵm−2 = ŵ0,−2I,

Ŵm−1 = circ(ŵ0,−1, ŵ1,−1, 0, . . . , 0, ŵ−1,−1),

and all other Ŵk are n× n zero matrices.

Let ρn = e2π
√−1/n. The eigenvalues of the non-zero Ŵk are

λŴ
0

j = ŵ1,0ρ
j
n + ŵ−1,0ρ

−j
n ,

λŴ
1

j = ŵ0,1 + ŵ1,1ρ
j
n + ŵ−1,1ρ

−j
n ,

λŴ
2

j = ŵ0,2,

λŴ
m−2

j = ŵ0,−2,

λŴ
m−1

j = ŵ0,−1 + ŵ1,−1ρ
j
n + ŵ−1,−1ρ

−j
n ,

(10)

for 0 ≤ j ≤ n− 1. Let

3ℓ = diag
[

λŴ
ℓ

0 , λŴ
ℓ

1 , · · · , λŴℓ

n−1

]

, ℓ = 0, 1,m− 1.

The matrix Ŵ is a block circulant matrix, and each block Ŵj,

0 ≤ j ≤ m−1, is circulant. Let Pm = diag(1, ρm, ρ
2
m, . . . , ρ

m−1
m )

and ⊗ denote the Kronecker product of matrices. By Davis
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(2013), the eigenvalues of Ŵ are given by the diagonal entries of

I⊗30 + Pm ⊗31 + P2m ⊗32 + Pm−2
m ⊗3m−2

+Pm−1
m ⊗3m−1

= bdiag
[

D0,D1,D2, 0m, · · · , 0m,Dm−2,Dm−1

]

,

where

Di =
∑

ℓ∈L
ρℓm3ℓ

and L = {0, 1, 2,m− 2,m− 1}.
Thus, the eigenvalues of Ŵ are

λŴjk = λŴ
0

j + ρkmλŴ
1

j

+ρ2km λŴ
2

j + ρ−2k
m λŴ

m−2

j + ρ−k
m λŴ

m−1

j ,

0 ≤ j ≤ n− 1, 0 ≤ k ≤ m− 1,

which means the eigenvalues of J = −cIN + Ŵ are

λ
J
jk
= −c%+ λŴjk

+λŴ0

j + ρkmλŴ
1

j + ρ2km λŴ
2

j + ρ−2k
m λŴ

m−2

j + ρ−k
m λŴ

m−1

j ,

0 ≤ j ≤ n− 1, 0 ≤ k ≤ m− 1.

By direct calculation, we find that the eigenvalues of J are

λ
J
jk

= −
[

w1,0H
′(ψh)(1− ρ

j
n)+ w−1,0H

′(−ψh)(1− ρ
−j
n )

+w0,1H
′(ψv)(1− ρkm)+ w0,−1H

′(−ψv)(1− ρ−k
m )

+w1,1H
′(ψh + ψv)(1− ρ

j
nρ

k
m)

+w−1,1H
′(ψv − ψh)(1− ρ

−j
n ρkm)

+w1,−1H
′(ψh − ψv)(1− ρ

j
nρ

−k
m )

+w−1,−1H
′(−ψh − ψv)(1− ρ

−j
n ρ−k

m )

+w2,0H
′(2ψh)(1− ρ

2j
n )

+w−2,0H
′(−2ψh)(1− ρ

−2j
n )

+w0,2H
′(2ψv)(1− ρ2km )+ w0,−2H

′(−2ψv)(1− ρ−2k
m )

]

,

for 0 ≤ j ≤ n− 1, 0 ≤ k ≤ m− 1.

The real parts of the eigenvalues are

ℜ
(

λ
J
jk

)

= −
[

w1,0H
′(ψh)

(

1− cos

(

2π j

n

))

+w−1,0H
′(−ψh)

(

1− cos

(

2π j

n

))

+w0,1H
′(ψv)

(

1− cos

(

2πk

m

))

+ w0,−1H
′(−ψv)

(

1− cos

(

2πk

m

))

+w−1,1H
′(ψv − ψh)

(

1− cos

(

2π j

n

)

cos

(

2πk

m

))

+w1,1H
′(ψh + ψv)

(

1− cos

(

2π j

n

)

cos

(

2πk

m

))

+w1,−1H
′(ψh − ψv)

(

1− cos

(

2π j

n

)

cos

(

2πk

m

))

+w−1,−1H
′(−ψh − ψv)

(

1− cos

(

2π j

n

)

cos

(

2πk

m

))

+w2,0H
′(2ψh)

(

1− cos

(

4π j

n

))

(11)

+w−2,0H
′(−2ψh)

(

1− cos

(

4π j

n

))

+w0,2H
′(2ψv)

(

1− cos

(

4πk

m

))

+w0,−2H
′(−2ψv)

(

1− cos

(

4πk

m

))

]

. (12)

Solutions will be stable whenever the real parts of the eigenvalues

are negative.

In the following, we consider solutions when the coupling is

symmetric in each direction (horizontal, vertical, and diagonal).

In this case, w±1,0 = h1, w0,±1 = v1, w±1,±1 = d, w±2,0 = h2,

and w0,±2 = v2.
Then the real parts of the eigenvalues are

ℜ
(

λ
J
jk

)

= −2

{

h1H
′
odd(ψh)

(

1− cos

(

2π j

n

))

+ v1H
′
odd(ψv)

(

1− cos

(

2πk

m

))

+d

[

H′
odd(ψh + ψv)

(

1− cos

(

2πk

m
+ 2π j

n

))]

+d

[

H′
odd(ψh − ψv)

(

1− cos

(

2πk

m
− 2π j

n

))]

+h2H
′
odd(2ψh)

(

1− cos

(

4π j

n

))

+ v2H
′
odd(2ψv)

(

1− cos

(

4πk

m

))}

,

(13)

for 0 ≤ j ≤ n− 1, 0 ≤ k ≤ m− 1.

In summary, equations (12) and (13) give the eigenvalues for

any cluster solution as described in Proposition 1 and hence can

be used to determine their stability. Recall that such solutions

are referred to as (pv, ph) p-cluster solutions, and have constant

phase differences ψh and ψv between adjacent cells in the

horizontal and vertical directions, respectively.

We now describe some special cases, which give rise to

particular patterns of activity.
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Case 1 (Synchronous solution). For any values of n and m, the

system admits the solution withψh = ψv = 0. This corresponds

to a 1-cluster solution (ph = pv = 1); hence all neurons are firing

in phase. The eigenvalues in this case have

ℜ
(

λ
J
jk

)

= −2H′
odd

(0)
[

h1

(

1− cos
(

2π j
n

))

+ v1

(

1− cos
(

2πk
m

))

+2d
(

1− cos
(

2πk
m

)

cos
(

2π j
n

))

+h2

(

1− cos
(

4π j
n

))

+ v2

(

1− cos
(

4πk
m

))]

. (14)

This solution will be stable if H′(0) > 0.

Case 2 (Diagonal Stripes). If n and m have a common factor

p, then it is possible to have a solution where ψh = ψv =
ψ = 2ℓπ

p , where l < p and gcd(l, p) = 1. This corresponds

to a p-cluster solution (with ph = pv = p) where nearest

neighbors (vertically and horizontally) are out of phase by ψ . In

the 2D network this appears as a diagonal stripe pattern, where

neurons are in-phase with their diagonal neighbors above-right

and below-left. The eigenvalues in this case have

ℜ
(

λ
J
jk

)

= −2
{

H′
odd(ψ)

[

h1

(

1− cos
(

2π j
n

))

+ v1

(

1− cos
(

2πk
m

))]

+d
[

H′
odd(2ψ)

(

1− cos
(

2πk
m

+ 2π j
n

))

+ H′
odd(0)

(

1− cos
(

2πk
m

− 2π j
n

))]

H′
odd(2ψ)

[

h2

(

1− cos
(

4π j
n

))

+ v2

(

1− cos
(

4πk
m

))]}

. (15)

There is also a p-cluster solution with ψh = ψ = 2ℓπ
p and

ψv = 2π − ψ . In the 2D network this appears as a diagonal
stripe pattern, where neurons are in-phase with their diagonal
neighbors above-left and below-right. The eigenvalues in this
case are

ℜ
(

λ
J
jk

)

= −2
{

H′
odd(ψ)

[

h1

(

1− cos
(

2π j
n

))

+ v1

(

1− cos
(

2πk
m

))]

+d
[

H′
odd(0)

(

1− cos
(

2πk
m

+ 2π j
n

))

+ H′
odd(2ψ)

(

1− cos
(

2πk
m

− 2π j
n

))]

H′
odd(2ψ)

[

h2

(

1− cos
(

4π j
n

))

+ v2

(

1− cos
(

4πk
m

))]}

. (16)

Case 3 (Horizontal Stripes). If p is a factor of m, then the

system admits a solution with ψh = 0 and ψv = 2ℓπ
p , where

ℓ < p and gcd(ℓ, p) = 1. This is a p-cluster solution (with

ph = 1, pv = p) where neurons are synchronized with all

their horizontal neighbors and have phase difference ψv with

their nearest vertical neighbors. Thus, these appear as horizontal

stripes. The eigenvalues in this case have

ℜ
(

λ
J
jk

)

= −2

{

H′
odd(ψv)

[

v1

(

1− cos

(

2πk

m

))

+ 2d

(

1− cos

(

2πk

m

)

cos

(

2π j

n

))]

+H′
odd(2ψv) v2

(

1− cos

(

4πk

m

))

+ H′
odd(0)

[

h1

(

1− cos

(

2π j

n

))

+ h2

(

1− cos

(

4π j

n

))]}

. (17)

Case 4 (Vertical Stripes). Similarly, if p is a factor of n, then the

system admits a solution with ψv = 0 and ψh = 2ℓπ
p , where

ℓ < p and gcd(ℓ, p) = 1. The eigenvalues will be the same as in

Case 3 with the roles of v1 and h1 swapped and those of v2 and

h2 swapped. This is a p-cluster solution (with ph = p, pv = 1)

where neurons are synchronized with all their vertical neighbors

and have phase difference ψh with their nearest horizontal

neighbors. Thus, these appear as vertical stripes.

Figure 2 illustrates some of the possible cluster solutions

that exist in a 6 × 6 network. In this figure, circles of the

same color correspond to neurons that spike synchronously (in-

phase), and thus belong to the same cluster. Figure 2A shows

the synchronous solution. Figure 2B shows a 2-cluster diagonal

stripe solution of the first type, i.e., with ψh = ψv = π .

Figure 2C shows a 3-cluster horizontal stripe solution. Figure 2D

shows a 2-cluster vertical stripe solution. Figure 2E shows a 3-

cluster diagonal stripe solution of the second type, i.e., with

ψh = 2π
3 , ψv = 4π

3 . Figure 2F shows a (2, 3) 6-cluster solution,

corresponding to ψh = π , ψv = 2π
3 . Each row splits into

two clusters and each column into three, giving six clusters

overall in the network. Similarly Figure 2G shows a (2, 6) 6-

cluster solution, corresponding to ψh = π , ψv = π
3 and

Figure 2H shows a (3, 6) 6-cluster solution, corresponding to

ψh = 2π
3 , ψv = π

3 .

4. Applications and numerical results

In this section, we consider existence and stability of cluster

solutions in the 2D, biophysical inhibitory network of Wang-

Buzsaki neurons described in Section 2.2.

4.1. Homogeneous first nearest neighbor
coupling—e�ect of diagonal coupling

We first consider the case of first nearest neighbor coupling

only, so h2 = v2 = 0. To study the effect of diagonal

coupling with otherwise homogeneous coupling strengths, we

choose either h1 = v1 > 0, d = 0 or h1 = v1 =
d > 0. Note that these cases correspond to each neuron being

coupled to four (left, right, up, down) or eight (left, right,

up, down, four diagonal) neighboring neurons, respectively.

In our model, H′
odd

(φ) < 0 for φ ∈ (0, 17π32 ) ∪ ( 47π32 , 2π)

and H′
odd

(φ) > 0 for φ ∈ [ 17π32 , 47π32 ] (Figure 3). In the

following, we consider the stability of the solutions described

in Section 3 above.

4.1.1. Diagonal stripes

As shown in Section 3, if n and m are divisible by p, the

system admits p-cluster diagonal stripe solutions with phase

differences ψh = ψv = ψ and ψh = ψ ,ψv = 2π − ψ .
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FIGURE 2

Illustration of cluster solutions in a 6× 6 network. Circles that are the same color represent neurons that are in the same cluster. (A)

synchronous solution. (B) 2-cluster diagonal stripe solution. (C) 3-cluster horizontal stripe solution. (D) 2-cluster vertical stripe solution. (E)

3-cluster diagonal stripe solution. (F) (2, 3) 6-cluster solution. (G) (2, 6) 6-cluster solution. (H) (3, 6) 6-cluster solution.

Consideration of Equations (15), (16) with h2 = v2 = 0 and

d = 0 shows that these diagonal stripe solutions will be stable if

H′
odd

(ψ) > 0 and unstable if H′
odd

(ψ) < 0. For example, the 2-

and 3-cluster diagonal stripe solutions (corresponding toψ = π

and ψ = 2π
3 or 4π

3 , respectively) will be stable if they exist in a

given network, while the 4- and 6-cluster solutions (ψ = π
2 or

3π
2 and ψ = π

3 or 5π
3 , respectively) will be unstable.

Setting d > 0 in Equations (15), (16) shows that the addition

of diagonal coupling can destabilize a stable diagonal stripe

solution if min(h1, v1)H
′
odd

(ψ) + d
(

H′
odd

(2ψ)+ H′
odd

(0)
)

<

0. For example, the 2-cluster diagonal stripe solution can be

destabilized in our network model if

d > − Hodd(π)

2H′
odd

(0)
min(h1, v1) ≈ 7.59min(h1, v1), (18)

but the 3-cluster diagonal stripe solutions cannot be destabilized

as H′
odd

( 4π3 )+ H′
odd

(0) > 0. Diagonal cluster solutions that are

unstable with d = 0 need to be considered individually. Analysis

of the eigenvalues (15)-(16) shows that with homogeneous

coupling (h1 = v1 = d), the 4-cluster and 6-cluster

diagonal stripe solutions are unstable in the 4 × 4 and 6 × 6

networks, respectively.

4.1.2. Horizontal/vertical stripes

As shown in Section 3, if m is divisible by p, the

system admits a p-cluster horizontal stripe solution with phase

differences ψh = 0 and ψv 6= 0. Since H′
odd

(0) < 0 for our

model, if v2 = h2 = 0 and d = 0 in Equation (17) the

eigenvalues λ
J
j0 will have positive real part. So without diagonal

coupling, we expect the horizontal stripe solutions (and similarly

the vertical stripe solutions) to be unstable. However, if d > 0,

then these eigenvalues have real part

ℜ
(

λ
J
j0

)

= −2[2dH′
odd(ψv)+ h1H

′
odd(0)]

(

1− cos

(

2π j

n

))

.

Thus, if

2dH′
odd(ψv)+ h1H

′
odd(0) > 0, (19)

the p-cluster horizontal stripe solutions may be stable. From

Figure 3, it is clear that this will only be possible for a

restricted range ∼ (π2 ,
3π
2 ) of values of ψv. In particular,

diagonal coupling may be able to stabilize the 2-cluster and 3-

cluster horizontal stripe solutions, but not the 4-cluster or 6-

cluster ones. Detailed analysis of the eigenvalues shows that for

homogeneous coupling, h1 = v1 = d, the 2-cluster solution is

stable in the 4×4 network and both the 2- and 3-cluster solutions

are stable in the 6 × 6 network. A similar analysis applies to the

vertical stripe solutions.

4.1.3. Other cluster solutions

As described in Proposition 3, if ph divides n and pv divides

m, then the system admits a (ph, pv) p-cluster solution with

p = lcm(ph, pv). Here, we focus on the cases with ph 6= pv

and min{ph, pv} > 1. If a network is symmetric (n = m) we

may assume that ph < pv, as similar stability results for p-cluster
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FIGURE 3

(A) The interaction function for the phase model, H(φ). (B) The odd part of the interaction function, Hodd(φ). Both are numerically computed for

the biophysical inhibitory network of Wang-Buzsaki neurons (calculated using XPPAUT). (C,D) The derivatives of these functions, calculated

using finite di�erences. For computation of stability conditions, we note that

H′
odd(0) ≈ −0.11, H′

odd(
π
3
) ≈ −1.14, H′

odd(
π
2
) ≈ −0.18, H′

odd(
2π
3
) ≈ 0.78, H′

odd(π ) ≈ 1.67.

solutions with ph > pv can be obtained by interchanging the

horizontal and vertical directions.

In the case of nearest neighbor coupling only (i.e., v2 =
h2 = d = 0), we know from Equation (14) that this p-cluster

is stable if H′
odd

(ψh) > 0 and H′
odd

(ψv) > 0, and this solution

is unstable if H′
odd

(ψh) < 0 or H′
odd

(ψv) < 0. For instance,

suppose that ph = 2 (for which n has to be even), then ψh = π

and H′
odd

(π) > 0. In 2 × 4 or 4 × 4 networks, pv = 1, 2 or

4. Since we assume that ph 6= pv and pv > 1, pv = 4. In this

case, we have a (2, 4) 4-cluster solution (since lcm(2, 4) = 4).

However, this solution will be unstable as H′
odd

(ψv) < 0 for all

possibleψv. Similarly, in 2× 6, 4× 6 or 6× 6 networks, we must

have pv = 3 or 6. If pv = 3, it leads to a (2, 3) 6-cluster solution,

and this solution is stable, sinceH′
odd

(ψv) > 0 for all the possible

ψv. If pv = 6, it leads to a (2, 6) 6-cluster solution. However, this

solution will be unstable as H′
odd

(ψv) < 0 for all possible ψv. In

6× 6 networks we can also have a (3, 6) 6-cluster solution which

is similarly unstable.

With the diagonal coupling, d > 0, a stable (or unstable)

solution can bemaintained ifH′
odd

(ψh±ψv) > 0 (orH′
odd

(ψh±
ψv) < 0). Otherwise adding diagonal coupling may change

the stability. In 4 × 4 networks, regarding the (2, 4) 4-cluster

solution discussed before, adding diagonal neighbors could not

reverse the instability as H′
odd

(ψh ± ψv) < 0. In contrast,

in 6 × 6 networks, for the (2, 3) 6-cluster solution that is

stable without diagonal coupling, adding diagonal neighbors

tends to destabilize the solution, and the stability could be lost

if d ≫ max{h1, v1}. For the (2, 6) 6-cluster solutions, which
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FIGURE 4

Illustration of the 2D configuration of cells for numerical simulations: 4× 4 network (left) and 6× 6 network (right). In both, the cells are

numbered consecutively across rows of the network lattice, and odd numbered cells are a lighter shade compared to even numbered cells. In

the figures that follow, the raster plots use the same colors.

are unstable without diagonal coupling, including diagonal

neighbors tends to stabilize the solution, and may change the

solution from unstable to stable if d≫ v1. For the (3, 6) 6-cluster

solutions adding diagonal neighbors brings in both stabilizing

and destabilizing terms. Further analysis of the eigenvalues with

homogeneous coupling (h1 = v1 = d) shows that in the 6 × 6

network the (2, 3) solution is stabilized, the (2, 6) is destabilized

and the (3, 6) solution remains unstable.

We illustrate the stability of these multiple cluster solutions

in numerical solutions of inhibitory networks of Wang-Buzsaki

neurons. In these simulations, synaptic strength is homogeneous

at the maximum conductance level h1 = v1 = gsyn, and

d = gsyn when it is non-zero.

4.1.4. Numerical simulations in 4 × 4 networks

For a 4 × 4 network with h1 = v1 = d = gsyn,

4 different cluster solutions are stable: 2-cluster horizontal,

vertical, and diagonal stripe solutions, and a 4-cluster solution

in which groups of 4 cells fire synchronously with a π
2 phase

difference between successively firing groups. We show the

numbering and coloring of our 4 × 4 and 6 × 6 networks

in Figure 4. When the cells are numbered consecutively across

rows of the 4 × 4 network lattice, the clusters in this 4-cluster

solution consist of cells {1, 3, 9, 11}, {2, 4, 10, 12}, {6, 8, 14, 16},
and {5, 7, 13, 15}. This solution differs from those discussed so

far since the horizontal and vertical phase differences ψh and

ψv are not the same for all cells but instead alternate between
π
2 and −π

2 between neighboring cells. The stability of these 4

solutions in the same network is demonstrated in Figure 5. In

each simulation, the network is initialized in one of the stable

solutions (A: 2-cluster horizontal stripe; B: 2-cluster diagonal

stripe) and a transient perturbation, in the form of increased

external current applied to a subset of cells, switches the network

to a different stable solution (A: 2-cluster vertical stripe; B:

4-cluster solution). The corresponding 2D clusters are shown

above each raster plot. If the diagonal coupling is removed

(d = 0) other simulations (not shown) indicate that the 2-cluster

horizontal stripe solution becomes unstable, while the 2-cluster

diagonal stripe solution remains stable.

4.1.5. Numerical simulations in 6 × 6 networks

In the 6×6 network, 2-, 3-, and 6-cluster solutions are stable.

For example, without diagonal coupling in the network (d = 0),

both 2- and 3-cluster diagonal stripe solutions are stable and

transient perturbations can switch the network between these

stable solutions (Figure 6A). In this simulation, the network is

initialized in the 3-cluster diagonal stripe solution and at time

t ∈ [1500, 1800] ms the applied current is transiently increased

to a subset of cells. This perturbation switches the solution to

the stable 2-cluster diagonal stripe solution. A perturbation of

the same magnitude to a different subset of cells switches the 3-

cluster diagonal stripe solution to a (2, 3) 6-cluster solution such

that ψh = π and ψv = 2π
3 (Figure 6B). The corresponding

2D clusters are shown above each raster plot. In the (2, 3) 6-

cluster solution, cells across rows break into 2 clusters while

cells along columns separate into 3 clusters, as illustrated in

Figure 2F. In this simulation, the evolution to the stable (2, 3) 6-

cluster solution took longer following the transient perturbation,

compared to the evolution to the 2-cluster diagonal stripe

solution. Generally, we expect that the evolution time to a new
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FIGURE 5

Multiple stable cluster solutions in 4× 4 inhibitory neural networks of Wang-Buzsaki model neurons. In the network cells are coupled to their

first nearest neighbors in the horizontal, vertical, and diagonal directions (h1 = v1 = d = gsyn,h2 = v2 = 0) (A) Network was initiated in the

2-cluster horizontal stripe solution and a transient perturbation (additional applied current to a subset of cells) was given over the time interval

t ∈ [1500, 1800] (between dashed vertical lines) which switches the solution to the 2-cluster vertical stripe solution. (B) Network was initiated in

the 2-cluster diagonal stripe solution and a similar transient perturbation to a di�erent subset of cells switched the solution to the stable

4-cluster solution. Above each raster plot, we show the clusters in 2D at the beginning and end. Colors inside the circle correspond to the

colors in the raster plot. Circles with the same background color represent neurons that are in the same cluster.

stable solution will depend on the specific perturbation given to

induce the switch of solutions.

In the 6 × 6 network with the addition of diagonal first

nearest neighbor coupling (i.e., d = gsyn), both 2- and 3-

cluster horizontal and vertical stripe solutions are stable, and

transient perturbations can switch the network between these

solutions (Figure 7). For example, for a network in the 3-cluster

vertical stripe solution, a transient perturbation to a subset of

cells switches the solution to the stable 2-cluster horizontal stripe

solution (Figure 7A). In the same network initialized in the 3-

cluster horizontal stripe solution, a transient perturbation to a

different subset of cells switches the network to a stable (2, 6) 6-

cluster solution with ψh = π and ψv = π
3 (Figure 7B). In this

solution, cells across rows break into 2 clusters while cells along

columns separate into 6 clusters, as illustrated in Figure 2G.

4.2. E�ect of second nearest neighbor
homogeneous coupling

Now we study the effect on the stability of the cluster

solutions of adding second nearest coupling with homogeneous
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FIGURE 6

Multiple stable cluster solutions in 6× 6 inhibitory neural network. Cells are coupled to their first nearest neighbors in the horizontal and vertical

directions only (h1 = v1 = gsyn,d = h2 = v2 = 0) (A) Network is initialized in a stable 3-cluster diagonal stripe solution. A transient perturbation to

a subset of cells, given at t ∈ [1500, 1800] ms, switches the solution to a stable 2-cluster diagonal stripe solution. (B) Network is initialized in a

stable 3-cluster diagonal stripe solution and a transient perturbation to a di�erent subset of cells switches the solution to a stable (2, 3) 6-cluster

solution. Above each raster plot, we show the clusters in 2D at the beginning and end. Colors inside the circle correspond to the colors in the

raster plot. Circles with the same background color represent neurons that are in the same cluster.

coupling strengths, i.e., h2 = v2 = d = h1 =
v1 > 0. For notational simplicity, we denote the first nearest

neighbor coupling considered in the last section as 8 nearest

neighbor coupling.

4.2.1. Diagonal stripes

As discussed in Section 4.1, if both m and n

are even, the system admits a 2-cluster diagonal

stripe solution with constant phase difference
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FIGURE 7

Multiple stable cluster solutions in the 6× 6 network. Cells are coupled to their first nearest neighbors in the horizontal, vertical, and diagonal

directions (h1 = v1 = d = gsyn,h2 = v2 = 0). (A) Network is initialized in a stable 3-cluster vertical stripe solution. A transient perturbation to a

subset of cells, given at t ∈ [1500, 1800] ms, switches the solution to a stable 2-cluster horizontal stripe solution. (B) Network is initialized in a

stable 3-cluster horizontal stripe solution and a transient perturbation to a di�erent subset of cells switches the solution to a stable (2, 6)

6-cluster solution.

ψh = ψv = π . Adding the second nearest neighbor

coupling tends to destabilize the diagonal stripes since

H′
odd

(2ψh) = H′
odd

(2ψv) = H′
odd

(0) < 0.

If m and n are divisible by 3, there is a 3-cluster

diagonal stripe solution. In our model, this solution is stable

with 8 nearest neighbors coupling. Adding second nearest

neighbor coupling will increase the stability as H′
odd

(2ψh) =
H′
odd

(2ψv) = H′
odd

(2π/3) > 0. Thus, the 3-cluster diagonal

solution will be stable with any strengths of second nearest

neighbor coupling.

If n and m are divisible by 6, there is a 6-cluster diagonal

stripe solution. In our model, this solution is unstable with 8

nearest neighbors coupling. Adding second nearest neighbor

coupling may increase (ψh = π
3 ) or decrease (ψh = 5π

3 )

the stability.

Further analysis of the eigenvalues in Equations (15), (16)

for the 6 × 6 network with homogeneous coupling (h2 = v2 =
d = h1 = v1 > 0), shows that the 2-cluster diagonal stripe

solutions remain stable, the 3-cluster solutions remain stable and

the 6-cluster solutions remain unstable.
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4.2.2. Horizontal/vertical stripes

Ifm is divisible by p, the system admits a p-cluster horizontal

stripe solution with phase difference ψh = 0 and ψv 6= 0.

Including the second nearest neighbor coupling may or may not

change the stability of horizontal stripe solutions. For example,

in 6 × 6 networks, there is a 6-cluster horizontal stripe solution

with ψv = π
3 or 5π

3 . This solution is unstable regardless of the

presence of the second nearest neighbor coupling since there is

always an eigenvalue with positive real part (From Equation 17,

ℜ(λJ
0k
) > 0, k = 1, 2, . . . , 5). The same network also admits 2-

cluster and 3-cluster horizontal stripe solutions, which are stable

with 8 nearest neighbor coupling (see Section 4.1). Evaluation

of the eigenvalues in Equation (17) shows that homogeneous

second nearest neighbor coupling (h2 = v2 = h1 = v1 = d)

cannot destabilize either of these solutions. However, we shall see

in the next section that heterogeneous coupling could destabilize

these solutions, e.g., if h2 ≫ v2. Similar results are expected

for vertical stripe solutions by swapping the horizontal and

vertical directions.

4.2.3. Other cluster solutions

If a (ph, pv) p-cluster solution is stable with 8 nearest

neighbors coupling, then adding the second nearest neighbors

can strengthen the stability if H′
odd

(2ψh) > 0 and H′
odd

(2ψv) >

0 but tends to destabilize the solution if H′
odd

(2ψh) < 0 or

H′
odd

(2ψv) < 0. On the other hand, if a p-cluster solution

with 8 nearest neighbors coupling is unstable, including the

second nearest neighbors may change the stability. For instance,

consider the (2, 3) 6-cluster solution in 6 × 6 networks. This

solution could be stable in the absence of second nearest

neighbor coupling if d≪min{h1, v1} but could be destabilized by
adding second nearest neighbors if v2≫max{v1, h1}. Evaluation
of the eigenvalues in Equation (13) shows that homogeneous

second nearest neighbor coupling (h2 = v2 = h1 = v1 = d)

does not change the stability of any of the (ph, pv) 6-cluster

solutions in the 6× 6 network.

4.2.4. Numerical simulations in 6 × 6 networks

When the coupling to the second nearest neighbors in

horizontal and vertical directions are added to the 6×6 network

(h2 = v2 = gsyn), 2/̄, 3/̄, and 4-cluster solutions are stable

and transient perturbations can switch the network between

these stable solutions (Figure 8). In Figure 8A, the network is

initialized in a stable 2-cluster horizontal stripe solution. A

transient perturbation to a certain subset of cells switches the

2-cluster horizontal stripe solution to a stable 4-cluster solution

in which groups of 9 cells fire synchronously with a π
2 phase

difference between successively firing groups. Similar to the 4-

cluster solution shown in Figure 5B, this solution differs from

those considered in Section 3 since the horizontal and vertical

phase differences ψh and ψv alternate between π
2 and −π

2

between neighboring cells. In Figure 8B, the same network is

initialized in the 3-cluster vertical stripe solution and a transient

perturbation to a subset of cells switches this solution to a stable

2-cluster solution with non-uniform phase differences between

neighboring cells. Thus, some cells have constantψh andψv, but

other cells do not.

When the diagonal coupling is set to zero (d = 0)

while keeping all other couplings non-zero in the 6 × 6

network, numerical simulation confirms that the 2-cluster

horizontal stripe solution shown in Figure 8A becomes unstable,

as predicted by evaluation of the eigenvalues in Equation (15)

with n = m = 6, ψh = 0 and ψv = π .

4.3. Heterogeneous coupling strengths

The numerical simulations discussed so far have considered

h1 = v1 = d = h2 = v2 for simplicity. However, our derived

expressions for the eigenvalues e.g., Equation (13), do not

depend on this assumption. We will consider the implications

of this more general expression in this section.

First, we note that if the coupling strengths are slightly

perturbed from this homogeneous case, then we don’t expect

that the stability should change. To see this, note that the

eigenvalues in Equation 13 are linear in all the coupling

strengths. So if the coupling strengths are perturbed from the

homogeneous case, i.e., h1 = A + Bĥ1, v1 = A + Bv̂1, d =
A+Bd̂, h2 = A+Bĥ2, v2 = A+Bv̂2, then the eigenvalues satisfy

ℜ
(

λ
J
jk

)
∣

∣

∣

h1,v1,...
= ℜ

(

λ
J
jk

)
∣

∣

∣

A,A,...
+ B ℜ

(

λ
J
jk

)
∣

∣

∣

ĥ1,v̂1,...

So if B is small enough the change in the eigenvalue

will be small enough that the real part should not

change sign.

If the coupling strengths are changed significantly, of course,

the stability of solutions may change. In the rest of this

section we use the stability conditions in Section 3 to study

how introducing strongly heterogeneous coupling strengths

may destabilize cluster solutions or give rise to new stable

cluster solutions.

It was shown in Section 4.1 that with first nearest neighbor

coupling only (h1 = v1 = d, h2 = v2 = 0), the 2-

cluster diagonal stripe solution in the 6 × 6 network is stable,

but with sufficiently strong diagonal coupling (d >≈ 7.59h1)

this solution can be destabilized. See Equation (18). Numerical

simulations of the network (not shown) confirm that with

h1 = v1 = 1, h2 = v2 = 0, a value of d > 7.6 is

required to destabilize this solution. Further evaluation of the

eigenvalues given by Equation (15) for the 6× 6 network shows

that sufficiently strong diagonal and second nearest neighbor

coupling (d = h2 = v2 > h1 = v1) should also be able

to destabilize the 2-cluster diagonal stripe solution. Numerical

simulations of theWang-Buzsaki inhibitory network confirming
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FIGURE 8

Stable cluster solutions in the 6× 6 network. Cells are coupled to their first nearest neighbors in the horizontal, vertical, and diagonal directions,

and to their second nearest neighbors in the horizontal and vertical directions (h1 = v1 = d = h2 = v2 = gsyn). (A) Network is initialized in a stable

2-cluster horizontal stripe solution. A transient perturbation to a subset of cells, given at t ∈ [1500, 1800] ms, switches the solution to a stable

4-cluster solution. (B) Transition from a stable 3-cluster vertical stripe solution to a stable 2-cluster solution after the similar transient

perturbation is applied.

this are shown in Figure 9. In Figure 9A with homogeneous

coupling strengths (h1 = v1 = d = h2 = v2 = 1), the

network is initialized on the 2-cluster diagonal stripe solution

and then returns to this solution after a transient perturbation

to a certain subset of cells is applied at t ∈ [1500, 1600] in

the network. This demonstrates the stability of this solution. In

Figure 9B, heterogeneous coupling with stronger second nearest

neighbor and diagonal coupling is introduced (h1 = v1 =
1, d = h2 = v2 = 4). Here, the same perturbation applied to

the 2-cluster diagonal solution switches the network to a stable

8-cluster solution.

With homogeneous coupling strengths in a 6 × 6 network,

(ph, pv) 6-cluster solutions with pv = 6 are unstable

(Section 4.1). However, if the horizontal coupling to the first

nearest neighbors becomes stronger than the vertical coupling

(e.g., h1 = d = h2 = v2 = 1 but v1 = 0.4), this heterogeneity

gives rise to a stable (3, 6) 6-cluster solution such that ψh = 2π
3

andψv = π
3 (Figure 9C). In this solution, cells across rows break
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FIGURE 9

Stable cluster solutions in the 6× 6 network. Cells are coupled to their first nearest neighbors in the horizontal, vertical, and diagonal directions,

and to their second nearest neighbors in the horizontal and vertical directions. (A,B) The e�ect of heterogeneous coupling strengths on the

stability of the 2-cluster diagonal stripe solution; (A) With homogeneous coupling strengths (h1 = v1 = d = h2 = v2 = 1) the network returns to

the 2-cluster diagonal stripe solution after a su�ciently small perturbation is applied for t ∈ [1500, 1600] ms. (B) With stronger coupling to the

first nearest neighbors in the diagonal direction and to the second nearest neighbors in horizontal and vertical directions

(h1 = v1 = 1,d = h2 = v2 = 4), the same perturbation switches the network to a stable 8-cluster solution. (C) Stability of (3, 6) 6-cluster solution

with weaker coupling to the first nearest neighbors in the vertical direction (h1 = d = h2 = v2 = 1, v1 = 0.4). The network starts on the solution

and then returns to it after a transient perturbation applied for t ∈ [1500, 1800] ms. The corresponding 2D clusters for each stable solution after

transient perturbations are shown next to each raster plot.

into 3 clusters while cells along columns separate into 6 clusters,

as illustrated in Figure 2H.

We can further break the coupling symmetry in our

networks if we relax the assumption that the connectivity matrix

W is symmetric, that is, if we let wi,j 6= wj,i. This returns us

to the general stability condition (12). Note that this condition

depends on H, not Hodd and, from Figures 3B,D, there is

asymmetry in H(φ). This could lead to interesting results if W

is not symmetric.

5. Discussion

We have shown the existence of synchronized cluster

solutions and found their stability conditions in networks

of intrinsically oscillating neurons on a general 2D torus.

The stability conditions are derived generally for potential

coupling to nearest neighbors in the vertical and horizontal

directions, nearest neighbors in the diagonal directions, and

second nearest neighbors in the vertical and horizontal
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TABLE 2 Cluster solutions for the 4 × 4 network and the stability as predicted by the phase model analysis for various homogeneous coupling

arrangements.

Clusters Type ψh ψv h1 = v1 > 0 h1 = v1 = d > 0

Horizontal 0 π Unstable* Stable*

2 Vertical π 0 Unstable Stable*

Diagonal π π Stable* Stable*

Horizontal 0 π
2
, 3π

2
Unstable Unstable

4 Vertical π
2
, 3π

2
0 Unstable Unstable

Diagonal π
2
, 3π

2
π
2
, 3π

2
Unstable Unstable

Diagonal π
2
, 3π

2
3π
2
, π
2

Unstable Unstable

(2, 4) π π
2
, 3π

2
Unstable Unstable

(4, 2) π
2
, 3π

2
π Unstable Unstable

Solutions marked with a * have been verified numerically.

directions.We considered specific solutions arising from various

connectivity configurations and different coupling strengths.We

also considered heterogeneous coupling strengths. We showed

that cluster solutions could change stability if we add or

remove connections between nearest neighbors in the diagonal

directions or second nearest neighbors in the vertical and

horizontal directions. We then used simulations of biophysical

inhibitory neural networks (4 × 4 and 6 × 6) to verify our

analytical predictions about which solutions would be stable

under various configurations. See Tables 2, 3 for a summary of

the results with homogeneous coupling. For some solutions, the

clusters in the 2D network can be thought of as generalizations

of cluster solutions that occur in 1D networks, where isolating

a ring in the horizontal or vertical direction results in a

solution with constant phase differences between neighboring

cells. Examples of this would be the diagonal, horizontal, and

vertical stripe solutions. However, the 2D nature of the coupling

introduces other solutions that are not simple generalizations

of 1D solutions. For example we found p-cluster solutions with

ph clusters in the horizontal direction and pv clusters in the

vertical direction. Further, in our numerical simulations we

observed stable solutions where the phase differences between

neighboring cells are not uniform across the network but do

follow a regular pattern, such as in Figures 5B, 8A, and stable

solutions where the number of neurons in different clusters

is different, such as in Figure 9B. While the stability of some

of these observed solutions makes sense intuitively, we have

not yet been able to find general stability conditions for these

types of solution.

Our existence and stability analyses apply to general m ×
n 2D networks. While our numerical simulations focused on

square (m = n) 2D networks, similar types of solutions will be

exhibited in rectangular (m 6= n) as long as the existence and

stability conditions are met. For example, 2-cluster horizontal

(vertical) stripe solutions will exist in any size network that

has an even number of rows (columns). Similarly, 2-cluster

(3-cluster) diagonal stripe solutions will exist in any size network

where the number of rows and columns is even (divisible by

3). Additionally, the types of (ph, pv) p-cluster solutions that we

observed in square networks will exist in rectangular networks

as long as the number of columns is divisible by ph and the

number of rows is divisible by pv. The stability of any of

these solutions can be determined using our expressions for

the eigenvalues.

Diagonal coupling seems to be particularly important in

determining the stable cluster solutions and differentiates the

2D network from the 1D network. Without diagonal coupling,

if either the ph- or pv-cluster solution is unstable for the 1D

network, then the (ph, pv) p-cluster solution is unstable for the

2D network. However, adding diagonal coupling increases the

number of predicted stable solutions. For example, in the 6 × 6

network, the number of stable solutions increases from 9 to 15

(see Table 3). We can also find new types of p-cluster solutions

for the 2D network. Even if p-cluster solutions cannot exist in

1D networks with n and m neurons, there can exist p-cluster

solutions in the 2D m × n networks if there are ph, pv (which

dividem, n, respectively) such that p = lcm(ph, pv).

While our analysis results can be applied to any type of

network, we chose to focus on networks of inhibitory neurons.

Intuitively, one might expect that the most stable configurations

in such networks would be when neurons that are connected

don’t fire synchronously, equivalently, that the clusters would

contain neurons that are not directly coupled. Indeed we found

a very stable 4-cluster solution in both the 4 × 4 and 6 × 6

networks where neurons in the same cluster were minimally

connected (see Figures 5B, 8A). However, we also found stable

solutions where neurons in the same cluster are directly coupled.

The stability of many of these solutions was enabled by the 2D

structure of the network and specifically the diagonal coupling

discussed above. The relative phases of neurons in different

clusters is an important factor in determining stability. In phase

model analysis the effect of the relative phase on stability is
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TABLE 3 Cluster solutions for the 6 × 6 network and the stability as predicted by the phase model analysis for various homogeneous coupling

arrangements.

Clusters Type ψh ψv h1 = v1 > 0 h1 = v1 = d > 0 h1,2 = v1,2 = d > 0

2 Horizontal 0 π Unstable Stable* Stable*

Vertical 0 π Unstable Stable Stable

Diagonal π π Stable* Stable Stable

3 Horizontal 0 2π
3
, 4π

3
Unstable Stable* Stable

Vertical 2π
3
, 4π

3
0 Unstable Stable* Stable*

Diagonal 2π
3
, 4π

3
2π
3
, 4π

3
Stable Stable Stable

Diagonal 2π
3
, 4π

3
4π
3
, 2π

3
Stable* Stable Stable

6 Horizontal 0 π
3
, 5π

3
Unstable Unstable Unstable

Vertical π
3
, 5π

3
0 Unstable Unstable Unstable

Diagonal π
3
, 5π

3
π
3
, 5π

3
Unstable Unstable Unstable

Diagonal π
3
, 5π

3
5π
3
, π
3

Unstable Unstable Unstable

(2, 3) π 2π
3
, 4π

3
Stable* Unstable Unstable

(3, 2) 2π
3
, 4π

3
π Stable Unstable Unstable

(2, 6) π π
3
, 5π

3
Unstable Stable* Stable

(6, 2) π
3
, 5π

3
π Unstable Stable Stable

(3, 6) 2π
3
, 4π

3
π
3
, 5π

3
Unstable Unstable Unstable

(6, 3) π
3
, 5π

3
2π
3
, 4π

3
Unstable Unstable Unstable

Solutions marked with a * have been verified numerically.

determined by the slope of the interaction function, at the

relative phase (see Figure 3). Not surprisingly, we found that

solutions with relative phases of π are the most strongly stable;

however solutions with any relative phases φ ∈ [ 17π32 ,π] are

also stable. Interestingly, the most strongly destabilizing relative

phase was not 0, but around 3π
16 . This makes sense if we keep

in mind that coupling between cells is not instantaneous in our

model network but through simulated chemical synapses which

introduce a small delay. Such a small delay changes the phase

when the inhibition is felt by the post-synaptic neuron. Stability

of a solution in a network with a particular coupling structure

occurs when the coupling strength is stronger between neurons

with relative phases that are stabilizing than between neurons

whose relative phases are destabilizing.

Cluster solutions in model networks have been linked to

neural assemblies in the brain as these are solutions where the

neurons form groups, with neurons in the same group firing

synchronously and neurons in different groups firing phase-

locked with non-zero phase difference. Our analysis results show

how such assemblies can arise spontaneously, generated only by

the connectivity of the network and the dynamics of the neurons.

In our model of 2D networks of intrinsically oscillatory neurons,

a vast range of cluster solutions can exist, with multiple stable

solutions occurring for the same parameter values. For the small

6 × 6 inhibitory networks we studied in detail, with certain

coupling configurations we found four different stable cluster

solutions in our numerical simulations. Larger networks would

be expected to have more such solutions. In these simulations,

we were able to switch the network between solutions by adding

transient input to a subset of the neurons. This gives one

mechanism for the formation of neural assemblies, where the

different stable cluster solutions represent different assemblies

and transient external input to the network switches the system

from one assembly to another. We note that the number of

clusters in the solution affects the network level behavior. For

example, a 2-cluster solution will give a network firing rate that

is twice the intrinsic firing rate of the neurons. Thus, the co-

existence of stable cluster solutions gives a mechanism for the

network to respond to different transient inputs with different

network firing rates. We also showed how changing the coupling

configuration could switch the stable cluster solutions that

occur. For example, adding diagonal coupling could increase the

number of stable solutions and changing the relative strengths

of different coupling connections could change the stability of

cluster solutions. Thus, changes in network connectivity gives

another mechanism for changing the number and composition

of the neural assemblies that a network can exhibit. In our

example simulations, neurons formed connections with between

4 and 12 of their neighbors. Thus, the connectivity ranged from

sparse (∼ 10% for 6 × 6 networks with 4 connections) to dense

(∼ 75% connectivity for 4 × 4 networks with 12 connections).

Our results indicate that the structure of connectivity is more

important for forming clusters than density of connectivity.

Neural assembly firing has been identified in the striatum,

a sparsely coupled, inhibitory network that is part of the basal

ganglia circuit (Carrillo-Reid et al., 2008; Miller et al., 2008;
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Adler et al., 2013; Barbera et al., 2016; Klaus et al., 2017). Based

on an extensive review of anatomical and experimental evidence,

Burke et al. (2017) proposed that lateral inhibition between spiny

neurons in the striatum organizes the cells into assemblies, with

different assemblies corresponding to different behaviors. Our

work supports this proposal. In our model, the external input

that switches between assemblies would correspond to excitatory

input to the striatum from the cortex or thalamus. Further, the

strength of synapses in the striatum can be affected by changes

in dopamine level (Lemos et al., 2016; Dobbs et al., 2017), which

would correspond to changing the connections strengths in

our network. Of course our model is much simpler than the

striatum, which includes multiple different populations of spiny

neurons as well as several populations of interneurons (Burke

et al., 2017). Future work could include extending our model to

include more populations.

Recent work on memory formation suggests that some

brain regions have pre-configured neural ensembles, allowing

memories to be encoded quickly (Grosmark and Buzsáki,

2016; Farooq et al., 2019; Miyawaki and Mizuseki, 2022).

The internal generation of multiple assemblies we find in

our study gives a mechanism for this. Although the model

networks in our simulations were inhibitory, the analysis

does not depend on the type of coupling. A topic for

future work would be to apply our results to excitatory or

excitatory/inhibitory networks.

It would be interesting to see how our work extends to more

biologically realistic coupling regimes. One obvious extension

would be to take the continuum limit (i.e., m, n → ∞),

resulting in a 2D partial differential equation for the phases

of the neurons, φ(x, y). While there have been several studies

of 1D continuum models (Ermentrout, 1992; Strogatz, 2000;

Wiley et al., 2006; Kazanci and Ermentrout, 2007; Sethia et al.,

2011; Girnyk et al., 2012; Omel’chenko et al., 2014; Heitmann

and Ermentrout, 2015), we know of only one study of a 2D

continuum model (Heitmann et al., 2012). Analysis of the

existence and stability of wave solutions (the continuum analog

of our phase-locked cluster solutions) has only been done in 1D

models. This work has primarily focused on either homogeneous

coupling or symmetric distance-dependent coupling, and either

excitatory or center-surround coupling, where neurons receive

excitation from near neighbors and inhibition from further

neighbors.The extension to purely inhibitory 2D networks can

in principle be done, although the analysis may be challenging.

Our work on discrete networks and numerical studies of

discrete and continuum models (Heitmann et al., 2012; Spreizer

et al., 2017) indicates that it would be of particular interest to

consider non-monotonic coupling and heterogeneous coupling.

Further, some interesting behavior in our models results from

the non-square matrices, which could be incorporated by

choosing different length scales in a continuum model. Another

extension of our work would be to relax or change the

structure in the connectivity matrix. Other biologically relevant

possibilities include small-world networks and networks with

hubs (Bullmore and Sporns, 2009; Bassett and Bullmore, 2017).
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