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Modeling the tonotopic map
using a two-dimensional array
of neural oscillators
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1Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti

Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India, 2Department of
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We present a model of a tonotopic map known as the Oscillatory Tonotopic

Self-Organizing Map (OTSOM). It is a 2-dimensional, self-organizing array of

Hopf oscillators, capable of performing a Fourier-like decomposition of the

input signal. While the rows in the map encode the input phase, the columns

encode frequency. Although Hopf oscillators exhibit resonance to a sinusoidal

signal when there is a frequencymatch, there is no obvious way to also achieve

phase tuning. We propose a simple method by which a pair of Hopf oscillators,

unilaterally coupled through a coupling scheme termed as modified power

coupling, can exhibit tuning to the phase o�set of sinusoidal forcing input.

The training of OTSOM is performed in 2 stages: while the frequency tuning

is adapted in Stage 1, phase tuning is adapted in Stage 2. Earlier tonotopic

map models have modeled frequency as an abstract parameter unconnected

to any oscillation. By contrast, in OTSOM, frequency tuning emerges as a

natural outcome of an underlying resonant process. The OTSOM model can

possibly be regarded as an approximation of the tonotopic map found in the

primary auditory cortices of mammals, particularly exemplified in the studies

of echolocating bats.

KEYWORDS

self-organizing map, tonotopy, modified power coupling, interference, resonance,

Hopf oscillator, entrainment, synchronization

Introduction

The discovery of cortical brain maps in mammalian brains is perhaps one of the first

milestones in our understanding of how the brain generates representations of the world.

Visual research had discovered a rich hierarchy of maps of various sub-modalities of

vision (orientation, curvature, color, and even complex objects) in various visual cortical

areas extended over the occipital, parietal, and temporal lobes (Hubel and Wiesel, 1959;

Hadjikhani et al., 1998; Wandell et al., 2007; Yue et al., 2020). A similar network of maps

of somatotopy was found in the somatosensory areas of the postcentral gyrus and the

posterior parietal cortex (Penfield, 1937). These studies have placed on a firm foundation

the understanding that sensory information in the brain is often laid out in the form

of a system of topographic maps. However, efforts to establish a similar map structure
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underlying auditory processing—popularly referred to as

tonotopic maps—are met with considerable challenges.

Tonotopy begins in the inner ear, in the hair cells laid out

along the length of the basilar membrane inside the cochlea

(von Bekesy, 1949). Parts of the basilar membrane respond to

different frequencies, with the tuning frequency increasing in the

apex to the base direction (Ruggero, 1992). Thus, there is a well-

established tonotopy in the cochlea, sometimes also referred

to as cochleotopy. Beyond the cochlea, there is a hierarchy of

areas along the auditory pathway (Clopton et al., 1974; Ehret

and Romand, 1996; Palmer and Rees, 2010). Although there is

a general agreement that what is mapped in tonotopic maps is

the frequencies, other auditory parameters like sound intensity

and tuning bandwidth are also explored (Schreiner and Sutter,

1992; Boynton et al., 2015).

Earliest studies on tonotopy focused on frequency tuning,

treating it as one of the primary features if not the sole defining

feature of auditory response. Merzenich et al. (2018) found a

systematic representation of cochlea within the primary auditory

cortex of cats. It was observed that frequency bands of the

input stimuli are mapped onto rectilinear strips in the auditory

cortex. Similar observations were made in the auditory cortex

of the gray squirrel (Merzenich et al., 1976). Investigations of

the auditory cortex in owl monkeys have discovered a central

area with orderly mapping of audible frequencies, circumscribed

by areas where neurons show more complex responses than

frequency tuning (Imig and Adrian, 1977). However, the exact

nature of the complex responses was not elaborated in the

last study.

A hierarchically organized network of areas with complex

information processing properties was discovered subsequently

in the auditory cortex of the bat (Suga, 1990). Contrary to

popular belief, bats are not visually blind, although the extent

of visual capacity varies with different subspecies of bats. But

bats predominantly depend on echolocation to navigate through

the spatial world. Bats emit ultrasound pulses in the frequency

range of tens of kilohertz, and interpret the spatial world from

the echoes returned by the environment. Whereas the delay

between the emitted and the received pulse reveals distance,

Doppler shift in the echo reveals the relative velocity between

the echolocating bat and a target. Pioneering studies of the bat’s

auditory system by Alvin Novick, James Simmons, Nobuo Suga,

and others revealed that these complex auditory functions of the

bat are subserved by a well-developed auditory system (Novick

and Vaisnys, 1964; Suga, 1990; Suga et al., 1997; Bates et al., 2011;

Simmons, 2012).

Studies by Nobuo Suga and colleagues with the mustached

bat described an elaborate network of auditory cortical areas

with an intrinsic hierarchy not very different from that of

the primate visual system (Hubel and Wiesel, 1959). The

mustached bat emits composite pulses that have an initial

Constant Frequency (CF) section terminated by a Frequency

Modulated (FM) section. There is a cortical region in which

neurons respond only to certain combinations of frequencies

and amplitudes of echoes. There is a region where neurons

respond only to frequency differences between the emitted pulse

and its echoes, probably encoding Doppler shift. In another

region, there are neurons that respond to the time delay between

the emitted pulse and the echo, perhaps encoding the distance to

the target. The gains obtained from the study of the bat’s auditory

system are not yet fully exploited in unraveling the auditory

architecture of the brains of higher mammals and humans.

In the domain of computational modeling, one of the

earliest tonotopic map models used a Self-Organizing Map

(SOM) model to model the auditory cortex of mustached bats

(Ritter et al., 1992). The model adopted a simplistic view of

the organization of the bat’s auditory cortex—that the input

frequencies are mapped along a rectilinear strip of the cortex—

and shows how such a mapping can be realized using a

rectangular SOM model. A key limitation of the model is the

representation of frequency as an explicit scalar variable and not

as an implicit temporal property of an ongoing oscillation. The

SOM approach to modeling tonotopy was extended to construct

a model of a “phonetic typewriter” (Kohonen, 1988). Palakal

et al. (1995) presented a tonotopic map model also based on the

SOM approach, describing neural tuning to both frequency and

delay. Here, too, frequency and delay are explicitly represented

as scalar variables, and not as implicit temporal properties of

a signal.

Models tend to make simplifying assumptions of the

processes they aim to model, but it is rather unnatural to model

frequency as simply a number without explicitly modeling the

oscillation that the frequency refers to. A tonotopic map is

primarily a response to tones, which are oscillations. Oscillatory

activities are found at all levels in the auditory pathway, from

cochlea to inferior colliculus to higher auditory cortical areas.

Essentially, the active nonlinearity exhibited by the outer hair

cells of cochlea is well recognized to be modeled using Hopf

oscillators critically poised at the bifurcation regime (Eguíluz

et al., 2000; Frank et al., 2001; Kern and Stoop, 2003; Lerud

et al., 2019). A network of coupled ‘neural oscillators’ can be

reduced to a canonical model when it operates near a multiple

Andronov-Hopf bifurcation point (Aronson et al., 1990;

Hoppensteadt and Izhikevich, 1996). The neural oscillators

are generally representative of distinguishably interconnected

population excitatory and inhibitory neurons (Hoppensteadt

and Izhikevich, 1997). Gradient frequency neural networks

(GrFNN) are an attempt to model auditory signal processing

using a network of such a heterogeneous frequency canonical

model of oscillators (Large et al., 2010; Kim and Large, 2015,

2019, 2021; Farokhniaee et al., 2020). However, these are single-

unit models of oscillation and not map models.

From the aforementioned quick review of auditory response

models, we understand that there are tonotopic mapmodels that
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do not explicitly model the underlying oscillation, and there are

oscillatory models at a single-unit level that is not extended to

map models. Thus, the challenge of constructing a tonotopic

map model of nonlinear oscillators is still unrealized, which

becomes the motivation of this work.

We present a tonotopic map model consisting of a 2-

dimensional array of nonlinear oscillators. Specifically, we

choose the Hopf oscillators since these oscillators have been

extensively used to model auditory responses (Frank et al.,

2001; Large et al., 2010; Fredrickson-hemsing et al., 2012; Kim

and Large, 2015; Farokhniaee et al., 2020). In the following

methods section, we have presented the dynamics of the

OTSOM model along with the dynamical analysis of a single

unit of the OTSOM model and the modified power coupling

strategy along with the modified Hebbian learning rule to

train it. The dynamical analysis of the two stages to train

the characterizing frequencies and the phases of the model

is presented thereafter. The numerical analysis from the unit

level to the network level is presented in the subsequent

results section.

Methods

The conventional self-organizing maps are known

for their special characteristic of organizing internally

represented features on a spatial scale, i.e., the neurons

representing similar abstract features in the input data

organize themselves spatially close to each other through

competitive learning (Kohonen, 1998). Typically, SOM models

perform dimensionality reduction of a high dimensional

input vector by projecting it onto a low dimensional spatial

map space. In other words, the input data points located

nearby in the N-dimensional Euclidean space get mapped

onto nearby neurons in the map. The map space can be

maximum up to 3 dimensional as it is not easily visualized

beyond 3 dimensions. Also, brain maps are typically 2-

dimensional, referring typically to cortical sheets of neurons,

or mildly 3-dimensional, if the small cortical thickness

is included.

The objective of our modeling study is to propose a

dynamical self-organizing map model, which can organize the

features of complex sinusoidal signals on a 2-dimensional grid

of nonlinear oscillators. Signals of any duration have a static

representation in the Fourier space or frequency domain. The

proposed model is capable of organizing features of complex

sinusoidal signals, such as frequency and phase offset, in

terms of the parameters of intrinsic dynamics of the single

neural oscillator and the connectivity parameters during the

training phase. During testing, the trained map model can

represent the features of any composite signal with multiple

frequency components.

Oscillatory tonotopic self-organizing
map (OTSOM)

The Oscillatory Tonotopic Self-Organizing Map (OTSOM)

model consists of a 2D array of Hopf oscillators (Strogatz,

1994) - the “Cortical Array of Oscillators” (CAO) - operating

at supercritical Hopf regime as described in Figure 1. A single

isolated oscillator located apart from the CAO is interpreted

as a subcortical oscillator, and labeled as Subcortical Reference

Oscillator (SRO) since it serves as a reference for the phases of

the cortical oscillators. Although there are no lateral interactions

between the oscillators in CAO, the SRO projects unilateral,

trainable connections to all the oscillators in CAO. Thus,

each oscillator in CAO receives two inputs: (1) from the SRO

(termed as Ir) and (2) from the external input (termed as Ie)

(Figure 1). Neurobiologically, Ie and Ir represent the afferent

neuronal signal, conveying auditory stimulus and the thalamic

projection to the auditory cortex, respectively. The connections

from the external input to the CAO oscillators have uniform

fixed weights.

Before going into more details of the dynamics of the

OTSOM model, let us first understand the dynamics of the

constituting components of the OTSOM model. As mentioned

before, the CAO oscillators and the SRO are Hopf oscillators.

A single Hopf oscillator can be represented in Cartesian

(Equations 1a, b) and polar coordinates (Equations 2a, b),

respectively, as follows:

ẋ =
(

µ− β1

(

x2+y2
))

x− ωy (1a)

ẏ =
(

µ−β1
(

x2+y2
))

y+ωx (1b)

ṙ =
(

µ− β1r
2
)

r (2a)

∅̇ = ω (2b)

where (x, y) are cartesian coordinate variables and (r,∅) are

polar coordinate variables; ω defines the angular velocity

or the natural frequency of the oscillator. Refer to the

Supplementary Table S1 for the variable/parameter notations

and representations. The parameters µ and β1 determine the

dynamic regime of the Hopf oscillator: for µ = 0, β1 > 0, it

operates in critical Hopf regime; for µ > 0, β1 > 0, it operates

in supercritical Hopf regime, and, when µ = 0, β1 = 0, it is a

simple harmonic oscillator (Kim and Large, 2015).

Combining x and y of Equation (1) into a complex number,

z = x+ iy, Hopf oscillator dynamics can simply be represented

on a complex plane elegantly as:

ż =
(

µ− β1 |z|2 + iω
)

z (3)

where i =
√
−1. A pair of coupled Hopf oscillators

can principally exhibit two types of dynamical phenomena:

synchronization and entrainment.
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FIGURE 1

The network architecture of Oscillatory Tonotopic Self-Organizing Map (OTSOM). The model principally contains two types of oscillators: an

array of cortical oscillators (CAO) and a Subcortical Reference Oscillator (SRO). The SRO projects unilateral, power-coupling connections to the

CAO oscillators. The external input perturbs the oscillators in CAO through uniform a�erent connections. The CAO oscillators can be visualized

to be organized either in a 2D array (A) or in a concentric circular array (B). The radial and the angular position of a CAO oscillator in the

concentric circular array is the same as its position along x and y axis, respectively, in the 2D array organization of the cortical array.

A generalized definition of synchronization has been

introduced in our previous study (Biswas et al., 2021), which

states that any two oscillators can be claimed to be synchronized

irrespective of their intrinsic oscillation frequencies if they

maintain any of the following phase relationships constant,

∅1 − ∅2, m∅1 − n∅2,
∅1
ω1

− ∅2
ω2

; m and n are natural

numbers. Whereas entrainment is the dynamical characteristic

of an oscillator, while the frequency of oscillation of the oscillator

gradually changes from its natural frequency of oscillation to

a new value when the oscillator is either coupled with another

oscillator or perturbed by an external oscillatory input of

a different frequency. Real valued symmetric coupling yields

in phase (0◦) oscillation for positive coupling, and out of

phase (180◦) oscillation for negative coupling, between two

isochronous oscillators, whereas the same pair can phase-lock

at any arbitrary phase difference if coupled through ‘complex

coupling’ strategy (Biswas et al., 2021).

To produce phase-locked dynamics from a pair of oscillators

with unequal natural frequencies requires a special kind of

complex coupling strategy labeled as ‘power coupling’ (Biswas

et al., 2021). A pair of oscillators coupled through power

coupling is defined as:

ż1 =
(

µ− β1 |z1|2 + iω1

)

z1 +W12z2

ω1
ω2 (4a)

ż2 =
(

µ− β1 |z2|2 + iω2

)

z2 +W21z1

ω2
ω1 (4b)

where,W12 = A12e
i
θ12
ω2 ,W21 = A21e

i
θ21
ω1 represent the complex

power coupling coefficients on the feedforward and feedback

branches. Considering θ12 = −θ21, and A12 = A21 , it has
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FIGURE 2

(A) The schematic diagram of a pair of Hopf oscillators,

unilaterally coupled through conventional power coupling

strategy. Here, c is typically A
(

µ

β1

)

ω1
2ω2 at a steady state. (B) The

fundamental building block of the OTSOM model. The single

CAO oscillator receives inputs from two sources: one from the

SRO and the other from the external input signal. The two

di�erences between these two frameworks are the coupling

coe�cients; the natural frequency of the SRO is eliminated from

the denominator of the angle of the coupling coe�cient, and

the second being the actual frequency of oscillation of the CAO

oscillator is used to readjust the complex activation of the SRO

(Subplot A) instead of the natural frequency of the post-synaptic

oscillator (Subplot B). The neurobiological interpretation of the

proposed model architecture can be brought about by

comparing the SRO with the neural oscillator of the thalamic

nuclei, which generally have long-range divergent projections

to cortical columns, while the CAO is compared with the

2-dimensional array of cortical columns in the auditory cortex.

been shown that the pair of oscillators can phase-lock at any

of the solutions of the equation: ∅̇1
ω1

− ∅̇2
ω2

= 0, depending

on the initial condition. The analytic solution of this problem

gets increasingly complicated as the number of oscillators in

the network increases. Another limitation of the original power-

coupling strategy is that it does not ensure synchronization,

while the coupled oscillators are entrained to a new frequency

of oscillation.

Considering a simplified scenario of a pair of Hopf

oscillators coupled through weak unilateral power coupling, the

one receiving input from the other oscillator through power

coupling is being perturbed by a strong complex sinusoidal

external input signal with frequency close to the natural

frequency of the oscillator as depicted in Figure 2A.

We will now try to show the pair of oscillators with an

external sinusoidal input as shown in Figure 2A poses a new

difficulty in phase-locking not faced by a pair of oscillators with

power coupling (Equations 4a, b). Consider the situation in

Figure 2A, where the 2nd oscillator sends a unilateral power

coupling connection to the 1st oscillator, which, in addition,

receives a complex sinusoidal signal of frequency ω0 as external

input. Note that, although the output of the 2nd oscillator has the

frequency ω2, after the power coupling connection, the signal

frequency changes to ω1. Thus, the 1st oscillator receives two

sinusoidal inputs – of frequencies ω0 and ω1. Therefore, the 1st

oscillator does not simply entrain to the external input due to the

interference from the 2nd oscillator. In order to fix this problem,

it turns out that we need a more general power coupling rule

than the original one.

Modified power coupling

To make the original power-coupling rule (Biswas et al.,

2021) more generalized, and to ensure synchronization in a

pair of power-coupled oscillators even after entrainment, a

modified version of the power-coupling strategy is proposed.

For a pair of bilaterally coupled Hopf oscillators, the modified

power-coupling mechanism is given as:

ż1 =
(

µ− β1 |z1|2 + iω1

)

z1 +W12z2

ω
∗
1

ω
∗
2 (5a)

ż2 =
(

µ− β1 |z2|2 + iω2

)

z2 +W21z1

ω
∗
1

ω
∗
2 (5b)

whereW12 = A12e
i
θ12
ω∗2 ,W21 = A21e

i
θ21
ω∗1 , the only modification

being ω∗1 and ω∗2 are actual frequencies of oscillation instead of

natural frequencies. A new set of dynamic equations (Equations

8a, b) defines ω∗1 and ω∗2 . The overall dynamics of a pair of

Hopf oscillators coupled through modified power-coupling is

represented in polar coordinates as follows.

ṙ1 =
(

µ− β1r1
2
)

r1 + A12r2

ω
∗
1

ω
∗
2 cosω

∗
1

(

θ12

ω
∗
1ω

∗
2

+
∅2

ω
∗
2

−
∅1

ω
∗
1

)

(6a)

∅̇1 = ω1 + A12
r2

ω
∗
1

ω
∗
2

r1
sinω

∗
1

(

θ12

ω
∗
1ω

∗
2

+
∅2

ω
∗
2

−
∅1

ω
∗
1

)

(6b)

ṙ2 =
(

µ −β1r22
)

r2 + A21r1

ω
∗
2

ω
∗
1 cosω

∗
2

(

θ21

ω
∗
1ω

∗
2

+
∅1

ω
∗
1

−
∅2

ω
∗
2

)

(7a)

∅̇2 = ω2 + A21
r1

ω
∗
2

ω
∗
1

r2
sinω

∗
2

(

θ21

ω
∗
1ω

∗
2

+
∅1

ω
∗
1

−
∅2

ω
∗
2

)

(7b)

τωω̇
∗
1 = − ω

∗
1 + ω1 + A12

r2

ω
∗
1

ω
∗
2

r1
sinω

∗
1

(

θ12

ω
∗
1ω

∗
2

+
∅2

ω
∗
2

−
∅1

ω
∗
1

)

(8a)

τωω̇
∗
2 = − ω

∗
2 + ω2 + A21

r1

ω
∗
2

ω
∗
1

r2
sinω

∗
2

(

θ21

ω
∗
1ω

∗
2

+
∅1

ω
∗
1

−
∅2

ω
∗
2

)

(8b)
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where τω is the time constant for ω∗1 and ω∗2 . It is evident

that, without Equations 8a and 8b, the modified power-

coupling is functionally the same as the conventional

one as ω∗ remains ω. It can also be observed that

neither of the oscillators can get entrained to a new

frequency of oscillation, which makes a pair of bilaterally

coupled Hopf oscillators through modified power coupling

functionally the same as a pair of bilaterally coupled Hopf

oscillators through conventional power coupling (refer to

Appendix 1).

In the subsequent sections, the details of the intrinsic

dynamics and the training framework of the OSTOM model

are described. The dynamics of a typical CAO oscillator is

given as:

żij =
(

µ−β1
∣

∣zij
∣

∣

2
)

zij + iωijzij +Wr
ijzr

ω
∗
ij
ωr + εI (t) (9)

The first two terms on the RHS denote the intrinsic

dynamics of the Hopf oscillator, the third term represents

the input from SRO (Irij = Wr
ijzr

ω∗ij
ωr ), the fourth term

represents the aggregate external input (Ie = εI (t)), where

I (t) is the actual external input. Note that only the SRO

input is given via modified power coupling, whereas the

external input I (t) is presented directly with a multiplicative

factor, ε.

Similarly, the dynamics of the SRO is given as:

żr =
(

µr − β1r |zr|2
)

zr + iωrzr (10)

The activation of the CAO oscillator at location (i, j)

is defined as zij = xij + iyij = rije
i∅ij ; similarly, the

activation of the SRO oscillator is zr = xr + iyr = rre
i∅r .

Intrinsic dynamics of the CAO oscillator is defined by the

parameters µ, β1, and ωij. Note that µ and β1 are the same

for all CAO oscillators, but ωij is different. The intrinsic

dynamics of the SRO oscillator is defined by µr , β1r , and ωr

parameters. Wr
ij is the complex power-coupling weight from

the reference oscillator to the oscillator at (i, j) in CAO, where

Wr
ij = Ar

ije
iθ rij .

The reason behind dropping the actual

frequency of the presynaptic oscillator from

the denominator of the angle of the complex

coupling coefficient will be justified in the

following sections.

The Cartesian and the polar coordinate representations

are respectively.

ẋij =
(

µ−β1
(

x2ij + y2ij

))

xij − ωijyij

+Ar
ij

(

x2r + y2r
)

ω
∗
ij

2ωr cos

(

θ rij +
ω

∗
ij

ωr

y2r
x2r

)

+ ε imag (I (t)) (9a)

ẏij =
(

µ−β1
(

x2ij + y2ij

))

yij + ωijxij

+ Ar
ij

(

x2r + y2r
)

ω
∗
ij

2ωr sin

(

θ rij +
ω

∗
ij

ωr

y2r
x2r

)

+ ε real (I (t)) (9b)

ṙij =
(

µ−β1rij2
)

rij + Ar
ijrr

ω
∗
ij
ωr cosω

∗
ij

(

θ rij

ω
∗
ij

+
∅r

ωr
−

∅ij

ω
∗
ij

)

+ εreal
(

I (t) e−i∅ij
)

(9c)

∅̇ij = ωij + Ar
ij

rr

ω
∗
ij
ωr

rij
sinω

∗
ij

(

θ rij

ω
∗
ij

+
∅r

ωr
−

∅ij

ω
∗
ij

)

+
ε

rij
imag

(

I (t) e−i∅ij
)

(9d)

ṙr =
(

µr − β1rrr
2
)

rr (10a)

∅̇r = ωr (10b)

τωω̇
∗
ij = − ω

∗
ij + ωij + Ar

ij

rr

ω
∗
ij
ωr

rij
sinω

∗
ij

(

θ rij

ω
∗
ij

+
∅r

ωr
−

∅ij

ω
∗
ij

)

+
ε

rij
imag

(

I (t) e−i∅ij

)

(11)

The uniform, real-valued, afferent connections from the

external input (I (t)) to the CAO oscillators are ε. ω∗ij and ω
∗
r

are the actual frequencies of the CAO oscillators and the SRO,

respectively. As ω∗r remains ωr , it is replaced with ωr . The

actual frequency of oscillation of the CAO oscillator can be

entrained to the frequency of the external perturbation. This

entrainment property of the Hopf oscillator is utilized to realize

the framework of the proposed model, which will be discussed

in detail in the later sections. Before elaborating the details of

the training framework of the OTSOM model, we are going to

briefly analyze the intrinsic dynamical properties of the single

unit (the SRO unilaterally coupled to a CAO oscillator) of

the model.

Dynamical response of a single unit

The single unit, which is the fundamental building

block of the whole OSTOM model, is constituted of a

single oscillator in the CAO, which receives two inputs:

(1) from the SRO via modified power coupling and (2)

from the external input. The SRO is coupled to a CAO
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oscillator unilaterally through a modified power coupling

connection (Equations 9–11). The output of the SRO, after

passing through modified power-coupling connection,

takes on the same frequency as that of the CAO oscillator

it projects to. The CAO oscillator is also driven by

an external input signal through a real-valued afferent

connection (Figure 2B). The external input is a complex

sinusoidal signal.

We now investigate the steady state response of the

single unit by analyzing (Equations 12–14). Let the external

input signal I (t) = I0e
i∅0 = I0e

i(ω0t+ξ0) where

ω0 and ξ0 are, respectively, the frequency and the phase

offset of the complex sinusoidal signal. Introducing the

following variables,

- the relative phase of the CAO oscillator w.r.t, the input, ψ =
∅− ∅0,

- relative frequency of the CAO oscillator w.r.t, the input,� =
ω − ω0, and

- the normalized phase difference between the CAO oscillator

and the SRO, λr = ∅

ω∗ − ∅r
ωr

,

the Equations 9–11 can be simplified to:

ṙ =
(

µ−β1r2
)

r + Arrr
ω
∗
ωr cos

(

θr − λrω
∗
)

+ εI0 cosψ (12a)

ψ̇ = � + Ar
rr

ω
∗
ωr

r
sin
(

θr − λrω
∗
)

−
εI0

r
sinψ (12b)

ṙr =
(

µr − β1rrr
2
)

rr (13a)

∅̇r = ωr (13b)

τωω̇
∗ = − ω

∗
+ ω + Ar

rr
ω
∗
ωr

r
sin
(

θr − λrω
∗
)

−
εI0

r
sinψ (14)

Under the special condition, 0 < ε ≪ 1, the single unit

is equivalent to a pair of unidirectionally coupled oscillators

through modified power coupling. There are two differences

between the modified power coupling used under the unilateral

coupling scenario in this study and the conventional power

coupling proposed in (Biswas et al., 2021). In the conventional

power coupling scheme of (Biswas et al., 2021), the complex

state of the oscillator is raised to the ratio of the intrinsic

frequencies of the presynaptic and postsynaptic oscillators. In

the modified power coupling proposed now, the exponent is the

ratio between the actual frequency of oscillation of the post-

synaptic oscillator and the actual frequency of oscillation of

the presynaptic oscillator (denoted by the dynamical variable

ω∗ as defined by Equations 11 and 14). The second difference

is that, in modified power coupling, the angle of the complex

power coupling coefficient does not incorporate the natural

frequency of the presynaptic oscillator in the denominator

(conventional and modified power coupling coefficients are:

Wij = Aije
i
θij
ωj and Wij = Aije

iθij , respectively, where i and j

are the indices of the presynaptic and the postsynaptic oscillator,

respectively). At a steady state, the normalized phase difference

between the two oscillators
(

∅

ω∗ − ∅r
ωr

)

will be 1
ω times the

angle of the complex coupling coefficient (θr) (see Appendix 1

for proof).

Under normal condition (ε 6= 0), we are going to consider

the special scenario whereω0 falls under the entrainment regime

of the CAO oscillator. The entrainment regime of an individual

oscillator, receiving only εI (t) as input, denotes the range of

values of � for which the Hopf oscillator exhibits either stable

a fixed point or stable spiral behavior in (r, ψ) space under

the influence of I (t). Inside entrainment regime, the actual

frequency of oscillation (ω∗) of the oscillator is entrained to

the frequency of the input signal (ω0) if the natural frequency

of the Hopf oscillator (ω) is sufficiently close to ω0. (i.e., |�|
is sufficiently small). In Figure 3, the entrainment regime can

be identified as the purple region as a function of µ, β1,

and the intensity of the driving input (εI0). The boundary of

the entrainment regime on this parameter space can also be

identified as an analytical expression. From Appendix 2, we

found out that the steady-state phase offset of the oscillator

inside the entrainment regime is: ξ0 + �rss
εI0

. At the boundary

of the entrainment regime, the argument of the arcsin operator

is 1. i.e., �rssεI0
= 1, which is presented in Figures 3D–F as

a function of one of these three parameters keeping other

two fixed.

The dependency of the width of the entrainment regime,

ω on µ, β1, and εI0, is further illustrated in Figure A2.2 in

the Appendix. Although, at the beginning, the CAO oscillator

is perturbed by two complex sinusoidal input signals, one with

frequency ω (from the SRO, but after the modified power-

coupling step) and the other with frequency ω0 (external input

I (t)), it is entrained to the external input signal because of the

dominance of the perturbation by I (t) over the perturbation

caused by the input from SRO since we assume that Ar <

εI0. The entrainment width of the CAO oscillator will also

depend on θr − ξ0 (Figure 4). Since the SRO does not receive

any inputs, it always oscillates at its natural frequency of

oscillation (ωr ).

Thus, under the conditions of entrainment, a given CAO

oscillator gets two complex sinusoidal signals as inputs with

the same frequency as I (t), with different magnitude and phase

offsets, given as follows:

1) the 3rd term in the RHS of Equation 9 evolves toWr
ijzr

ω∗ij
ωr =

Ar
ijrr

ω∗ij
ωr e

i

(

θ rij+∅r

ω∗ij
ωr

)

= Ar
ijrr

ω0
ωr e

i
(

θ rij+∅r
ω0
ωr

)

=

Ar
ijrr

ω0
ωr e

i
(

ω0t+θ rij
)

at a steady state (refer to Appendix 4),

denoted by Ir (t) = are
i(ω0t+ξr) and
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FIGURE 3

The purple region on the (A–C) plots shows the entrainment regime of an individual Hopf oscillator and how it is dependent on its intrinsic

dynamical parameters (µ and β1) and the intensity of the driving input (εI0). Whereas the boundaries of the entrainment regime on this

parameter space plotted in (D–F), represented by the function �rss
εI0

= 1. In each of these plots, one of these parameters is varied while keeping

others fixed at: µ = 1, β1 = 150, εI0 = 2.

2) the 4th term in RHS of Equation 9, εI0e
i(ω0t+ξ0), denoted by

Ie (t) = a0e
i(ω0t+ξ0) (Appendix 4), where ar is dependent

on the steady state magnitude of oscillation of the reference

oscillator (rrss), which, in turn, depends on µr , β1r and

Ar . ξr being θr justifies why the actual frequency of the

presynaptic oscillator is omitted from the denominator of

the angle of the modified power coupling coefficient. Both

of these inputs either constructively or destructively interfere

with each other, depending on their relative phase offsets

(ξr − ξ0 = θr − ξ0). Since the magnitude of the response

of the CAO oscillator is either diminished or increased,

depending on the relative values of θr and ξ0, with this

arrangement, the CAO oscillator will be capable of encoding

the phase offset of the complex sinusoidal input signal

(qualitatively portrayed in Figure 5, later elaborated in the

Second stage of training: Training phase offset Subsection of

the Results section).

Modified hebbian learning

A modified Hebbian learning rule is proposed for training

the modified power coupling described in the previous section.

The complex variable and the polar coordinate version of the

modified Hebbian learning rule are described as follows:

τWẆr = −Wr + z (zr)
ω
∗
ωr (15)

τW Ȧr = − Ar + rrr
ω
∗
ωr cosω

∗
(

∅

ω
∗ −

θr

ω
∗ −

∅r

ωr

)

(15a)

τW θ̇r =
rrr

ω
∗
ωr

Ar
sinω

∗
(

∅

ω
∗ −

θr

ω
∗ −

∅r

ωr

)

(15b)

The modified Hebbian learning rule as prescribed in

Equations 15a,b can be compared to the original Hebbian

learning for the power coupling coefficient proposed earlier

(Equations 15 in Biswas et al., 2021). Here, zr is the complex

conjugate of the complex activation of the SRO. It can be

observed that the modified Hebbian learning rule for the

modified power coupling coefficient has a similar effect as the

original Hebbian rule had in case of the previously proposed

power coupling strategy.

Effectively, the modified Hebbian learning rule is the same

as the previous one when there is no entrainment. Without

entrainment when the phase offset of the post-synaptic oscillator

is driven to the phase offset of the complex sinusoidal input

signal with identical frequency as the natural frequency of the

CAO oscillator, θr learns ξ0, where ξ0 is the phase offset of the
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input driving the post-synaptic oscillator (refer to Appendix 5).

Similarly, it can be shown that Ar learns rssrrss
ω
ωr (refer to

Appendix 6), where rss and rrss are the steady state values of

amplitude of oscillation of the post-synaptic and presynaptic

oscillators, respectively.With entrainment of themain oscillator,

θr learns ξ0+ �rss
εI0

, which is the phase offset of themain oscillator

at a steady state after entrainment, while the Hebbian dynamics

is enabled.

Training the OTSOM

In the previous section, we discussed the response properties

of a single CAO oscillator to its two inputs. We now discuss

the training methodology of OTSOM. The OTSOM model

is trained on complex sinusoidal signals, each defined by a

characteristic frequency (ω0) and phase (ξ0) (defined w.r.t.

SRO). Thus, for a given sinusoidal input, we expect the OTSOM

to produce a single winner, such that the row number, i, of the

winner represents the input phase, while the column number,

j, represents the input frequency. Therefore, the CAO oscillator

at (i, j) gives maximum resonating response when ω0 = ωij

and ξ0 = θ rij, which is why we have chosen to train the ωij

and θ rij parameters of the OTSOM network. These parameters

are trained in two consecutive training stages. In the 1st stage,

ωijs are trained keeping θ rij’s fixed, and, in the 2nd stage, θ rijs are

trained by keeping the already trained ωijs fixed.

First stage of training: Training frequency

In this stage, the natural frequencies, ωij, of the CAO

oscillators are trained according to a learning rule analogous

to the self-organizing map learning rule (Kohonen, 1990).

Specifically, to train the frequencies of the individual oscillators,

we used the adaptive frequency Hopf oscillator model proposed

earlier (Righetti et al., 2005; Biswas et al., 2021). The

training takes place over multiple epochs
(

Nepoch,ω

)

. In every

epoch, N input signals are randomly chosen from the input

set Y . The input set contains complex sinusoidal signals

with frequencies and phase offsets sampled from a uniform

probability distribution. Once an input signal with certain

frequency and phase offsets (I0e
i
(

ω0pt+ξ0p
)

) is selected, it is

presented as the external input signal
(

Ip (t)
)

to the oscillators

in the CAO. After an initial transient phase, which lasts for Tsω

seconds, the CAO oscillator response reaches a steady state. The

oscillator with the largest amplitude at the end of the transient

phase is denoted the “winner CAO oscillator”.

The dynamics of Equations (9–11) is simulated with the

special condition Ar
ij

∼= 0 during the transient phase. Under

this condition, the steady state solution of CAO oscillator (r∗ijss,
ψ∗
ijss) can either be a stable node, stable spiral or unstable

spiral (Kim and Large, 2015). Typically, inside the entrainment

regime, we get a stable node or stable spiral as the solution.

The parameters µ, β1, and ε play a crucial role during this

phase as they determine not only the entrainment width of the

Hopf oscillator (ω) but also the duration of the transient period

(Tsω). As the oscillator with the highest steady state amplitude

of oscillation
(

max
(

rijss
))

is chosen to be the winner, it is

evident that the winner oscillator should satisfy the condition
∣

∣ωij − ω0p
∣

∣. After the transient period, the frequencies ωijs of

all the CAO oscillators within the neighborhood window, along

with the winner oscillator, are trained for Ttω secs according to

the following dynamics (Biswas et al., 2021):

ω̇ij =− ηω
mn
ij (t) εI0 sinψij (16)

where ηω
mn
ij is the neighborhood function, centered on the

winner oscillator located on the mth row and the nth column,

defined as the following:

ηω
mn
ij (t) =Wmn

ij ηω0e
− (i−m)2

σyω(t)
− (j−n)2

σxω(t)

σyω (t) = σyωme
−

i2
epoch
σσyω

σxω (t) = σxωme
−

i2
epoch
σσxω

Wmn
ij = 1 ∈ |i−m| ≤drω and

∣

∣j− n
∣

∣≤dcω

= 0 otherwise

Wmn
ij is termed as the neighborhood window. Here, drω

and dcω are the half-lengths of the neighborhood window along

rows and columns, respectively. Effectively, the purpose of the

neighborhood window is to constrain the learning confined

to the neighborhood of the winner oscillator. Additionally,

it can be observed that the neighborhood function, ηω
mn
ij , is

a Gaussian centered on the winner oscillator. The standard

deviations along the rows and columns (σyω and σxω) of

ηω
mn
ij decrease with time to produce annealing effect. Thus,

the network dynamics is simulated for (Tsω + Ttω) seconds for

each presentation of a training signal, for N (Tsω + Ttω) during

each training epoch, where N is the number of training signals.

Therefore, the time required for the entire first phase of training

is Nepoch,ωN (Tsω + Ttω ).

Second stage of training: Training phase
o�-set

While the objective of the first stage training is to train

the frequencies, ωijs, of the CAO oscillators, the objective

of the second stage training is to train the phases of the

same oscillators which are determined by the angles, θ rij, of

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2022.909058
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Biswas et al. 10.3389/fncom.2022.909058

FIGURE 4

The figure principally depicts the entrainment regime (the purple

region) of the CAO oscillator on the � vs θr − ξ0 plane, keeping

the other factors, such as εI0, θr , Ar and the intrinsic parameters

of the CAO oscillator and the SRO, fixed.

feedforward connections from the SRO to the CAO oscillators.

After the first-stage training, ωijs self-organize in an increasing

order along the rows, a pattern confirmed by the simulations

shown in the results section. This occurs because the CAO is a

rectangular array with the number of columns much larger than

the number of rows. The 2nd stage of training commences with

randomly initialized θ rij parameters and follows the algorithmic

course as given in Figure 5B.

In the second-stage training, during the transient period, the

magnitudes of Ar
ij parameters are increased to the same order

of magnitude as ε. The training takes place through multiple

epochs (Nepoch,θ ) in which, as in the previous stage, each training

pattern is a complex sinusoidal signal with specific ω0p and ξ0p,

sampled from the input set Y . As in the previous training stage,

the network dynamics is first allowed to reach the steady state

before θ rijs are adapted. The transient phase dynamics, given

by Equations 9–11, is simulated for Tsθ secs. At the end of

the transient period, the winner oscillator is identified by its

steady state amplitude of oscillation
(

rijss
)

. It is expected that

the natural frequency (ωmn) and the angle of the power coupling

coefficient (θ rmn) of the winner oscillator should be closest to

ω0p and ξ0p, respectively. During the subsequent Thθ period, θ
r
ij

parameters of the unidirectional power coupling coefficients are

trained according to the learning rule given in eqn-17. As eqn-17

is derived from the modified Hebbian learning rule as proposed

in eqn-15b, this phase is termed as the Hebbian learning phase.

θ̇ rij = ηθ
mn
ij (t)

rijrr

ω
∗
ij
ωr

Ar
ij

sinω
∗
ij

(

∅ij

ω
∗
ij

−
θ rij

ω
∗
ij

−
∅r

ωr

)

(17)

ηθ
mn
ij (t) = Wmn

ij





(

ηθmax − ηθmin

)

e
− (i−m)2

σyθ(t)
− (j−n)2

σxθ(t) + ηθmin





σyθ (t) = σyθme
−

i2
epoch
σσyθ

σxθ (t) = σxθme
−

i2
epoch
σσxθ

Wmn
ij = 1 ∈ |i−m| ≤drθ and

∣

∣j− n
∣

∣≤dcθ

= 0 otherwise

Here, m and n denote the index of the winner oscillator.

TheGaussian shaped neighborhood function, ηW
mn
ij , is confined

between ηWmax and ηWmin. The learning neighborhood

windowWmn
ij is defined w.r.t, the winner oscillator similar to the

first stage of training except that drθ and dcθ are the half-lengths

of the neighborhood window. In the Hebbian learning phase,Ar
ij

parameters are not trained (Ȧr
ij = 0); we have kept Ar

ij values

close to zero or Ar
ij ≪ εI0. In which case, θ rij learns ξ0p +

�
p
ijrij,ss
εI0

at a steady state when the CAO oscillator receives the input

I0e
i
(

ω0pt+ξ0p
)

(refer to Appendix 5) (where �
p
ij = ωij − ω0p).

It has also been shown that, even if Ar
ij is not negligible (i.e.,

Ȧr
ij = 0, Ar

ij 6= 0) θ rij learns ξ0p +
�
p
ijrij,ss
εI0

at the steady state

(refer to Appendix 6). This happens because the phase offset

of the CAO oscillator (δij) attains the value ξ0p +
�
p
ijrij,ss
εI0

at

the steady state inside the entrainment regime. Each training

epoch in the 2nd stage training takes N
(

Tsθ + Thθ
)

seconds,

and the time required for the entire 2nd stage of training is

Nepoch,θN
(

Tsθ + Thθ
)

.

Results

Single oscillator results

We now numerically analyze the response of a single CAO

oscillator to the simultaneously received inputs from SRO [(t))]

and the external input [(t))] for the following conditions:

(a)Ar being sufficiently smaller but not negligible w.r.t εI0

[i.e., the strength of the Ie(t))], which enables the CAO oscillator

to get entrained to I (t), and ensures significant interference

between the two inputs. The condition can be mathematically

rephrased as:

ǫmax > εI0 − Ar > ǫmin (18a)

where ǫmin and ǫmax are positive numbers.
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FIGURE 5

(A) The pictorial representation of the constructive and destructive interference between the two inputs to a CAO oscillator. Ir = .5eiθr , Ie = eiξ0

are the phasors of the input from the reference oscillator and the external input, respectively. It = Ie + Ir . In (B) θr is kept fixed at π
4
, and ξ0 is

varied to plot |It| from which it can be observed that |It| is maximum when ξ0 = 2nπ + θr and minimum when ξ0 = (2n+ 1) π + θr .

(

b
)

Ar is negligible w.r.t εI0, which is similar to the scenario

where CAO oscillator is only perturbed by I (t ).

Ar ≪ε I0 (19a)

We have numerically analyzed the response of the CAO

oscillator under the 1st condition (Equation 18a) as described

by the Equations 9–11. The CAO oscillator exhibits stable

entrainment, depending on both the relative frequency (�) and

the relative phase (θr− ξ0) w.r.t, the external input signal. When

it shows stable entrainment, the magnitude of oscillation reaches

a fixed value at a steady state. There is a distinguishable boundary

on the� vs θr−ξ0 plane in which stable entrainment is observed.

Outside this boundary, the CAO either exhibits intermittent

entrainment or does not get entrained at all. In the following

figure (Figure 4), the region in the � vs θr − ξ0 plane where

stable entrainment is observed is portrayed as the purple region.

It can be observed that there is a symmetry in the purple region

w.r.t the � = 0 and θr − ξ0 = 0 axis (θr = π). A pair of

CAO oscillator and an SRO is simulated until the steady state

is achieved to find out the mean, maximum, and the minimum

values of the steady state magnitude of oscillation of the CAO

oscillator. The following parameters are used: µ = 1, β1 =
−100, ω = 2π60, ω0 = 2π50 to 2π70, ξ0 = 0 to 2π , ε = 2, F =
1,µr = 1, β1r = −10,ωr = 2π×60, τω = 0.1,Ar = 0.5, θr = π

for the simulation results provided in the figures (Figures 6–8).

The steady state is attained typically before 3 s. The steady state

behavior of the magnitude of oscillation of the CAO oscillator

for eight different symmetrical cross sections parallel to � = 0

axis and for another eight different symmetrical cross sections

parallel to θr − ξ0 = 0 axis is plotted in the Figures 6, 7.

In the Figures 7, 8 the rss is plotted on a same scale of

magnitude so that the resonance exhibited by the CAO oscillator

w.r.t, the frequency and the phase offset of the external input,

can be compared. It is apparent that ω has a greater effect on

the CAO oscillator in terms of its steady-state magnitude of

oscillation than ξ0. The reason behind introducing the lower

bound on εI0 − Ar (ǫmin) is justified here. In other words,

the resonance exhibited by the CAO oscillator w.r.t, the ξ0 at a

smaller scale, is ensured by the condition εI0 − Ar > ǫmin. The

combined results of Figures 6–8 reveal that the CAO oscillator

will oscillate with maximum magnitude at a steady state when

|�| × |θr − ξ0| is minimum.

Considering that the CAO oscillator is operating in the

entrainment regime under the 1st condition (Equation 18a)

and gets entrained to I (t), the magnitude and the phase

offset of oscillation at a steady state are analytically derived

in Appendix 4. As the Hopf oscillator always maintains the

same phase offset as the phase offset of the complex sinusoidal

input signal, the phase offset of the CAO oscillator becomes

the phase offset of the resultant input (angle
(

Fnet
)

), obtained

by combining the external input, and the input from the SRO

through the complex power coupling connection (elaborated

in Appendix 4).

Fnet = εFeiξ0 + Ar
µr

|β1r|

ω0
2ωr e

i
(

θr + ∅r(0)
ω0
ωr

)

The first term on the right-hand side is the phasor

of the external input [(I (t))] through afferent weight, and

the second term is the phasor of the input from the SRO

through modified power coupling. Note that the magnitude of

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2022.909058
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Biswas et al. 10.3389/fncom.2022.909058

FIGURE 6

(A–H) denotes the steady-state magnitude of oscillation of the CAO oscillator with the identical pair of coupled CAO oscillator and SRO as

provided in the Figure 4 but for a symmetrical distinct value of the phase o�set of the external input signal w.r.t the angle of the power coupling

connection θr = π , cross section of which is drawn in blue lines in Figure 4. The green region depicts the variance of steady state magnitude of

oscillation w.r.t the mean value, plotted in purple.
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FIGURE 7

(A–H) Denotes the steady-state magnitude of oscillation of the CAO oscillator with the identical pair of coupled CAO oscillator and SRO as

provided in the Figure 4 but for a symmetrical distinct value of the relative frequencies of the external input signal w.r.t the natural frequency of

the CAO oscillator ω = 2π × 60, cross section of which is drawn in yellow lines in Figure 4. The green region depicts the variance of steady state

magnitude of oscillation w.r.t the mean value, plotted in purple.

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2022.909058
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Biswas et al. 10.3389/fncom.2022.909058

FIGURE 8

The figure depicts the response of the CAO oscillator in terms of its magnitude of oscillation (r), phase o�set (δ), entrainment (ω*) during all the

four phases of the 1st and 2nd stages of the training along with the parameters to be trained (ω and θr) and the other fixed parameters µ = 1,

β1 = 150, ε = 2, I0 = 1, µr = 1, β1r = 10, ωr = 2π × 60.5. (A) During the transient phase of the 1st stage of the training, the single unit is simulated

under the entrainment regime of the CAO oscillator with the additional parameters: ω0 = 2π × 61.5,ξ0 = π
4
,θr = π , τω = 8× 10−4, Ar = 10−5. It

can be verified that at steady-state r and δ attain the solution provided by Equation A1.8 and the value ξ0 + �rss
εI0

, respectively. (B) For the adaptive

Hopf phase of the 1st stage of the training, the single unit is simulated with the additional parameters: ω (0) = 2π × 60,

ω0 = 2π × 62,ξ0 = π ,θr = π , τω = 0.5, Ar = 10−5, ηω = 50. It can be verified that, at a steady state, δ attains ξ0 and ω learns ωo. (C) The single unit is

simulated with the following set of additional parameters during the transient phase of the 2nd stage of the training: ω0 = 2π × 60.3,ξ0 = 3.6773,

τω = 0.5, Ar = 0.1. The steady-state values of r depend on
∣

∣

∣
Fnet

∣

∣

∣
, whereas the steady-state value of δ is the same as arg

(

Fnet

)

. (D) For the

Hebbian plasticity phase of the 2nd stage of the training, the single unit is simulated with the additional parameters: ω0 = 2π × 60.3,ξ0 = π ,

τω = 0.5, Ar = 10−5, ηθ = 10−5. It can be verified that θr learns ξ0 +
(

�rss
εI0

)

, which is the same as the steady-state value of δ.

the resultant input after constructive/destructive interference,
∣

∣Fnet
∣

∣, determines the magnitude of oscillation of the CAO

oscillator at a steady state. Figure 9C numerically verifies that

the CAO oscillator attains the analytically derived solutions

in Appendix 4.

The effect of µ, β1, and εI0 on the entrainment width (ω)

and the typical transient time (Tt) of the CAO oscillator for the

2nd condition (Equation 18b) is further verified numerically.

From Figure A2.2 in Appendix 2, it can be verified that µ has

to be small for wider entrainment regime, i.e., higher values

of µ causes shrinking of the entrainment regime. On the

contrary, ε and β1 have nearly the same effect on the width

of the entrainment regime: entrainment regime broadens as

ε and β1 values are increased. Since the transient dynamics

determines the amount of time the network takes to settle down

so that the oscillator with the highest resonant response can

be chosen, it is necessary to understand the effect of these

parameters on the transient dynamics. It is quite intuitive that

µ and β1 have a shrinking effect on the transient period as

it causes a much steeper basin of attraction around the steady

state solution. Figures A2.2D and A2.2F in Appendix show

that increasing the magnitude of the scalar afferent weight, ε,

shortens the transient period; this is natural because a stronger

input pushes the oscillator output to settle down faster. Ideally,

the model requires a broad entrainment regime with a short

transient period.

Network level results

First stage of training: Training frequency

We may recall from the previous section that the objective

of the 1st stage of training is to train the frequencies of the

CAO oscillators. To this end, only the external input signals

are considered, and the inputs from SRO are ignored (i.e.,

Ar ≪ ε in Equations 9–11). Initially, the set of the external
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FIGURE 9

The natural frequency of oscillation, ωij, of the oscillators in the CAO after self-organization represented in Cartesian (A) and polar (B)

organization. (C) shows mean and the variance of the natural frequencies along x-axis after training. (D) provides a quantitative understanding of

the slope of self-organized ωijs along the x-axis, y-axis, and the axes π
4
and − π

4
inclined w.r.t, the x-axis.

input signals is constructed by combining input frequency set

Yω , constructed by samplingNω number of intrinsic frequencies
(

fop = ωop
2π

)

from a uniform distribution over the range of 55

to 65Hz, and the input phase offset set Yξ , constructed by

samplingNξ number of phase offset angles (ξ0p) from a uniform

distribution over [0, 2π). Combining these sampled intrinsic

frequencies and phase offsets, N = Nf ×Nξ number of complex

sinusoidal signal patterns [(Ip (t) = I0e
i
(

ω0pt+ξ0p
)

)] is generated.

After Ip (t) is chosen randomly from Y , the input patterns are

presented one at a time to all the oscillators in CAO. Note that,

in this case, the winning CAO oscillator depends only on the

condition
∣

∣ωij − ω0p
∣

∣, and not on the phase offset, ξ0p, since

Ar ≪ ε I0.

For each presentation of the input, the winner oscillator

and the oscillators in its neighborhood adjust their “preferred

frequency” closer to the input frequency, ω0p, following the

adaptive Hopf learning rule of Equation 16. The preferred

frequency of the oscillators in the neighborhood of the winner

oscillator gets closer to ω0p compared to the oscillators near the

periphery of the adaptive neighborhood because of the Gaussian

neighborhood function, ηω
mn
ij . The transient response of the

CAO oscillator of a single unit in terms of its magnitude of

oscillation (r), the phase offset (δ), entrainment (ω∗) during the
transient phase is plotted in Figure 8A, where the analytically

derived solutions of r and δ (refer to Appendix 2) are verified

numerically. Similarly, the dynamic response of the same CAO

oscillator in the given single unit in terms of r, δ, ω∗, and
ω during the adaptive Hopf phase is presented in Figure 8B,

where the analytically derived solutions of r, δ, and ω (refer to

Appendix 3) are verified numerically.

The natural frequencies of the CAO oscillators are initialized

from a uniform random distribution confined to the interval

2π[55, 65]. The natural frequency of the reference oscillator

is set to the central frequency (2π60) of the given frequency

band so that there is a symmetrical influence by the reference

oscillator on CAO oscillators. The size of the CAO (Nr ,Nc)

= (10, 50), where Nr is the number of rows and Nc is the

number of columns. The adaptive neighborhood is defined by

immediate proximity rather than the physical proximity, i.e., a

neighborhood size of dW = 2 means the immediate 2 oscillators

on every side of the winner oscillator, including the oscillators

situated diagonally.
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FIGURE 10

Algorithms for the first (A) and the second (B) stages of the training of the OTSOM model.

The tonotopic arrangement emerges at the end of the 1st

stage of the training. It can be observed from Figure 9 that ωijs

organize themselves in an increasing order along x-direction

or an increasing column index but remain almost invariant

along the orthogonal (row) direction. This emergent tonotopic

organization is the key feature of a self-organizing map. The

parameter values defining the network architecture, the training

data set, and the 1st and the 2nd phases of the training are given

in Table 1.

Second stage of training: Training phase o�set

As described in Figure 5B, the 2nd stage of training

commences with the tonotopically organized ωij’s and seeks

to train θ rij’s. The frequency and the phase offset of the

external input are sampled from the same set Y . During

the transient phase, Ar
ij is typically set to about a tenth

of ε so that the entrainment to Ie (t) can occur. From

Figure 8C, it can be observed that entrainment is possible

even if Ar is comparable with ε. It can be assumed that the

winner oscillator will be the one that is going to satisfy the

condition
(
∣

∣

∣
F
net
ij

∣

∣

∣

)

, where F
net

ij is the resultant input to the

oscillator at (i, j) in CAO.
∣

∣

∣
F
net
ij

∣

∣

∣
is a result of constructive

or destructive interference between the external input and

the input from the SRO, depending on the relative values

of ξ0 and θr , a qualitative explanation of which is discussed

in the methods section with Figure 10, and the analytical

expression of which is presented by Equations A4.3 and A4.4

in Appendix 4.

The duration of the transient phase (Tsθ) in the 2nd stage

is typically the same as the duration of the transient phase

(Tsω) of the 1st stage of training. With the proper choice of the

network parameters, principally ε,Ar
ij, µ, µr , β1, β1r , as given

in Table 1A, the duration of the transient period (Tsθ) turned

out to be ∼3 s. The CAO oscillator whose parameters
(

ωij, θ
r
ij

)

are closest to the input signal parameters (ω0p, ξ0p) will be

the winner.

In the following Hebbian learning phase, the neighborhood

size (drθ × dcθ) is dependent on the size of the entrainment

window as the Hopf oscillator can only have a stable phase offset

when it operates inside its entrainment regime. From Figure 8D,

it can be observed that, when the angle of the complex power

coupling coefficient (θ rij) is trained according to the complex

Hebbian learning rule (Equation 17) under the 2nd condition

(Equation 18b) and Ȧ = 0, it learns the phase offset of the

CAO oscillator. The transient response of the CAO oscillator of

a single unit in terms of its magnitude of oscillation (r), phase

offset (δ), entrainment (ω∗) during the transient phase is plotted
in Figure 7C, where the analytically derived solutions of r and
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TABLE 1 Essential parameters.

Table 1A Table 1B Table 1C Table 1D

Network and Values Training Values 1st stage Values 2nd stage Values

simulation parameterss set parameters parameters

Nx 50 Uω ω0p ∼ U(55× 2π , 65× 2π) Nepoch,ω 500 Nepoch,ξ 300

Ny 10 Uξ ξ0p ∼ U (0, 2π) Tsω 3 s Tsθ 3 s

ε 2 Nω 60 Ttω 4 s Thθ 4 s

dt 0.1ms Nξ 10 ηω0 0.2 ηθmax ,ηθmin 2× 10−6 , 10−7

Ar
ij 10−5 N =NωNξ 600 σyωm 100 σyθm 2

ωr 60× 2π σxωm 4 σxθm 2

µ 1 σσxω 500× neph,ω σσxθ ∞

µr 1 σσyω 500× neph,ω σσyθ ∞

β1 150 drω 3 drθ 3

β1r 10 dcω 3 dcθ 3

Ar
ij 10−5 Ar

ij 0.1 in transient phase and

10−5 in Hebbian plasticity

phase

(A) The table summarizes the list of parameters defining the network architecture, the intrinsic dynamical parameters, and simulation parameters. (B) The details of the training data set

are given. The parameters for the 1st and the 2nd stages of the training are listed in (C,D), respectively.

δ (refer to Appendix 4) are verified numerically. Similarly, the

dynamic response of the same CAO oscillator along with the

angle of the complex modified power coupling coefficient in

the given single unit in terms of r, δ, ω∗, and θr during the

Hebbian plasticity phase is presented in Figure 8D, where the

analytically derived solutions of r, δ, and ω (refer to Appendix 3)

are verified numerically. As ωij parameters are self-organized in

a monotonically increasing fashion along the x-axis and remain

almost invariant along the other orthogonal dimension, the

span of the trainable neighborhood window along the x-axis

has to be chosen dependent on the entrainment width of the

cortical oscillators.

With the parameters in Table 1D, from Figure 11, it can

be observed that the θ rij parameters have self-organized with

a linear gradient along the y-axis but almost invariant along

the x-axis. Figure 11 represents four different instances of 2nd

stage of training with the pre-trained ωij parameters after

the 1st stage of the training as presented in Figure 9. The

common features about all these four instances are: θ rijs have

either self-organized themselves in a linearly increasing or a

decreasing fashion along the y-axis or the azimuth direction in

the polar coordinate system representation; it is unpredictable

where exactly along the x-axis the self-organized θ rijs switch

from an increasing to decreasing fashion and vice-versa, the

overall gradients of the self-organized θ rijs along the 4 axes (x,

y and the axes inclined at an angle π
4 and −π

4 w.r.t, the x-

axis) for all these four instances are statistically similar. If the

Gaussian shape of the neighborhood function of ωij, ηω
mn
ij ,

defined by its standard deviations along x- and y-axis (σxω, σyω),

is compared with the Gaussian shape of the neighborhood

function of θ rij, ηθ
mn
ij (σxθ, σyθ), the variances of ηθ

mn
ij are

much smaller than the variances of ηω
mn
ij , particularly along

the y-axis. Also, the distribution of ηθ
mn
ij has a similar spread

along both of the orthogonal axes. Distribution of ωijs from

Figure 9D compared to the distributions of θ rijs presented

in Figures 11B,D–F confirms that they self-organize along

orthogonal directions.

Testing

During the testing phase of the OTSOM model, the

conventional power coupling is used from the SRO to the CAO

oscillator. The dynamics of the model during the testing phase is

described as below:

ṙij =
(

µ−β1rij2
)

rij+Ar
ijrr

ωij
ωr cosωij

(

θ rij

ωij
+
∅r

ωr
−

∅ij

ωij

)

+ ε real
(

I (t) e − ∅ij

)

(19a)

∅̇ij = ωij+Ar
ij

rr

ωij
ωr

rij
sinωij

(

θ rij

ωij
+
∅r

ωr
−

∅ij

ωij

)

+
ε

rij
imag

(

I (t) e − ∅ij

)

(19b)

ṙr =
(

µr − β1rrr
2
)

rr (19c)

∅̇r = ωr (19d)
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FIGURE 11

The self-organized θ rij parameters after the 2nd stage of the training on four separate instances starting with di�erent randomly initialized θ rij ’s.

The subplots (B), (D), (F), and (H) represent the mean and the standard deviation of the gradients along the radial (0), azimuth ( π
2
), spirally

diverging ( π
4
) and converging (− π

4
) direction on a polar coordinate representation of the self-organized θ r

ij
s presented in the subplots (A), (C), (E),

and (G), respectively, after the 2nd stage of the training.
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FIGURE 12

The DC response of the CAO oscillator w.r.t the three properties of the external input signal: amplitude (εI0), frequency (ω0), and phase o�set

(ξ0). For all these simulations, the common parameters are: µ = 1, β1 = −150, ω = 2π × 60, F = 1, µr = 1, β1r = −10, ωr = 2π × 60, Ar = 0.5,

θr = π . For the plots, ω0 is varied from 2π × 50 to 2π × 70, ξ0 is varied from 0 to 2π , ε is varied from 0.1 to 2. For the plots in the left column

(A,D), ξ0 is kept fixed at a value of π . For the plots in the middle column (B,E), ε is kept fixed at a value of 1. For the plots in the left column (C,F),

ω0 is kept fixed at a value of 2π × 60.

It can be observed that the ratio of the natural frequencies

of the CAO oscillators w.r.t, the reference oscillator, is raised

to power of the complex activation of the reference oscillator

instead of the actual frequencies of the CAO oscillator w.r.t, the

reference oscillator. For the moment, real sinusoidal signals or

linear combination of multiple real sinusoidal signals is used

as external input (I (t)). At first, we are going to analyze the

steady-state response of a single CAO oscillator by considering

the DC component of the magnitude of oscillation of the CAO

oscillator numerically. The DC component of the steady-state

magnitude of oscillation is extracted using a third-order low

pass filter with a cut-off frequency of .01Hz. From Figure 12,

it can be observed that the DC component of the steady-

state magnitude of oscillation preserves the encoding ability

of all the characteristic components of the sinusoidal input

signal. The resonance exhibited w.r.t, the frequency of real

sinusoidal external input, is similar to the case of complex

sinusoidal external input as observed in Figures 13A,D.Whereas

the resonance exhibited w.r.t, the phase offset of real sinusoidal

external input, is confined to a very narrow bandwidth of the

frequency of real sinusoidal external input w.r.t, the natural

frequency of the CAO oscillator (Figures 13B,E).

The response of the OTSOMmodel is tested with three types

of signals: the periodic real sinusoidal signal (Figures 13A,B),

the quasi-periodic signal, which is a combination of two

proximal frequency components (Figures 13C,D), given in the

caption of Figure 13 and an aperiodic signal (Figures 14C,D)

such as an Electroencephalograph (EEG) signal as plotted in

Figure 14A with its characterizing power spectrum plotted in

Figure 14B. The EEG signal was collected during a mind-

wondering task, with a sampling rate of 1,024Hz (Grandchamp

et al., 2014). The characterizing ωij and θ
r
ij parameters during

the testing phase are illustrated in Figures 9, 12C, respectively.

It can be observed from Figures 13C,D that the representation

of the frequency 55.669 Hz is broader w.r.t, the frequency

61.426 Hz, which is because of the slope of ωijs along the x-

axis at around 55.669 Hz is lesser than the slope at around

61.426 Hz.

Discussion

The tonotopic map refers to a map of tones or individual

frequencies often found in auditory cortices of mammals.

Optimal response at a specific frequency is a characteristic

of resonance. Based on this insight, we designed a tonotopic

map model based on nonlinear oscillators capable of exhibiting

resonance. We present a model of a tonotopic map, which

consists of an array of Hopf oscillators, labeled as CAO. Themap

is trained in complex sinusoidal stimuli such that the frequency

is mapped onto the columns, and the phase is mapped onto the

rows. (The phase of the input signal is defined with reference

to a reference oscillator labeled as SRO). In other words, when

a complex sinusoid with a given frequency and the phase is
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FIGURE 13

The subplots (A,B) depict the response of the OTSOM model when the external input signal is: I(t) = cos (2π × 57.7029+ π). The subplots (C,D)

depict the response of the OTSOM model when the external input signal is: I (t) = cos
(

2π × 61.426+ 3π
2

)

+ cos
(

2π × 55.669+ π
2

)

. The ω′
ijs of

the CAO oscillators and the θ rij ’s are adopted from the training stage of the OTSOM model as depicted in Figures 9, 11C. The other parameters of

the model are mostly preserved as used in the training session of the model: µ = 1, β1 = 150, F = 1, µr = 1, β1r = 1, ωr = 2π × 60, Ar = 0.1.

presented as an input stimulus, the oscillator at a specific row

and a column, whose frequency and phase are the closest to the

input parameters, responds with the highest amplitude.

Existing computational models of the tonotopic map do not

attempt to model the underlying oscillation or the associated

resonance in modeling tuned responses to pure tones. In the

tonotopic model of (Ritter et al., 1992), which is based on a

SOM model, frequencies are modeled as explicit parameters

defined out of the context of the underlying oscillatory

process. The model was able to achieve an ordered map

of frequencies, with greater areas of the map differentially

allotted to dominant frequencies in the input. However, the

model was not able to capture any other temporal aspects

of the input signal, since no signal was explicitly modeled.

Another tonotopic map model described by Palakal et al. (1995)

modeled the distribution of both frequency and time delay.

But, here, too, these parameters are described as independent

parameters, taken out of the context of the underlying

temporal process. In this regard, the proposed tonotopic model

based on oscillators and resonance represents a significant

step forward.

A previous model (Biswas et al., 2021) that shows how a

network of Hopf oscillators can be trained to learn arbitrary

aperiodic signals was developed further to create the proposed

tonotopic map model. To this end, two improvements had to be

made to the previous model:

a) a key element of (Biswas et al., 2021) is the concept of

power coupling that achieves a stable (normalized) phase

relationship between a pair of oscillators with arbitrary

intrinsic frequencies. This scheme had to be modified in the

proposed model since it must allowmixed forms of coupling,

combining power coupling with ordinary real coupling.

b) in the proposed model, oscillators must exhibit tuned

responses not only to frequency but also to phases. In order

to define a phase offset of the input signal, we introduced a

reference oscillator (SRO) that projects to all the oscillators

in the map.

The functional unit of the OTSOM model is a single CAO

oscillator that receives input from the external input and the

SRO.We performed the qualitative and the quantitative analysis

of this unit under two conditions:
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FIGURE 14

The subplots (C,D) illustrate the response of the OTSOM model when an arbitrary aperiodic signal such as the EEG signal plotted in (A)

characterized by its power spectrum plotted in (B) is presented as an external input signal.

1) Magnitude of the SRO input is negligible compared to the

external input.

2) Magnitude of the SRO input is comparable to the

external input.

The magnitude of the input from the reference oscillator

is Arrr
ω∗
ω∗r , where the steady-state value of the magnitude of

oscillation of the SRO depends on µr and β1r . As the SRO

operates in the supercritical Hopf regime, both µr and β1r are

positive, and the steady-state magnitude of oscillation is
√

µr
β1r

.

With this simple setup, we have observed that the CAO oscillator

can encode not only the frequency of the complex sinusoidal

input signal primarily inside the entrainment regime but also the

phase offset of the input signal.

The entrainment regime of a canonical Hopf oscillator is

previously analyzed by (Kim and Large, 2015) in terms of

analyzing steady-state dynamical characteristics on the r − ψ

plane. As ψ is the angular difference between the oscillator

and the external input signal, when the system exhibits a stable

fixed point (> 0, T2 − 4 > 0, T < 0) or stable spiral

behavior (> 0, T2 − 4 < 0, T < 0), it can be interpreted

that the system is entrained. When the relative phase of the

oscillator w.r.t, the input signal reaches a steady-state value,

it essentially means the actual frequency of oscillation of the

oscillator is adapted from its natural frequency of oscillation

to the frequency of the driving signal. Kim and Large (Kim

and Large, 2015) have analyzed the effect of the strength of

the driving signal on its entrainment characteristics by mapping

the nature of the steady-state solution on the εF vs � space.

There are five possible steady-state solutions exhibited by four

regimes of the canonical Hopf oscillator defined by its intrinsic

parameter values. These five steady-state solutions are the stable

node, the stable spiral, the unstable node, the unstable spiral,

and the saddle point. When the Hopf oscillator operates in

critical Hopf parameter regime (µ = 0, β1 > 0, β2 = 0),

it exhibits either the stable node or the stable spiral solution

at steady state, i.e., for any values of its intrinsic parameter β1,

the strength of the driving signal (εF) and �, it is going to be

entrained to the frequency of the driving signal. Therefore, it

can be stated that the entrainment regime of the Hopf oscillator

operating in the critical parameter regime is unbounded. In
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both of these cases, the state of the system reaches the fixed

point asymptotically, i.e., it takes forever for the oscillator to

get entrained. Generally, a small neighborhood around the fixed

point is defined to declare the entrainment of the system. The

Hopf oscillator operating in the supercritical parameter regime

(µ > 0, β1 > 0, β2 = 0) exhibits three steady-state solutions:

the stable fixed point, the stable spiral, and the unstable spiral.

Till the boundary to the unstable spiral solution, the system

exhibits entrainment.

The typical initial value of the variance ηω has the property:

σyωm ≫ σxωm. Due to high variance along the column, the

other oscillators in the same column as the winner tend to adapt

to the feature of the presented input pattern at the same rate

as the winner neuron, which ensures the low variability of the

learned natural frequency of the oscillator along y- axis. An

initial standard deviation of σyωm = 100 and σxωm = 4 is

sufficient for the tonotopic organization to arise as presented in

Figure 9. Although there is a lower bound for σyωm, depending

on the number of oscillators along the y- direction, Ny, there

is no strict bound on σxωm depending on the dimensionality

of the 2D array of oscillators. It can be interpreted that the

lower bound on σyωm should be proportional to Ny, as the

greater the number of oscillators per column, the lesser the

adaptability rate of the oscillators at the boundaries of the

adaptable neighborhood along the column. However, a square

neighborhood window function is chosen for the simulation

presented in this study; a rectangular window function is

also feasible. A rectangular window function can be defined

by dr 6= dc. σxω and σyω decrease in a Gaussian contour

w.r.t time at a much slower time scale to model the effect

of annealing. σxω and σyω are updated after every epoch,

with a typical standard deviation on an iterative time scale of

500ñeph,ω .

A few aspects need to be elaborated about the 2nd stage of

the training. The θ rijs were failing to self-organize themselves in a

linearly increasing or decreasing fashion along the column when

the CAO oscillators were placed on a 2-dimensional rectangular

grid. To fix this issue, periodic boundary condition is introduced

along the spatial dimension of the column, i.e., the bottom row

of the CAO is closest with an equidistant to both the top row

as well as the second last row, which is the motivation behind

representing the CAO on a polar coordinate representation.

Although this ensured that the θ rijs self-organize themselves in

a linearly increasing or decreasing manner in a given column,

θ rijs were slipping at a constant rate along the azimuth axis,

which can be observed in Supplementary Figure S1A. To fix

this problem, the θ rijs of the top most row of the CAO were

fixed at 0o angle, and, from Supplementary Figure S1B, it can

be observed that θ rijs of a given column were stabilized with

a linear organization. On the contrary, the ωijs are able to

self-organize themselves without the aforementioned periodic

boundary condition.

A comparison with the conventional SOM: For the

conventional SOM model (Kohonen, 1998), the neuronal

response is characterized by its linear or nonlinear activation

function. When these rate-coded neurons are a part of the SOM

framework, the afferent weights for a particular neuron are also

considered to be an internal feature of the neurons, considering

close proximity of these afferent synapses to the corresponding

neurons. The key differences between the conventional SOM

model and OTSOM are:

1) The afferent connection weights are fixed.

2) The input is a time-varying complex sinusoidal signal

instead of a constant vector.

3) The neurons are limit-cycle oscillators instead of rate-

coded neurons with a static transfer function.

Although we have tested the model with complex sinusoidal

input signals sampled from the frequency band from

55 to 65Hz, the bandwidth can be scaled up/down or

shifted. The proposed model can be used to explain the

tonotopic organization evolved in the auditory cortex

of mammals.
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