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Background: Electroencephalogram (EEG)-based brain-computer interface (BCI)
systems are widely utilized in various fields, including health care, intelligent assistance,
identity recognition, emotion recognition, and fatigue detection. P300, the main event-
related potential, is the primary component detected by EEG-based BCI systems.
Existing algorithms for P300 classification in EEG data usually perform well when
tested in a single participant, although they exhibit significant decreases in accuracy
when tested in new participants. We attempted to address this lack of generalizability
associated with existing classification methods using a novel convolutional neural
network (CNN) model developed using logistic regression (LR).

Materials and Methods: We proposed an LR-CNN model comprising two parts: a
combined LR-based memory model and a CNN-based generalization model. The LR-
based memory model can learn the individual features of participants and addresses
the decrease in accuracy caused by individual differences when applied to new
participants. The CNN-based generalization model can learn the common features
among participants, thereby reducing overall classification bias and improving overall
classification accuracy.

Results: We compared our method with existing, commonly used classification
methods through three different sets of experiments. The experimental results indicated
that our method could learn individual differences among participants. Compared
with other commonly used classification methods, our method yielded a marked
improvement (>90%) in classification among new participants.

Conclusion: The accuracy of the proposed model in the face of new participants is
better than that of existing, commonly used classification methods. Such improvements
in cross-subject test accuracy will aid in the development of BCI systems.

Keywords: brain-computer interface, convolutional neural network, electroencephalogram, event-related
potential, logistic regression, P300
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INTRODUCTION

Electroencephalogram (EEG)-based brain-computer interface
(BCI) systems use brain signals to transmit information. The
primary feature of these systems is that self-elicited EEG signals
can assist patients with loss of motor function in the limbs and
those with language impairments in communicating with others
by enabling them to control external devices. The BCI system
has gradually moved from the laboratory to the market, which
requires a stronger adaptability of the BCI system (Hochberg
et al., 2006; Hoffmann et al., 2008; Xu et al., 2021).

The study of EEG classification problems is important for the
application and development of the BCI system (Hu et al., 2019;
Hu and Zhang, 2020; Li, 2020; Li et al., 2020). In EEG, event-
related potentials (ERPs) are specific voltage signals generated in
the brain in response to a task (e.g., gazing at numbers, letters,
or pictures). Currently, diseases such as Alzheimer’s disease can
be studied as an aid to identify early cognitive impairment
by studying changes in patients’ ERPs, and the study of ERPs
is important for medical rehabilitation, medical diagnosis, and
improving EEG-based communication systems (Luck, 2005;
Wang et al., 2017; Yan et al., 2018; Liu et al., 2022). Lu et al.
(2020) constructed time-varying networks for ERPs in AV and V
spelling paradigms based on adaptive directed transfer function
to investigate the dynamic processes underpinning the processing
of stimuli in the two spelling paradigms. The P300 potential,
which is usually detected about 300 ms after the appearance of
the target stimulus (Farwell and Donchin, 1988; Rakotomamonjy
and Guigue, 2008), is generally used as the primary reference
potential. Lu et al. (2019) designed a novel audiovisual P300-
speller paradigm to improve the performance of vision-based
P300 spelling system. P300 data are usually represented as a
matrix with two dimensions (channel and time), and their values
represent the true EEG amplitude obtained from the individual
during task performance (Rakotomamonjy and Guigue, 2008).
Li et al. (2019) attempt to improve the performance of P300
by increasing the user’s mental work. The traditional EEG
classification process includes preprocessing, feature extraction,
and classification (Rashid et al., 2019). Liu et al. (2021) proposed
a sparse representation of the P300 spelling paradigm to solve
the problem of brain signal classification with high-dimensional
data and low signal-to-noise ratio. Preprocessing usually includes
filtering, baseline correction, and artifact removal (Kundu and
Ari, 2020). Feature extraction allows one to obtain the most
discriminative features from real EEG data (Dodia et al., 2019).
Traditional feature extraction generally extracts features from the
time domain (e.g., variance, mean, and kurtosis) (Martin-Smith
et al., 2017), frequency domain (e.g., fast Fourier transformation)
(Park and Chung, 2018), and time-frequency domain (e.g.,
discrete wavelet transformation) (Amini et al., 2013).

Machine learning and deep learning have been widely used
in image recognition (Liu et al., 2019), medical diagnosis (Zhao
et al., 2022), intelligent assistance and other fields. In recent
years, these methods have also become a hot topic in P300
signal detection. The P300 EEG signal is a complex combination
of superimposed multi-band waveforms, and a number of
classification methods have been used to decode the P300 signal.

For example, principal component analysis (PCA) and local
Fisher discriminant analysis (LFDA) are commonly used to
reduce the dimensionality of features (Bernat et al., 2007), while
linear discriminant analysis (LDA) (Dodia et al., 2019), support
vector machine (SVM) (Li et al., 2014), decision tree (DT) (Guan
et al., 2019), random forest (RF) (Akram et al., 2015; Masud et al.,
2018), ADB (Hongzhi et al., 2012; Yildirim and Halici, 2014),
and k-nearest neighbor (k-NN) methods (Guney et al., 2021) are
commonly used for P300 classification.

Since traditional preprocessing and feature extraction
methods are highly complex and time-consuming and can lead
to a loss of important information after extraction, automated
feature extraction algorithms are considered important (Shan
et al., 2018). Deep learning represents a better solution to this
problem (Oralhan, 2020), as it provides an excellent algorithm for
automatically extracting discriminative features. Deep learning
is currently adopted in many studies, as it can learn features
from the original data well (Kshirsagar G. and Londhe N., 2019;
Kshirsagar G. B. and Londhe N. D., 2019; Borra et al., 2021).
At present, the main deep learning algorithms used for EEG
data processing include convolutional neural networks (CNNs),
recurrent neural networks (RNNs), deep belief networks (DBN),
autoencoders (AEs), and other models (Maddula et al., 2017; Lu
et al., 2018). Cecotti et al. introduced a CNN for detecting the
P300 ERP in BCIs (Cecotti and Gräser, 2011). They proposed
seven CNN-based classifiers and evaluated their performance,
with excellent results. Feng et al. used a CNN classification
algorithm based on PCA to classify P300 data (Li et al., 2020).
Ditthapron et al. used multi-task AE-based feature extraction for
EEG classification (Ditthapron et al., 2019). Vařeka et al. used
stacked AEs for P300 classification (Vařeka and Mautner, 2017).
Since the RNN model has achieved good results in sequential
information recognition tasks (such as speech recognition)
(Lipton et al., 2015), long short-term memory (LSTM) networks
have also been applied to EEG recognition. Joshi et al. proposed
a neural network model based on convolutional long short-term
memory (ConvLSTM), in which a CNN and LSTM were used
to capture spatial and temporal information, respectively. This
effective use of temporal as well as spatial features yielded better
performance than a single system (Joshi et al., 2018). Kundu
et al. proposed a PCA-based ensemble of a weighted SVM
(PCA-EWSVM) classifier. In this weighting method, different
weights were assigned to each classifier, with the largest weight
assigned to the best classifier, causing it to have the greatest
impact on the final output of the classifier (Kundu and Ari,
2017). Kshirsagar et al. constructed a weighted ensemble using a
deep CNN, which effectively reduced the classification error rate
for single models, and adopted a new channel dropout-based
character-detection approach, which further reduced the false
detection rate arising from a single trial (Krusienski et al., 2008).
Feng et al. proposed an automatic P300 EEG signal channel
selection algorithm based on population sparsity Bayesian
logistic regression (Feng and Zhang, 2019). Abibullaev et al.
proposed multiple network structures for P300 signal analysis to
select a more accurate classifier to decode the signal, however, the
complexity of the network structure leads to higher complexity
of the algorithm and more parameters, which makes it not
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suitable for online applications (Abibullaev and Zollanvari,
2021). Xu et al. proposed an online pre-alignment strategy for
motion imagery signals to address the generalization ability of
the model across datasets and obtained good results, and in 2021,
this team made further improvements by combining adaptive
batch normalization (AdaBN) and alignment strategies to reduce
interval covariate shifts between datasets, but this approach
was used more for processing datasets before validation and its
insensitive to different individual features when used for P300
signal processing (Xu et al., 2020; Xu et al., 2021).

Stochastic gradient descent (SGD) is commonly utilized to
optimize deep learning algorithms (Bottou, 2010). In 2009,
John Duchi proposed the FOBOS (Forward-Backward Splitting)
optimization algorithm (Duchi and Singer, 2009a,b), which
divides the regularized gradient descent problem into an
empirical loss gradient descent iteration and an optimization
problem. However, FOBOS only uses the gradient of the
previous iteration, without accumulation, and does not achieve
effective sparsity. In 2010, Lin et al. proposed the regularized
dual averaging (RDA) optimization algorithm (Xiao, 2010),
which relies on gradient accumulation. In this algorithm,
when the average value of accumulated gradients on a
latitude is less than a threshold, the weight of that latitude
will be set to zero, which ensures that the weights are
fully trained. In 2011, McMahan et al. proposed the Follow
the Regulation Leader (FTRL) algorithm (McMahan, 2011),
which has worked well in many recommender systems
(McMahan et al., 2013; Kim, 2017). FTRL is a general
optimization algorithm for online deep learning prediction,
which inherits the idea of SGD. Based on a truncated gradient,
it absorbs the advantages of the FOBOS and RDA optimization
algorithms, focusing on the sparsity problem while improving
accuracy, which has great potential for application to online
prediction systems.

Previous studies have shown that the amplitude and latency
of the P300 component vary across individuals according to
sex and age (Carlson and Iacono, 2006; Brumback et al., 2012;
Dinteren et al., 2014). Therefore, an EEG-processing algorithm
should have certain memorization and generalization capabilities
for individuals of different ages and sexes to allow it to discover
the common features among participants and effectively aid in
subsequent classification. When we tested the existing commonly
used algorithms, we found that they performed well on a
single dataset (>95% accuracy). However, when we tested them
on other available datasets and private datasets, the accuracy
dropped significantly to around 80%.

To address this sharp decrease in accuracy when existing
algorithms are applied to new datasets, we proposed an LR-CNN
model that combines logistic regression (LR) and a CNN. In this
model, optimization is achieved via the FTRL algorithm, which
addresses the sparsity problem, and the network is applied to
P300 detection, which also addresses sparse data features and
improves the robustness of the algorithm across participants. We
conducted experiments using a private dataset and compared our
results with those of previous studies to determine whether our
proposed method can achieve better results in the detection of
the P300 component between different individuals.

MATERIALS AND METHODS

Participants
This study was approved by the Ethics Committee of Changchun
University of Science and Technology. All participants provided
written informed consent after receiving a detailed explanation
of the experimental procedure. Eight healthy, right-handed
individuals with no mental disorders, normal or corrected-
to-normal vision, and a stereopsis acuity better than 60′′
participated in the study.

Paradigm Flow
Preparation for the EEG experiment included placing electrode
caps on each participant, applying electrode paste to reduce the
resistance to a reasonable range, and informing the participants
of the experimental procedure and tasks.

We prepared two-dimensional and three-dimensional P300
speller paradigms, which were presented to participants using
an NVIDIA stereo display with a resolution of 1,920 × 1,080
and a refresh rate of 120 Hz. Following EEG preparations,
participants sat directly in front of the stereo display with their
eyes 90 cm from the screen. Each task involved four sessions
in which a word containing five characters was presented. Each
session contained five runs, and each run output one character.
The two tasks included a total of eight sessions. To avoid
learning effects, the eight sessions were presented in pseudo-
random order for each participant. Because the task paradigm
was a 6 × 7 matrix of characters, the target character flashed
twice every 13 flashes (once in row, once in column), which
was called a sequence. Each run included eight sequences (i.e.,
a target character was output by flashing 104 times, as shown
in Figure 1). During the tasks, participants were required to
stare at the target character and silently count the number
of times it flashed. They were permitted a 5-min rest period
after each session.

Dataset Processing
The EEG data used in this study were collected during
the experiment using 64 active electrodes. Considering the
amount of data requiring processing, we selected 30 standard
electrodes according to the International 10-20 electrode
system as nodes to build the brain networks, including FP1,
FPz, FP2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T7, C3,
Cz, C4, T8, CP3, CPz, CP4, P7, P3, Pz, P4, P8, PO5,
POz, PO6, O1, Oz, and O2. The raw EEG data of each
participant were preprocessed for the time-varying brain
network analysis.

The raw EEG data were bandpass filtered between 0.1
and 30 Hz with a third-order Butterworth filter. The EEG
was segmented according to the coding value of each
Flash marker, from 100 ms before to 800 ms after the
presentation of the stimuli, with a duration of 900 ms, for
analysis. The data between −100 and 0 ms was used for
baseline correction. According to the characteristics of the
brainwaves, a threshold of −100 to 100 µV was used for
artifact removal.
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FIGURE 1 | P300 speller paradigms.

FIGURE 2 | Structure diagrams of the models.

In the prediction phase, the data for the previous 1 s were
collected every 0.5 s and input into the model.

Model
The model proposed in this study comprised two parts: a
memorizing model and a generalizing model. The memorizing
model was defined as an information retrieval model, expressed
as follows:

f (x) = sigmoid
(

wTx+ b
)

, x =
(

x1, x2, · · · , xd1+d2+dφ

)
(1)

where wT
= (w1, w2 . . . wd1+d2+dϕ

) represents the regression

coefficient, b represents the bias, x =
(

x1, x2, · · · , xd1+d2+dϕ

)
represents the matrix of independent variables, d1 represents the
dense EEG data, d2 represents the sparse (one-hot encoding)
feature data of the participant, and dϕ represents the data after
cross-product transformation, which was defined as follows:

ψ (x) =

d∏
i=1

xcki
i=1, cki ∈ {0, 1} (2)

In Eq. (2), cki is a Boolean value that serves to control the
multiplication of specific features.
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TABLE 1 | Parameter table for CNN section.

Layer Filters Size Params Activation Feature map size

Input(EEG) (batch_size, 30,90)

Input(Spare Feature) (batch_size,1,T)

Embedding[Input(Spare Feature)] output(1,90) 90*T

Concatenate (batch_size,31,90)

Conv2D 16 (batch_size,1,7) 16*1*7 + 16 Leaky Relu 31*42*16(step = 2)

Conv2D 32 (1,7) 32*1*7*16 + 32 Leaky Relu 31*18*32(step = 2)

Conv2D 16 (1,7) 16*7*32 + 16 Leaky Relu 31*13*16(step = 2)

Flatten (6448,1)

Dense N Sigmoid

L, number of cross-feature; N, number of classes.

The prediction function is a Sigmoid function as shown in
Eq. (3).

f (z) =
1

1+ e−z Z ∈ (−∞,+∞) (3)

This function controls the prediction value
between (0,1) and makes the classification for judging
the P300 signal.

The generalizing model was a CNN, as shown in Figure 2.
Tables 1, 2 show the network parameters. The original W&D
model used the multilayer perceptron (MLP) network. Since the
EEG signal was dense with features in each frequency band,
and the CNN can efficiently analyze the signal data with a fixed
length, a multilayer one-dimensional CNN was selected as the
generalizing model. The model structure with the best result,
which had a filter of 1× 3 and three layers, was obtained through
exhaustive selection.

Optimization Algorithm
The FTRL algorithm was used to optimize our mixed model.
The FOBOS algorithm introduces L1 regularization based
on gradient descent and sets a threshold for parameter
truncation; however, the threshold slowly becomes smaller
as the number of iterations increases and needs to be
improved in sparsity.

The FTRL algorithm combines the advantages of the
SGD and FOBOS algorithms, inheriting the accuracy and
good sparsity of weights of the updated SGD algorithm
from the FOBOS algorithm (Duchi and Singer, 2009b).
This led to good real-time performance of our EEG
classification model. The weight-updating formula was as
follows:

Wt+1 = argmin
W

TABLE 2 | Parameter table for LR section.

Layer Size Params Activation

Input(EEG) (30,90)

Flatten (2700,1)

Linear (1,2700) (1) 2,701

Dense N Sigmoid

{
G1:t·W+

1
2

t∑
s=1

σs||W−Ws||
2
2 + λ1||W||1 +

1
2
λ2||W||22

}
(4)

where G1:t represents the sum of the gradients accumulated
up to time t, σs represents the learning rate (which contained
two parameters to be input, known as Per-Coordinate Learning
Rates), and λ1||W||1 and λ2||W||22 represent the regulars of L1
and L2, respectively. The purpose of L1 regularization was to
increase the sparsity of network weights, allowing for real-time
recognition of the EEG data. The purpose of L2 regularization
was to increase the smoothness of the results in the optimization
process. The FTRL algorithm updated each Dim of W separately
(i.e., using different learning rates, which accounted for the
uneven feature distribution of the data). If there were few
features in a certain dimension of a certain data (i.e., the feature
value was 0), every such sample would become very important,
and the corresponding learning rate of the feature value could
be kept very large. The specific weight update algorithm is
shown in Algorithm 1.

Training Phase
In the training phase, FTRL was used as the optimizer, while
logistic loss was used to represent loss. The loss function of

Algorithm 1: FTRL with L1 and L2 regularization.

1. inputα, β, λ1, λ2

2. initialize W ∈ RN, Z = 0 ∈ RN, Q = 0 ∈ RN

3. for t = 1, 2, 3 . . . do

4. G = ∇wL
(
W, X(t), y(t))

5. for i = 1, 2, 3 . . . , N do

6. σi =
1
α

√
qi + g2

i −
√

qi & qi = qi + g2
i

7. zi = zi + gi − σiwi

8. wi =


0 if

∣∣∣z(t)
i

∣∣∣ < λ1

−

(
λ2 +

β+
√

qi
α

)−1
(zi − λ1sgn(zi)) otherwise

9. end

10. end

11. return W
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logistic regression was formulated as follows:

J (w) = −
1
m

m∑
i=1

y(i) log
(
σ
(

wx(i)
+ b

))
+

(
1− y(i)

)
log

(
1− σ

(
wx(i)

+ b
))

, x =
(

x1, x2, · · · , xd1+d2+dϕ

)
(5)

Suppose there are m samples. In this case, x(i) denotes any
certain sample, the dimension of the sample is d1 + d2 + dϕ ,
σ(·) denotes the sigmoid function, and w is the parameter vector
required to solve such that (wTxi + b) yields the probability
prediction value in the sigmoid function. y(i) denotes the
prediction value of the ith sample. When y = 1, the latter equation
is 0; when y = 0, the previous equation is 0. The loss functions
for predicting positive and negative values are combined by y(i),
and the average of m samples is taken to finally obtain the loss
function of logistic regression.

Prediction Phase
Since the prediction phase included data for a single participant,
the embedding layer only needed to be calculated once (because
the sparse TENSOR recorded the participant FEATURE).
Therefore, the model we proposed would exhibit good real-time
performance and predictive robustness.

Prediction Formula
P (Y = 1|x) = σ

(
wT

wide [x, φ (x)]+ wConvalf + b
)

(6)

where Y is the binary class label, σ (·) is the sigmoid function,
ϕ (x) are the cross-product transformations of the original
features x, and b is the bias term. Further, in this equation, wT

wide
is the vector of all wide model weights, and wConv are the weights
applied on the final activations alf .

RESULTS

We conducted three experiments to verify the effectiveness of
the proposed model. We performed 5-fold cross-validation and
took the average as the result. In the first set of experiments, data

from eight participants were collected every other day to train
and test the model. The data of each participant were divided
into a training set (80%) and a test set (20%). Each classifier
was trained using the training set, following which the test was
conducted using the test set. The test results are shown in Table 3.
Among them, the test accuracy of the DT for each participant was
generally low, with an accuracy rate of only around 80%. The test
accuracy rate of LR was only 82.5% in the first participant, but the
test accuracy rates in the remaining seven participants were all
above 90%. The test accuracy rates of RF, Adboost (ADB), MLP,
SVM, KNN algorithm, and LDA in each participant all exceeded
90%. The CNN and LSTM approaches performed very well for
a single participant, with accuracies of over 95%. Our proposed
model achieved an accuracy rate greater than 90% on the test set
in each participant, reaching up to 95.6%.

In the second set of experiments, data from seven participants
were collected every other day to train the model and tested
on the remaining participant. The test results are shown
in Table 4. Since the test participant was never seen in
the training set, the test accuracy rate of the traditional
classification methods dropped significantly. Among them, the
accuracy rate of DT decreased from around 82% to around
73%, and the accuracy rates of LR, RF, ADB, MLP, SVM,
KNN, and LDA decreased from over 90 to 80-85%. The
accuracy of the CNN and LSTM approaches also decreased
from a very high 95%+ to 85–90%, with more dramatic
decreases observed across participants. Because the classifier
had not learned some individual features, the accuracy rate
decreased significantly when used in participants it had not
encountered previously. However, since the wide part and
embedding layer of the proposed LR-CNN model had learnt
some individual features, the test accuracy did not decrease
significantly when the model was applied to new individuals.
When data for participant 7 were tested, the accuracy of
the model decreased markedly when compared with that for
other participants, indicating that the individual features of
participant 7 did not appear in the dataset for the other
seven participants.

In the third set of experiments, data from four of the eight
participants were randomly selected for training, and data from
these four individuals were collected every other day to train
the model, which was tested on data for the remaining four

TABLE 3 | Test accuracy when training individual participants separately.

DT RF ADB LR MLP SVM KNN LDA LR-CNN CNN LSTM

Participant 1 0.819 0.931 0.932 0.825 0.936 0.931 0.906 0.931 0.951 0.989 0.959

Participant 2 0.826 0.933 0.933 0.933 0.934 0.936 0.919 0.933 0.942 0.978 0.968

Participant 3 0.838 0.932 0.932 0.932 0.933 0.934 0.931 0.932 0.929 0.992 0.962

Participant 4 0.828 0.935 0.935 0.935 0.935 0.935 0.928 0.935 0.946 0.992 0.972

Participant 5 0.816 0.933 0.933 0.933 0.933 0.936 0.915 0.933 0.919 0.984 0.954

Participant 6 0.767 0.934 0.934 0.934 0.934 0.935 0.917 0.933 0.956 0.977 0.961

Participant 7 0.820 0.935 0.936 0.935 0.935 0.936 0.915 0.835 0.927 0.969 0.959

Participant 8 0.788 0.932 0.932 0.932 0.932 0.932 0.920 0.932 0.933 0.996 0.967

DT, decision tree; RF, random forest; ADB, adboost; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, k-nearest neighbor; LDA,
linear discriminant analysis; LR-CNN, logistic regression and convolutional neural network; CNN, convolutional neural network; LSTM, long short-term memory.
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participants. To avoid randomness of the results, we carried out
the process of randomly selecting four participants for training
and the remaining four participants for testing a total of four
times, as shown in Tables 5–8. The overall accuracy rates of
DT, LR, RF, ADB, MLP, SVM, KNN, LDA, and LSTM further
decreased slightly when compared with those observed in the
second set of experiments. This was due to the reduction of
training data (from seven participants to four participants, whose
data were not used during training). However, test accuracy for
the four participants did not decrease when our proposed model
was applied, and all accuracy rates exceeded 90% (Table 5).

We plotted the training loss and test accuracy, as shown in
Figure 3. Table 6 shows that the test accuracy of the proposed
model was significantly reduced in test participants 4, 7, and
8. In the second set of experiments, the individual features of
participant 7 did not appear in the other seven participants. For
the analyses summarized in Tables 5, 7, the test accuracy rates
did not significantly decrease in participants 4 and 8, although
relatively significant decreases were observed in the analyses
summarized in Tables 6, 8. This was because participants 4
and 8 shared relatively similar features that were not observed

in other participants. Therefore, if data for participants 4 and
8 were not included in the training phase but were only part
of the testing phase, the accuracy would decrease significantly.
However, when compared with that for the traditional learning
methods, the test accuracy rate was still relatively high for our
proposed model, indicating that our model also learned some
individual features.

The above experiments demonstrated that the proposed
model can better learn individual participant features when
compared with traditional classification methods, with increasing
generalization capability as the size of the training set (i.e.,
number of participants) increases.

DISCUSSION

In this study, the proposed LR-CNN model exhibited better
accuracy in the test phase than existing methods that are
commonly used for P300 classification.

The accuracy rates of each method in the three sets of
experiments are shown in the box plots below. Figure 4

TABLE 4 | Test results for the remaining participant after training using data for the other seven participants.

DT RF ADB LR MLP SVM KNN LDA LR-CNN CNN LSTM

Participant 1 0.759 0.825 0.828 0.793 0.856 0.829 0.806 0.841 0.923 0.898 0.886

Participant 2 0.737 0.836 0.828 0.813 0.863 0.837 0.819 0.824 0.932 0.883 0.877

Participant 3 0.742 0.831 0.829 0.798 0.856 0.835 0.816 0.823 0.919 0.869 0.855

Participant 4 0.716 0.822 0.826 0.816 0.853 0.840 0.814 0.854 0.932 0.889 0.883

Participant 5 0.732 0.836 0.833 0.822 0.833 0.833 0.811 0.821 0.917 0.796 0.811

Participant 6 0.721 0.820 0.827 0.821 0.843 0.836 0.810 0.826 0.926 0.913 0.878

Participant 7 0.727 0.843 0.826 0.816 0.852 0.842 0.812 0.822 0.862 0.877 0.858

Participant 8 0.712 0.832 0.829 0.794 0.829 0.828 0.821 0.829 0.921 0.881 0.862

DT, decision tree; RF, random forest; ADB, adboost; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, k-nearest neighbor; LDA,
linear discriminant analysis; LR-CNN, logistic regression and convolutional neural network; CNN, convolutional neural network; LSTM, long short-term memory.

TABLE 5 | Test results for the remaining four participants after training using data from four participants (1).

DT RF ADB LR MLP SVM KNN LDA LR-CNN CNN LSTM

Participant 1 0.656 0.811 0.808 0.763 0.816 0.817 0.785 0.824 0.913 0.839 0.822

Participant 5 0.707 0.806 0.798 0.773 0.823 0.815 0.801 0.815 0.926 0.828 0.802

Participant 6 0.773 0.831 0.793 0.787 0.808 0.820 0.800 0.818 0.915 0.779 0.798

Participant 8 0.703 0.802 0.806 0.801 0.824 0.833 0.796 0.820 0.909 0.818 0.802

DT, decision tree; RF, random forest; ADB, adboost; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, k-nearest neighbor; LDA,
linear discriminant analysis; LR-CNN, logistic regression and convolutional neural network; CNN, convolutional neural network; LSTM, long short-term memory.

TABLE 6 | Test results for the remaining four participants after training using data from four participants (2).

DT RF ADB LR MLP SVM KNN LDA LR-CNN CNN LSTM

Participant 3 0.743 0.811 0.810 0.746 0.814 0.809 0.771 0.819 0.913 0.811 0.798

Participant 4 0.729 0.815 0.805 0.791 0.817 0.822 0.809 0.822 0.873 0.832 0.822

Participant 7 0.716 0.824 0.803 0.814 0.816 0.821 0.818 0.827 0.857 0.841 0.836

Participant 8 0.704 0.811 0.806 0.801 0.816 0.836 0.766 0.808 0.861 0.856 0.843

DT, decision tree; RF, random forest; ADB, adboost; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, k-nearest neighbor; LDA,
linear discriminant analysis; LR-CNN, logistic regression and convolutional neural network; CNN, convolutional neural network; LSTM, long short-term memory.
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TABLE 7 | Test results for the remaining four participants after training using data from four participants (3).

DT RF ADB LR MLP SVM KNN LDA LR-CNN CNN LSTM

Participant 2 0.750 0.801 0.805 0.820 0.808 0.824 0.862 0.821 0.933 0.812 0.801

Participant 3 0.707 0.823 0.804 0.766 0.801 0.821 0.801 0.810 0.912 0.833 0.826

Participant 4 0.724 0.804 0.833 0.793 0.823 0.809 0.796 0.803 0.929 0.815 0.833

Participant 7 0.717 0.829 0.806 0.817 0.811 0.815 0.807 0.834 0.882 0.822 0.812

DT, decision tree; RF, random forest; ADB, adboost; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, k-nearest neighbor; LDA,
linear discriminant analysis; LR-CNN, logistic regression and convolutional neural network; CNN, convolutional neural network; LSTM, long short-term memory.

TABLE 8 | Test results for the remaining four participants after training using data from four participants (4).

DT RF ADB LR MLP SVM KNN LDA LR-CNN CNN LSTM

Participant 1 0.701 0.801 0.818 0.793 0.816 0.827 0.810 0.821 0.923 0.846 0.839

Participant 4 0.718 0.816 0.801 0.778 0.807 0.802 0.801 0.804 0.882 0.883 0.806

Participant 6 0.744 0.822 0.786 0.782 0.818 0.809 0.797 0.818 0.919 0.816 0.816

Participant 8 0.702 0.835 0.769 0.762 0.803 0.789 0.783 0.801 0.861 0.855 0.841

DT, decision tree; RF, random forest; ADB, adboost; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, k-nearest neighbor; LDA,
linear discriminant analysis; LR-CNN, logistic regression and convolutional neural network; CNN, convolutional neural network; LSTM, long short-term memory.

FIGURE 3 | Accuracy and loss figures for training. (A) The accuracy of the test on the remaining 4 subjects after training using the other 4 subjects. (B) The
accuracy of the test on the remaining subjects after training using the other 7 subjects. (C) Test accuracy when training individual subjects separately. (D) The loss of
the test on the remaining 4 subjects after training using the other 4 subjects. (E) The loss of the test on the remaining subjects after training using the other 7
subjects. (F) Test loss when training individual subjects separately.
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FIGURE 4 | Box plots of test accuracy for different methods in the first set of
experiments.

FIGURE 5 | Box plots of test accuracy for different methods in the second set
of experiments.

shows a box plot of the accuracy rate for each method in
the first set of experiments, Figure 5 represents that in the
second set of experiments, and Figure 6 represents those in
the third set of experiments. The accuracy rates of DT in the
three sets of experiments were generally low, those for strong
classifiers such as RF, ADB, MLP, and SVM were relatively
high in the first set of experiments, with very little fluctuation.
This indicated that these classifiers had learnt the common
features of the eight participants, leading to a stable and
relatively high accuracy rate when testing these participants.
In particular, the CNN and LSTM approaches, which learn
features better than other classifiers, perform very well when
applied to a single participant. However, the overall accuracy
rates of these methods decreased significantly in the second
and third sets of experiments, with large fluctuations. Due
to the differences across participants, the common features
learned by these strong classifiers and CNN/LSTM had different
applicability to each new participant, leading to large fluctuations
in accuracy rates across testers and an overall decrease in
test accuracy. These results suggest that these strong classifiers
and CNN/LSTM had not learned the individual features of
the participant.

FIGURE 6 | Box plots of test accuracy for different methods in the third set of
experiments.

Outliers were observed when LR and LDA were applied
in the first set of experiments, but the overall classification
accuracy rates were relatively high with very little fluctuation
when the outliers were excluded. This indicated that these two
classifiers may have strengthened some common feature types
and that some individuals were not sensitive to such features,
leading to the presence of outliers in which the accuracy rate
was much lower than the average. In the second and third sets
of experiments, as for the above-mentioned strong classifiers,
the overall accuracy rates of these two classifiers decreased
significantly and exhibited large fluctuations across participants.
This can also be explained by the failure of the classifiers to learn
the individual features of participants.

As shown in Figure 4, the classification accuracy of the
CNN and LSTM approaches exceeded that of the traditional
approach in a single participant, slightly outperforming our
approach. However, as shown in Figures 5, 6, the classification
accuracies of these two methods continued to decrease during
cross-participant testing. Moreover, as shown in Figure 6, the
classification accuracy of CNN and LSTM further decreased as
the number of participants decreased relative to that shown in
Figure 5. Thus, the CNN and LSTM approaches are limited by
the numbers of cross-participant tests and participants in general.

Our LR-CNN classifier maintained a high level of overall
accuracy in the three sets of experiments, with no significant
decrease for new participants. In the first set of experiments,
when compared with that for other methods, the accuracy of our
model fluctuated more across participants with a relatively high
average accuracy rate, which suggested that our model learned
both common and individual features. Due to the different
degrees of learning for individual features, the accuracy rate
fluctuated greatly across participants when compared with that
observed using other models. However, in the second and third
sets of experiments, the overall degree of fluctuation and accuracy
rate did not change significantly when compared with those for
other models, further suggesting that our model learned both
common and individual features. The outliers in the second
and third sets of experiments arose from individual features of
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these participants that differed from those of participants in the
training set. Thus, the training samples did not have relevant
individual features for our model to learn. This also highlights
the adaptability of our model: As the number of individual
participants increases, the model can learn more individual
features, thus continuously increasing its generalizability.

Limitations
First, our test dataset was small, meaning that our method has
a limited ability to learn individual features. A small number of
participants in the training set would result in some individual
features not being included, reducing our classifier’s accuracy rate
when testing these participants. Second, although our model is
capable of learning more features as the number of participants
increases, further studies with larger datasets are required to
verify its value.

CONCLUSION

Our proposed LR-CNN model exhibited better test
accuracy than existing methods that are commonly used
for classification. Such improvements in the accuracy of
extracting features from EEG data will be useful for the
development of BCI systems.
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Vařeka, L., and Mautner, P. (2017). Stacked Autoencoders for the P300 Component
Detection. Front. Neurosci. 11:302. doi: 10.3389/fnins.2017.00302

Wang, B., Niu, Y., Miao, L., Cao, R., Yan, P., Guo, H., et al. (2017). Decreased
Complexity in Alzheimer’s Disease: resting-State fMRI Evidence of Brain
Entropy Mapping. Front. Aging Neurosci. 2017:378. doi: 10.3389/fnagi.2017.
00378

Xiao, L. (2010). Dual Averaging Methods for Regularized Stochastic Learning and
Online Optimization. J. Mach. Learn. Res. 11, 2543–2596.

Xu, L., Xu, M., Ke, Y., An, X., Liu, S., and Ming, D. (2020). Cross-Dataset Variability
Problem in EEG Decoding With Deep Learning. Front. Hum. Neurosci. 14:103.
doi: 10.3389/fnhum.2020.00103

Xu, L., Xu, M., Ma, Z., Wang, K., Jung, T. P., and Ming, D. (2021). Enhancing
transfer performance across datasets for brain-computer interfaces using
a combination of alignment strategies and adaptive batch normalization.
J. Neural Eng. 18:0460e5. doi: 10.1088/1741-2552/ac1ed2

Frontiers in Computational Neuroscience | www.frontiersin.org 11 June 2022 | Volume 16 | Article 909553

https://doi.org/10.1155/2019/5627156
https://doi.org/10.1155/2021/6472586
https://doi.org/10.1038/nature04970
https://doi.org/10.1016/j.jneumeth.2007.03.005
https://doi.org/10.1016/j.jneumeth.2007.07.017
https://doi.org/10.1109/TCDS.2019.2942437
https://doi.org/10.1109/TCDS.2019.2942437
https://doi.org/10.1109/TBME.2018.2875024
https://doi.org/10.1080/03772063.2017.1355271
https://doi.org/10.1016/j.bspc.2019.101645
https://doi.org/10.3390/app10041546
https://doi.org/10.3389/fnhum.2019.00130
https://doi.org/10.3389/fnhum.2019.00130
https://doi.org/10.3390/s140712784
https://doi.org/10.48550/arXiv.1506.00019
https://doi.org/10.48550/arXiv.1506.00019
https://doi.org/10.1148/radiol.211762
https://doi.org/10.1148/radiol.211762
https://doi.org/10.3389/fnins.2019.01040
https://doi.org/10.1016/j.neucom.2016.09.123
https://doi.org/10.1109/ACCESS.2020.2968360
https://doi.org/10.1109/TNSRE.2019.2922713
https://doi.org/10.1109/TBME.2008.915728
https://doi.org/10.3389/fnins.2017.00302
https://doi.org/10.3389/fnagi.2017.00378
https://doi.org/10.3389/fnagi.2017.00378
https://doi.org/10.3389/fnhum.2020.00103
https://doi.org/10.1088/1741-2552/ac1ed2
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-909553 June 11, 2022 Time: 19:37 # 12

Li et al. A P300-Detection Method

Yan, T., Wang, W., Yang, L., Chen, K., Chen, R., and Han, Y. (2018). Rich club
disturbances of the human connectome from subjective cognitive decline to
Alzheimer’s disease. Theranostics 8, 3237–3255. doi: 10.7150/thno.23772

Yildirim, A., and Halici, U. (2014). “Analysis of dimension reduction by PCA
and AdaBoost on spelling paradigm EEG data,” in International Conference on
Biomedical Engineering & Informatics, (Hangzhou: IEEE).

Zhao, J., Zhao, D., Shi, L., Kuang, Z., Jing, W., and Wang, H. (2022). Multilayer
weighted integrated self-learning algorithm for automatic diagnosis of epileptic
electroencephalogram signals. Comput. Intell. 38, 3–19.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li, Wu, Song, Zhao, Sun, Zhang and Wu. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 June 2022 | Volume 16 | Article 909553

https://doi.org/10.7150/thno.23772
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

	A P300-Detection Method Based on Logistic Regression and a Convolutional Neural Network
	Introduction
	Materials and Methods
	Participants
	Paradigm Flow
	Dataset Processing
	Model
	Optimization Algorithm
	Training Phase
	Prediction Phase
	Prediction Formula



	Results
	Discussion
	Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


