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The diagnosis based on clinical assessment of pediatric bipolar disorder (PBD)

may sometimes lead to misdiagnosis in clinical practice. For the past several

years, machine learning (ML) methods were introduced for the classification

of bipolar disorder (BD), which were helpful in the diagnosis of BD. In this

study, brain cortical thickness and subcortical volume of 33 PBD-I patients

and 19 age-sex matched healthy controls (HCs) were extracted from the

magnetic resonance imaging (MRI) data and set as features for classification.

The dimensionality reduced feature subset, which was filtered by Lasso or

f_classif, was sent to the six classifiers (logistic regression (LR), support vector

machine (SVM), random forest classifier, naïve Bayes, k-nearest neighbor, and

AdaBoost algorithm), and the classifiers were trained and tested. Among all the

classifiers, the top two classifiers with the highest accuracy were LR (84.19%)

and SVM (82.80%). Feature selection was performed in the six algorithms

to obtain the most important variables including the right middle temporal

gyrus and bilateral pallidum, which is consistent with structural and functional

anomalous changes in these brain regions in PBD patients. These findings take

the computer-aided diagnosis of BD a step forward.
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Introduction

Bipolar disorder (BD) is a common category of mental
disorder, which is featured as a cycling pattern of mood states
with manic or hypomanic episodes, depressive episodes, and
euthymia. BD affects about 2% of adolescents under the age
of 18 (Frias et al., 2015). Recurrent pediatric bipolar disorder
(PBD) has a significant impact on patients’ daily life. Under
the current diagnostic manual, PBD can be classified as manic
(PBD-I) or hypomanic (PBD-II), based on the absence of a
complete manic episode. Currently, in clinical practice, there are
still great challenges in the management of BD, the diagnosis
of which is solely based on clinical evaluation, and it may lead
to a misdiagnosis that the diagnosis result is affected by many
factors, such as the subjectivity of symptoms and the description
of patients. In recent years, machine learning (ML) methods
have been introduced into the classification of BD, which have
proved helpful for the diagnosis of BD.

For distinguishing BD patients from normal subjects,
commonly used ML methods include logistic regression (LR)
(Pirooznia et al., 2012), support vector machine (SVM)
(Schnack et al., 2014), random forest classifier (RF) (Besga et al.,
2015; Chuang and Kuo, 2017), naïve Bayes (NB) (Struyf et al.,
2008), k-nearest neighbor (kNN) (Struyf et al., 2008; Acikel et al.,
2016), and so on. Currently, there are relatively few studies on
using structural magnetic resonance imaging (sMRI) for BD
discrimination, which mainly focused on gray matter (GM) and
white matter (WM) density as features to train classifiers with
different accuracy rates. In research using GM and WM to train
the relevance vector machine (RVM) algorithm to distinguish
BD from healthy controls (HCs), the accuracy of RVM for only
using density data of WM, GM, and a combination of WM and
GM was 70.3, 64.9, and 64%, respectively (Cao et al., 2018).
When Gaussian process classifier (GPC) was trained by GM and
WM data from sMRI of cortical and subcortical structures to
distinguish BD type from HCs, the accuracy of 73% in cohort
1 and 72% in cohort 2 for GM, and accuracy of 69% in cohort
1 and 78% in cohort 2 for WM were obtained (Rocha-Rego
et al., 2014). Doan et al. (2017) trained an RF classifier to
distinguish BD from HCs with an accuracy of 66%, using a
data-driven fusion of cortical thickness, density maps of GM,
and surface area as features. Using morphometric features of the
voxel-based GM in the bilateral amygdala, Mwangi et al. (2014)
trained the ElasticNet algorithm to distinguish BD from HCs
with an accuracy rate of 78.12%. A wide range of commonly
used ML algorithms was trained to differentiate individuals with
BD from HCs using GM voxel-based morphometry, achieving
an accuracy of 62.3% for Ridge, 65.5% for Lasso, 63.5% for
ElasticNet, 65.1% for L0-norm regularization, 64.7% for SVM,
61.6% for regularized discriminant analysis, 60.8% for GPC, and
62% for RF (Salvador et al., 2017).

Support vector machine is most frequently used among
many ML methods for distinguishing BD from HCs. For

example, Nunes et al. (2020) employed brain regional cortical
thickness, surface area, and subcortical volumes to train the
linear kernel SVM algorithm to delineate BD from HCs and
obtain an accuracy of 58.67%. Other studies reported accuracy of
60 and 66.1% when SVM was trained by GM density and volume
of GM and WM in distinguishing BD from HCs (Schnack
et al., 2014; Serpa et al., 2014). When the regional mean GM
volume of 14 clusters and two brain regions (right anterior
cingulate cortices and left inferior frontal gyrus) were utilized as
features to input into the SVM classifier to distinguish between
BD and HCs, the accuracy was improved to 89.03–90.69%
(Lin et al., 2018) and 88.1% (Matsuo et al., 2019). As can
be seen from the above description, the current identification
research of BD using sMRI mainly focuses on SVM, and the
performance comparison of other various classifiers is worse
than that of SVM.

Consequently, the goal of this study is to evaluate whether
several classical ML algorithms could effectively classify PBD-I
patients and HCs from sMRI, and of these, the ML algorithm
performed best on these data and analyzed the contribution
of different brain regions to classification. Different feature
selection methods were applied for different ML methodologies.
The parameters of different methodologies were reported,
the most important structural indices of brain regions were
identified, and the performance comparison among the above
algorithms was discussed.

Materials and methods

Participants

In this study, 33 manic PBD-I patients and 19 HCs
were included. All BD patients were out-patients from the
Clinical Psychiatric Department in the Second Xiangya Hospital
of Central South University, and HCs were recruited by
advertisements in local schools. All the BD patients met the
criteria of the Diagnostic and Statistical Manual of Mental
Disorders 4th Edition (DSM-IV). The inclusion criteria of all
subjects were as follows: (a) right-handed; (b) 12–18 years old;
(c) should be able to keep their head still to complete the MRI
scan. The exclusion criteria for all participants were as follows:
(a) full-scale intelligence quotient (IQ)’ score ≤80; (b) must be
pregnant; (c) contraindications to MRI scan, including foreign
metal in the body and claustrophobia; (d) history of drug abuse
and alcoholism; (e) electroconvulsive therapy history; (f) other
mental diseases, including learning disorder, nervosa anorexia
or bulimia, split personality, and autism; (g) active medical
or neurological malady. In addition, HCs were required to
have no history of mental disorders among their first-degree
relatives. The Stroop color-word test (SCWT) was performed
on all subjects before MRI scanning. SCWT measures suppress
habitual response patterns, working memory, and selective

Frontiers in Computational Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2022.915477
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-915477 August 20, 2022 Time: 9:27 # 3

Dou et al. 10.3389/fncom.2022.915477

attention. The test consists of three parts (SCWT-1, SCWT-2,
and SCWT-3), each part involves 100 visual stimuli. Detailed
information about this test may be found in other literature
(Kuang et al., 2020). The data were collected from January
2012 to July 2014.

This research was approved by the Ethics Committee of the
Second Xiangya Hospital of Central South University. Informed
consent papers were obtained from all participants and one
statutory guardian at least. The difference in sex distribution
between groups was evaluated with a chi-square test, whereas
the differences in the mean of age between PBD and HC groups
were evaluated using unpaired two-sample T-tests. Statistical
analysis was performed with python 3.7.8 (SPSS25 for windows).

Magnetic resonance imaging
acquisition

Magnetic resonance imaging scan
In this study, the Siemens 3.0 T scanner (Siemens, Munich,

Germany) was used for MRI data acquisition. During the MRI
scan, the subjects were asked to stay on their backs and still, close
their eyes, and not think or fall asleep. To protect the subject’s
hearing from the noise of the scanner, each subject was equipped
with cotton earplugs. Using a three-dimensional magnetization-
prepared rapid gradient-echo sequence, a T1-weighted image
of the entire head was obtained. The scan parameters were
set as follows: repetition time (TR) = 2,300 ms, echo time
(TE) = 2.03 ms, inversion time (TI) = 900 ms, thickness = 1 mm,
gap = 0 mm, field of view (FOV) = 256 mm × 256 mm, flip
angle = 9◦, and matrix = 256× 256.

Magnetic resonance imaging
pre-processing and volume and
cortical thickness calculation

Subjects were excluded through visual inspection of the
3D-T1 weighted images: failure of FreeSurfer pre-processing
and aliasing artifact generated by a head motion. After quality
control, 33 out of 36 PBD-I patients, and 19 HCs were included
in our study. To check differences in image quality and head
motion between cases and controls, the Euler number was
calculated in each T1w image, and to quantitatively assess
the image quality, a two-sample T-test was used (two-sided)
(Rosen et al., 2018). There was no significant difference in
the Euler number between the two groups (T-value = 0.039,
P-value = 0.969) (Supplementary Figure 1).

We pre-processed all T1-weighted images using the
FreeSurfer software (v6.0).1 In the FreeSurfer, we conducted

1 https://surfer.nmr.mgh.harvard.edu

the main recon stream (“recon-all”) for the calculation of
cortical thickness, subcortical volume, and total intracranial
volume (TIV). This process included the following steps: (a)
Motion correction was performed to minimize the impact
of head movement during the scan; (b) The skull was
stripped and the brain was extracted; (c) To implement
the affine transformation of the original volume to MNI305
atlas, Talairach transformation was performed; (d) Intensity
normalization was carried out to decrease the intensity
difference caused by an inhomogeneous magnetic field or
other factors in the same tissue; (e) T1-weighted images were
divided into GM, WM, and cerebrospinal fluid (CSF); and (f)
Transformation was conducted by linear transformation array
format. Moreover, boundary subdivisions were made between
GM and WM. For guaranteeing appropriate division of the
cortical regions and subcortical structures, a trained doctor
re-examined all subdivided boundaries and manually correct
them if necessary. Then the volumes of subcortical structures,
cortical GM thickness, and estimated TIV (eTIV) of each subject
were calculated.

Machine learning analysis

Machine learning technology is becoming more and more
popular because of its powerful modeling ability. The ML
classification task in this study is a process of supervised
learning, the typical workflow is as follows (Figure 1): First, by
processing the T1WI data in the FreeSurfer, cortical thickness
and subcortical GM volume of 86 brain regions were set as
features of ML classification. Second, the feature dimensionality
is reduced by extracting meaningful features. An excellent
feature subset can make it easier to build a predictive model,
and the created model is also easier to complete the required
tasks. And a poor feature subset requires a more complex model
to achieve the same performance. Third, the dimensionality-
reduced feature subset is randomly divided into training data
and test data. The training data with class labels are sent to a
classification algorithm (classifier), and the classifier uses the
input data to create a model that can assign the right labels to
observations. For evaluating the accuracy of the classifier, test
data are provided to the classifier to evaluate its performance.
In this study, using the scikit-learn package (0.24.1) in Python
(v3.7.8), we developed six different machine algorithms: LR,
SVM, RF, NB, kNN, and AdaBoost.

Logistic regression
Logistic regression is popular for its simplicity,

parallelization, and interpretation. In the LR model, a
logistic function is used for modeling. Regularization is a
general algorithm and idea, so any algorithm that can produce
overfitting may use regularization to avoid overfitting, and
the same is true for LR with optional l1 regularization, l2
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FIGURE 1

Workflow of machine learning in our work. In machine learning, the six classifiers are as follows: logistic regression (LR), support vector machine
(SVM), random forest classifier (RF), naïve Bayes (NB), k-nearest neighbor (kNN), and AdaBoost algorithm (AdaBoost).

regularization, or elastic-net regularization. In this study,
LR was built with l2 regularization and the inverse of the
regularization coefficient was set as 1 (C = 1).

Support vector machine
Support vector machine (Cortes and Vapnik, 1995) is a

generalized linear classifier in the supervised learning method.
In a high- or infinite-dimensional space, SVM constructs a
hyper-plane or a set of hyper-planes for classification and
regression. Its decision boundary is the maximal margin
hyperplane of the training data. The decision function of SVM
depends on a certain subset of training data, which is called
a support vector.

Support vector machine has been applied in various fields,
such as text classification, bioinformatics, image processing,
cancer identification, handwritten character recognition, and so
on. SVM has many advantages including: (1) it is a learning
method for small samples with a solid theoretical foundation;
(2) the final decision function of SVM is only determined by a
few support vectors, and the complexity of calculation depends
on the number of support vectors rather than the dimension of
the sample space, which avoids the curse of dimensionality in a
sense, so it can work in high dimensional spaces; (3) it still works
even if the dimension is larger than the sample size; (4) a small
number of support vectors are insensitive to outliers, which can
not only help us grasp key samples and remove a large number
of redundant samples but also ensure that method is simple in
algorithm and has good “robustness.”

Random forest
Random forest (Breiman, 2001) is composed of multiple

decision tree classifiers that are used to train and predict
samples. In RF, each tree is built from a sample drawn with
replacement from the training data, and the average is used
to improve prediction accuracy and control overfitting. The
advantages of RF are as follows: (1) the learning process is fast,
and it is still effective on large databases; (2) it is not sensitive to
multicollinearity; (3) the results are relatively robust for missing
data and unbalanced data; (4) it can also be predicted accurately

when there are many characteristic variables without variable
selection; (5) it can evaluate the importance of features in the
classification. Due to the above advantages, RF has been widely
used in various fields, such as bioinformatics, ecology, medicine,
proteomics, finance, and so on.

In this study, RF was made up of 100 trees in the forest.
During the construction of a tree to split each node, the value of
the number of variables is equal to the square root of the features
number for the best split.

Naïve Bayes
Naïve Bayes classifier (Domingos and Pazzani, 1997) is

one of the most widely used classifiers. A NB classifier is a
supervised learning algorithm based on the Bayes theorem
with attribute conditional independence assumption. In other
words, it assumed that each attribute independently affects
the classification results. Based on the Bayes theorem, the
relationship between class variable y and dependent feature
vector x (x1, · · · , xn) can be obtained:

P( y
∣∣ x) =

P(y)P(x| y)
P(x)

Based on attribute conditional independence assumption

P(xi| y, x1, · · ·, xi−1, xi+1, · · ·, xn) = P(xi| y)

the relationship between y and x can be rewritten as

P( y
∣∣ x) =

P(y)
P(x)

n∏
i=1

P(xi| y)

The main difference among different Naive Bayes classifiers
is the assumption distribution of P(xi| y). Whereas the
assumptions of NB classifiers are obviously oversimplified,
they work well in many real-world situations, such as patient
classification, account classification, and so on.

In this study, we adopt a Gaussian NB classifier and the
feature distributionP(xi| y) is assumed to be Gaussian as shown
below.

P(xi| y) =
1√

2πσ2
y

exp(−
(xi − µy)

2

2σ2
y

)
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K-nearest neighbor
The theory of the kNN algorithm (Peterson, 2009) is

relatively mature, and it is also a commonly used supervised
learning algorithm. It does not try to build a general internal
model, but only stores training data. A test sample was given
based on a certain distance metric (such as Euclidean distance),
and the nearest k-training samples to the test sample were found
in the training set. Then the classification of the test sample was
predicted according to the information of these k “neighbors.”
Generally, the “voting method” is utilized in the classification,
the category label that appears most in the k sample is selected
as the prediction result. In the kNN classifier, k is an important
parameter. When k takes different values, the classification
results will be significantly different. The optimal choice of the
value k is selected by cross-validation. In general, a larger k can
obtain a higher signal-to-noise ratio (Lemm et al., 2011) but the
definition of the classification boundary was reduced.

Adaptive boosting classifier
AdaBoost algorithm (Freund and Schapire, 1997) is a typical

iterative learning algorithm, whose core idea is to train a series
of weak classifiers for the same training set, and then collect
these weak classifiers to construct a stronger final classifier.
The AdaBoost algorithm has been proven to be an effective
and practical boosting algorithm. The process of the AdaBoost
algorithm is as follows: Initially, a first weak classifier is obtained
by learning N training samples (the original data), and all the
samples have the same weight 1/N. Second, the misclassified
sample weight of the first weak classifier is increased, whereas
the weights of the samples that were predicted correctly are
decreased. The re-weighed N training samples are used to train
the second weak classifier. For each training, the weight of the
sample is separately modified, and the weak classifier is trained
by the re-weighted N training samples. This process is repeated
until the number of the weak classifier reaches a pre-specified
value. Finally, a strong classifier is obtained by combining all the
weak classifiers obtained from each training and the predictions
from all classifiers combined to produce the final prediction. In
the prediction, the weight of the weak classifier with a small
classification error rate is increased, which plays a larger role in
the strong classifier, whereas the weight of the weak classifier
plays a smaller role with a large classification error rate is
decreased.

Statistical feature extraction

For each subject in this study, a total of 87 brain structural
indices were obtained through the image processing steps
described previously. Among them, eTIV was linearly regressed
as a covariant, and structural indices of 86 brain regions
(20 subcortical volumes and 66 cortical GM thickness) were

retained. A two-sample T-test was conducted on structural
indices of 86 brain regions between the BD-I and HCs groups.
Before the two-sample T-test, the equality of variance test was
performed by the Levene method. If equality of variance was
satisfied, the two-sample T-test was carried out with parameter
equal_var (a function T-test_ind for the two-sample T-test) to
be true, otherwise, equal_var was set to be false. With eTIV as
a regressor, the dimensionality of the structural indices dataset
was reduced by the T-test, and 34 structural indices remained.

Feature selection

Variable and feature selection are the focus of research in
many application fields, where datasets may have thousands of
variables and features (Zheng and Wang, 2017). The benefits of
variable and feature selection are 4-fold: reducing the number
and dimension of features, reducing the difficulty of learning
tasks, reducing training time, and improving the prediction
performance of the predictor (Guyon and Elisseeff, 2003).

In classification, the curse of dimensionality is more severe
if the number of samples is less than the number of features.
Therefore, feature selection must be carried out to reduce
feature dimension and avoid the curse of dimensionality. For
building predictors, selecting the most relevant variables is
usually not the best choice, especially when the variables are
redundant. On the contrary, the subset of useful variables is
often related variables after excluding many redundant ones
(Baggenstoss, 2004). Under the premise of not significantly
reducing the classification accuracy, the feature subset obtained
should be as small as possible, which may ensure stability and
strong adaptability.

To overcome over-fitting, eliminate redundant items, and
achieve the best prediction performance, we applied different
methods to select features. Lasso (Tibshirani, 2011) was used
to select features for the LR, SVM, RF, and NB, and to assign
weights to features (the coefficients of a linear model) in this
study. Lasso is a linear model with the l1 regularization to
estimate sparse coefficient, and is very useful because it tends to
choose solutions with fewer non-zero coefficients, hence it can
effectively reduce the number of features.

In python, the function f_classif was used to compute the
ANOVA F-value for the provided sample. The function f_classif
is placed in the function SelectkBest in scikit-learn as a scoring
function, which removes all features except the k features with
the highest score. Features selected by f_calssif were used for
kNN and AdaBoost. The important value of each feature was
calculated using the permutation feature important function in
Python. After the second feature selection, each classifier of the
five classifiers was rebuilt only on the most important features.
In this study, permutation testing of the feature selection (5,000
times) was conducted to ensure the robustness of the features.
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Cross-validated accuracy

To assess both feature selection results and classification
performance, a k-fold cross-validation repeated p times
(repeated K-fold in scikit-learn) method may be used for
evaluating and comparing learning algorithms. In the process of
k-fold cross-validation repeated p times, all the data are divided
randomly into k groups of data. When using k−1-folds trains
the model, and the data left is used for verifying the model,
the process is repeated for p times. In addition, the method
of k-fold cross-validation repeated p times may be useful in
comparing the performance of different ML algorithms on the
same dataset for the purpose of selecting a better algorithm for
the data under consideration.

In this study, a 2-fold cross-validation repeated four
times was used, splitting the dataset into a training set
of 50% and a test set of 50%. The process was repeated
four times and the performance of different classification
algorithms was compared.

Results

Clinical and magnetic resonance
imaging findings

Demographic and clinical characteristics of PBD-I
patients and HCs are shown in Table 1. No significant
difference was found in gender, age, and education years
between the two groups. Significant differences were found in
the scores of SCWT.

Totally, structural indices of 86 brain regions, including
volumes of 20 subcortical structures and GM thicknesses of 66
cortical regions were obtained. With the eTIV as a regressor, a

TABLE 1 Demographic and clinical characteristics
PBD1 and HC groups.

Characteristics PBD-I
(n = 33)

Healthy controls
(n = 19)

T/χ2 P-value

Gender (M/F) 18/15 9/10 1.51# 0.21#

Age (years) 15.12± 1.84 14.15± 1.57 1.90∧ 0.06∧

Education (years) 8.30± 1.91 7.47± 2.22 1.42∧ 0.16∧

Onset age (years) 13.69± 1.82 –

Illness duration
(months)

18.69± 13.43 –

Number of episodes 3.57± 2.31 –

SCWT1 52± 15.12 66± 12.25 0.001∧

SCWT2 67± 18.66 88± 9.07 <0.001∧

SCWT3 31± 8.04 41± 9.42 <0.001∧

Data were shown in mean± standard deviation.
#Pearson chi-square test.
∧Two-sample T-test.

T-test was conducted on the 86 structural indices (86 features)
for evaluating brain regions showing significant differences
between PBD-I patients and HCs. As a result, 34 features were
saved after the T-test and would be used for further research.

Feature selection

All of the 34 features were input into Lasso that
tends to select solutions with fewer non-zero coefficients,
which effectively reduces the number of features relied on
by the given solution; eight features (Feature group A)
with non-zero coefficients were selected including the right
middle temporal gyrus (MTG.R), right Pallidum (Pallidum.R),
left Pallidum (Pallidum.L), right amygdala (AMG.R), right
transverse temporal gyrus (TTG.R), left transverse temporal
gyrus (TTG.L), left lateral occipital gyrus (LOG.L), and right
postcentral gyrus (PosCG.R). The eight features of Feature
group A selected by Lasso were used to train the models LR,
SVM, RF, and NB.

According to the result of f_classif, which was conducted to
calculate the ANOVA F-value between the label and each feature
(34 features in total), the other eight features [Feature group
B: MTG.R, Pallidum.R, Pallidum.L, right superior temporal
gyrus (STG.R), left STG (STG.L), TTG.L, LOG.L, left precuneus
(PRECU.L)], with the highest ANOVA F-value were selected.
The larger the ANOVA F-value of the feature was, the smaller
the P-value of the feature would be, and the stronger the
prediction ability of the feature would be. kNN and AdaBoost
were trained by the features of Feature group B. Figure 2
describes the weight of Feature group A in Lasso and Feature
group B in f_classif.

Table 2 demonstrates the classification parameters
(accuracy, sensibility, specificity, and AUC) from the step
of 2-fold cross-validation repeated four times when using the
cortical thickness or volume of the 11 brain regions in feature
group A and feature group B for classification. The values in
Table 2 are the average of the parameters in all of the 2-fold
cross-validation repeated four times. The accuracies of LR and
SVM were above 80% (LR: 82.24% and SVM: 80.08%), and that
of RF, NB, kNN, and AdaBoost were above 75% (RF: 79.53,
NB: 78.72%, kNN: 77.74%, and AD: 77.66%). AdaBoost had the
lowest accuracy, whereas LR had the highest accuracy.

Feature importance evaluation

For improving the accuracy of prediction, selecting few
features, and losing as little information as possible, the
permutation feature importance function in Python was used
to evaluate the importance of each feature in each classifier.
The result is shown in Figure 3. The feature importance in the
six classifiers had a hierarchical distribution. In LR and SVM,
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FIGURE 2

Features selection. (A) Eight features selected by Lasso; (B) eight features selected by f_classif.

TABLE 2 Two-fold cross-validation repeated four-time accuracy, sensibility, specificity, and AUC calculated for each classifier with
different features.

Algorithm Features* Accuracies (%) Sensibility (%) Specificity (%) AUC

LR A 82.24 89.26 70.11 0.79

B 84.19 93.91 67.32 0.80

C 85.41 90.85 76.89 0.83

SVM A 80.08 83.49 73.57 0.78

B 82.80 91.20 68.13 0.79

C 84.57 87.89 77.29 0.82

RF A 79.53 90.90 57.94 0.74

B 84.59 91.13 70.27 0.81

C 81.86 89.17 68.61 0.78

NB A 78.72 90.40 58.20 0.74

B 83.56 91.20 71.01 0.80

C 83.64 90.29 71.76 0.81

kNN A 77.74 91.66 55.04 0.73

B 78.70 89.84 59.64 0.74

C 81.86 88.92 68.47 0.78

AdaBoost A 77.66 85.79 64.10 0.74

B 78.24 84.35 67.50 0.75

C 77.33 84.96 64.81 0.74

Classification indices obtained with eight features, six features, combined six features, and Stroop color-word test scores were represented by the percentage values in the table.
*A: Classification using eight features, including cortical thickness of MTG.R, LOG.L, PosCG.R, bilateral TTG, and gray matter volume of AMG.R and bilateral pallidum.
B: Classification using six features, including cortical thickness of MTG.R, bilateral TTG, and gray matter volume of AMG.R and bilateral pallidum.
C: Classification using features combining the structural MRI indices of the six brain regions and SCWT scores.

brain regions showing the top three feature importance values
were Pallidum.L, Pallidum.R, and MTG.R (highlighted in red),
followed by TTG.L, TTG.R, and AMG.R, and with the lowest
level in the LOG.L and PosCG.R (Figures 3A,B). It may be seen
that the feature importance value of PosCG.R in Figure 3A and
that of LOG.L in Figure 3B are less than 0, which may reduce
the accuracy of LR and SVM.

In different classifiers, the feature importance value ranking
of each brain area is different. In RF, the feature importance

value ranking is MTG.R, Pallidum.R, LOG.L, Pallidum.L,
AMG.R, TTG.R, PosCG.R, and TTG.L (Figure 3C). In NB,
the ranking is TTG.L, AMG.R, Pallidum.L, Pallidum.R, TTG.R,
LOG.L, PosCG.R, and MTG.R (Figure 3D). In kNN, the first
three feature importance values are in LOG.L, Pallidum.R,
and STG.L, followed by Pallidum.L, MTG.R, and TTG.L, and
with the lowest level in PRFCU.L and STG.R (Figure 3E).
In AdaBoost, the first three feature importance values are in
Pallidum.L, STG.R, and LOG.L, followed by MTG.R, PRFCU.L,
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FIGURE 3

The importance value of features of eight features selected by Lasso (A–D) and f_classif (E,F). The three most important features (MTG.R,
Pallidum.R, and Pallidum.L) affecting the accuracy of classification have been marked in red.

and TTG.L, and with the lowest level in Pallidm.R and STG.L
(Figure 3F). It may be seen that the feature importance value
of STG.L in Figure 3F is less than 0, which may reduce the
accuracy of AdaBoost.

Machine learning algorithms on six
features

The curse of dimensionality has always been an issue in
the ML research (Quintero et al., 2021; Zhang et al., 2021).
For classification, there are not enough data objects to create
a model to reliably assign all possible objects to a class. As a
result, for high-dimensional data with low sample space, the

accuracy of classification is reduced. In this study, the feature
importance values of PosCG.R and LOG.L are less than zero,
which reduces the accuracy of classifications. To obtain an even
more accurate classification, we eliminated features LOG.L and
PosCG.R, and only retained the remaining six features selected
by Lasso. Permutation testing showed the robustness of the six
features (P < 0.05, FDR corrected).

Four classifiers (LG, SVM, RF, and NB) were used to
reclassify the feature dataset filtered by Lasso. The accuracies
of the four classification algorithms had been improved: LR
from 82.28 to 84.19%, SVM from 80.08 to 82.8%, RF from
79.53 to 84.59%, and NB from 78.72 to 83.56%. In the feature
dataset selected by f_classif, we removed two features STG.L and
PRECU.L. The feature importance value of STG.L in Figure 3F
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is less than 0, which will reduce the accuracy of classifications.
And for both kNN and AdaBoost classifiers, the feature
importance value of PRECU.L (Figures 3E,F) ranks relatively
low and contributes little to classifications. The accuracy of
the other two classifiers had been also improved: kNN from
77.74 to 78.70% and AdaBoost from 77.66 to 78.24% (Table 2).
The accuracies of all classifiers had been slightly improved; the
accuracies of LR, SVM, RF, and NB are more than 80%, but the
accuracies of kNN and AdaBoost were less than 80%.

Although the accuracy of all classifiers had been improved,
the ranking of the importance of features had also changed,
and the importance value of all features was greater than zero,
as shown in Figure 4. The importance of features MTG.R,
Pallidum.R, and Pallidum.L (marked in red) became more

prominent. The top three features in all the six classifiers
included at least two of the above three features.

Combining SCWT scores and MRI data, including the
cortical thickness of MTG.R and bilateral TTG, GM volume of
AMG.R and bilateral pallidum, as the classifying feature, the
six classifiers were retrained and achieved better accuracy than
those using MRI data alone (Table 2).

Discussion

In this study, a variety of classifiers (LR, SVM, RF, NB,
kNN, and AdaBoost algorithm) were applied to the cortical
thickness and substructural volume extracted from the T1 MRI

FIGURE 4

The importance of feature ranking for six features. (A–D) Six features selected by Lasso; (E,F) six features selected by f_classif. The three features
MTG.R, Pallidum.R, and Pallidum.L marked in red have important effects on the accuracy of the classification.
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image, with the purpose to evaluate how well they performed
in discriminating between PBD-I patients and HCs, which may
help for the early diagnosis of PBD-I. The features selected
by Lasso and f_classif were used to train the six classifiers,
and prediction accuracies of more than 75% were obtained.
After filtering according to the permutation feature importance
function, six features were left and utilized to retrain the
six classifiers, and the accuracy of the classifiers was greatly
improved. The accuracy of kNN and AdaBoost was more than
78%, and that of LR, SVM, RF, and NB was more than 80%. The
accuracy of RF was the highest, reaching 84.59%.

For the distinction between PBD-I and HCs, a total of
six classifiers, namely LR, SVM, RF, NB, kNN, and AdaBoost,
were trained by eight features in the process of k-fold cross-
validation repeated p times (see Table 2). The performances of
classifiers were very different because they came from different
algorithm methods. The method of LR performed the best
with a high accuracy (82.24%), which suggests the features
we screened were more friendly to the linear classifier. The
accuracies of SVM and RF were similar (80.08 and 79.53%).
SVM was the most popular ML algorithm in practice and
was suitable for small samples, which does not mean that the
absolute number of samples was small, but the number of
samples required by the SVM algorithm was relatively small
as compared to the complexity of the problem. Whereas RF
was still valid on large databases, and for missing data and
unbalanced data, the results were relatively robust. In our
work, the accuracy of SVM and RF were almost the same,
which was due to using a k-fold cross-validation repeated p
times. In addition, we used Gaussian NB, which is inherently
weaker than other classifiers, such as SVM, RF, and LG. Its
accuracy was not very ideal, because it assumes that the prior
probability of the feature vector is Gaussian distribution. In our
work, the unequal number of BD and HCs has some adverse
effects on the accuracy of kNN (77.74%). The accuracy of
AdaBoost was the worst (77.66%). To achieve higher prediction
accuracy, the AdaBoost algorithm needs a large training sample
set, on which the k-fold cross-validation repeated p times had
limited improvement.

Features selected by Lasso were utilized for the classifiers LR,
SVM, RF, and NB (Figure 2A) and those selected by f_classif
were used in training kNN and AdaBoost (Figure 2B). There
were five shared features in the two groups of features: MTG.R,
Pallidum.R, Pallidum.L, TTG.L, and LOG.L. For classifiers LR,
SVM, NB, RF, kNN, and AdaBoost, the first three important
features contain one or two or even all the three features:
MTG.R, Pallidum.R, and Pallidum.L (shown with red bars in
Figure 3), which was roughly consistent with the order of
importance of the three brain regions shown in Figure 2.
In addition, for improving the accuracy of the classifiers, we
applied feature selection to obtain the weight value of the
features, so the features were screened twice. The value of

feature importance was calculated by the permutation feature
importance function. The importance values of two features,
LOG.L, and PosCG.R, were less than 0, which would affect
the accuracy of the classifiers. Thus, the two features were
removed in classifiers LR, SVM, NB, and RF, and the feature
subset was reduced from eight features to six features. For
the classifier kNN and AdaBoost, we removed STG.L and
PRECU.L, whose importance value was less than 0 or small.
Six classifiers retrained by a new feature subset including
six features obtained very excellent results, the accuracy of
kNN (78.70%) and AdaBoost (78.24%) was improved by 1%,
and the accuracy of the other four classifiers exceeded 80%,
as shown with data of feature type B in Table 2. After
combining SCWT scores and structural MRI indices of the
six brain regions as the classifying feature, better classification
indices were obtained (feature type C in Table 2), which
suggests cognitive scores may be helpful for the differential
diagnosis of BD.

For accurate prediction, it was an important condition to
select suitable features and feature dimensions. According to the
above-mentioned work, we found that the feature importance
in an excellent model is not the same as it behaved in a terrible
model. A feature that is not important to a terrible model (poor
cross-validation score) may be very important to an excellent
model. Using six features retrained six classifiers, the value of
feature importance had a new transformation. In this study, this
phenomenon was especially prominent for the NB classifier. In
Figure 3D, the importance of feature Pallidum.R was in fourth
place, and its importance rose to first place in Figure 4D; the
importance of feature MTG.R went up even more sharply. In
Figure 4, the importance of the features was reordered, but the
importance of the features MTG.R, Pallidum.R, and Pallidum.L
had not changed and became more prominent. For classifier
LR, SVM, NB, RF, kNN, and AdaBoost, the top three important
features contain more than two of MTG.R, Pallidum.R, and
Pallidum.L (Figure 4). It suggests that cortical thickness or
volume of the three brain regions were very important features
in the classification of PBD-I and HCs. On the other hand, the
feature selection process of this study was implemented for the
cross-validation process, not before the estimation of the ML
model. It may avoid information leakage and excessive fitting
to data samples (Claude et al., 2020).

Interestingly, all six classifiers showed the three features of
MTG.R, Pallidum.R, and Pallidum.L, which is very important
for the distinction between PBD-I and HCs. This result is in
line with the abnormality of these three brain regions in PBD
patients found in previous studies. It has been reported that
the MTG may be involved in cognitive processes acting as a
regulatory center for auditory information, such as language and
semantic memory processing (Tranel et al., 1997; Chao et al.,
1999; Cabeza and Nyberg, 2000). It has been proposed that
MTG was associated with reduced cortical thickness in BD-I
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from an MRI analysis of 6,503 individuals (Hibar et al., 2018).
Decreased MTG activation was found in patients with BD-I
during the task of emotional images (Cerullo et al., 2014), which
may reflect altered cognitive functions. Notably, abnormalities
in MTG may serve as innovative biomarkers in BD for diagnosis
and treatment. There is increasing evidence suggesting pallidal
abnormalities in BD. An animal study demonstrated that the
pallidum serves as a significant component of the cortico-
striatal-pallido-thalamo-cortical (CSPTC) circuit involved in
perception, attention, and emotion at downstream cortical levels
(Galineau et al., 2017). It was also found that patients with severe
mania had less intense activity in the right external segment
of globus pallidus than HCs, suggesting that disorders in the
right hemisphere may raise the manic signs (Caligiuri et al.,
2003). Structural neuroimaging researchers have found smaller
pallidal volume in BD patients (Abramovic et al., 2016) and
in BD-I patients with a history of childhood trauma (Janiri
et al., 2017). Additionally, functional neuroimaging findings
have also demonstrated greater pallidual activity during a
motor task in bipolar mania patients (Marchand and Yurgelun-
Todd, 2010), and higher BOLD responses of left pallidum
in BD mania groups (Caligiuri et al., 2003). The above-
mentioned studies have indicated that there are structural
impairments and functional dysfunction in the pallidum that
perhaps represent more potential risk factors unique to the
pathophysiology of BD.

Limitations

The results of our work should be interpreted in a
certain context, in particular the relatively small sample
space. We realized that this aspect might be a limitation of
our research, and we actually took measures, such as using
k-fold cross-validation repeated p times. Moreover, sMRI was
mainly used in this research, so the information contained
was mainly anatomical structure information, which may not
cover comprehensive enough information containing the cause
of BD. In future research, our feature set would further
add fMRI signals, such as magnetic resonance spectroscopy
imaging (MRSI), and clinical information, such as various
evaluation scales.

Conclusion

The purpose of our study was to evaluate whether several
ML algorithms could support distinguishing PBD-I and HCs.
To this end, we implemented six different classifiers using the
following algorithms: LR, SVM, RF, NB, kNN, and AdaBoost.
The features were derived from 86 brain region MRI structural
indices. For distinguishing PBD-I from HCs, eight features were
selected by Lasso or f_classif. The six classifiers had different

accuracy to classify PBD-I and HCs. The accuracy of LR, SVM,
RF, and NB exceeded 80%, and RF had the highest accuracy
of 84.53%, whereas the accuracy of kNN and AdaBoost was
more than 75%. Meanwhile, it is worth noting that right MTG
and bilateral pallidum play key roles in differentiating PBD-
I and HCs, which is consistent with structural and functional
anomalous changes in these brain regions in PBD patients.
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