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A large body of evidence suggests that human and animal movements,

despite their apparent complexity and flexibility, are remarkably structured.

Quantitative analyses of various classes of motor behaviors consistently

identify spatial and temporal features that are invariant across movements.

Such invariant features have been observed at di�erent levels of organization

in the motor system, including the electromyographic, kinematic, and kinetic

levels, and are thought to reflect fixedmodules—namedmotor primitives—that

the brain uses to simplify the construction of movement. However, motor

primitives across space, time, and organization levels are often described with

ad-hoc mathematical models that tend to be domain-specific. This, in turn,

generates the need to use model-specific algorithms for the identification

of both the motor primitives and additional model parameters. The lack of

a comprehensive framework complicates the comparison and interpretation

of the results obtained across di�erent domains and studies. In this work,

we take the first steps toward addressing these issues, by introducing

a unifying framework for the modeling and identification of qualitatively

di�erent classes of motor primitives. Specifically, we show that a single

model, the anechoic mixture model, subsumes many popular classes of

motor primitive models. Moreover, we exploit the flexibility of the anechoic

mixture model to develop a new class of identification algorithms based

on the Fourier-based Anechoic Demixing Algorithm (FADA). We validate

our framework by identifying eight qualitatively di�erent classes of motor

primitives from both simulated and experimental data. We show that,

compared to established model-specific algorithms for the identification

of motor primitives, our flexible framework reaches overall comparable

and sometimes superior reconstruction performance. The identification

framework is publicly released as a MATLAB toolbox (FADA-T, https://tinyurl.

com/compsens) to facilitate the identification and comparison of di�erent

motor primitive models.
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motor primitives, muscle synergies, Fourier-based Anechoic Demixing Algorithm
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1. Introduction

The motor system controls a large number of degrees of

freedom of the musculoskeletal system through a hierarchical

architecture (Bernstein, 1947; d’Avella et al., 2015; Merel

et al., 2019). It has been proposed that at the lower levels

of the hierarchy, fixed modules—often referred to as motor

primitives—reduce the complexity of the control problem,

simplifying both motor control and learning (Tresch et al., 1999;

Flash and Hochner, 2005; Bizzi et al., 2008; Bizzi and Ajemian,

2020; Cheung and Seki, 2021). Convincing evidence for the

existence of motor primitives is provided by the consistent

observation of temporal and spatial regularities at different levels

of the control hierarchy. For example, such regularities have

been reported at the level of the motor cortex (e.g., Overduin

et al., 2015; Kadmon Harpaz et al., 2019), spinal interneurons

(e.g., Hart and Giszter, 2010; Levine et al., 2014; Takei et al.,

2017), motor neurons (e.g., d’Avella et al., 2003; Ivanenko et al.,

2004; Torres-Oviedo et al., 2006), joint kinetics (e.g., Mussa-

Ivaldi and Giszter, 1992; Santello and Soechting, 2000; Thomas

et al., 2005), and joint kinematics (e.g., Santello et al., 1998;

Kaminski, 2007; Chiovetto and Giese, 2013).

However, the heterogeneity of domains and observation

levels has led to the development of a variety of computational

models to explain how the observed regularities are plausibly

generated by the underlying fixedmodules. Such variety, in turn,

has created the need to use different identification algorithms

that sometimes have to be devised ex novo. For example,

motor primitives at the electromyographic (EMG) level are

typically extracted with non-Negative Matrix Factorization

(NMF—e.g., Tresch et al., 1999; Ting and Macpherson, 2005;

Godlove et al., 2016), while motor primitives at the kinematic

level are often extracted with Principal Component Analysis

(PCA—e.g., Santello et al., 1998; Kaminski, 2007; Chiovetto

et al., 2012), Independent Component Analysis (ICA—e.g.,

Mori and Hoshino, 2002; Lambert-Shirzad and Van der

Loos, 2017), or Factor Analysis (FA—e.g., Smith et al., 2006;

Steinberg and Bock, 2013). Alternative approaches are also

common: for example, ICA has also been successfully used

to extract motor primitives at the EMG level (e.g., Hart

and Giszter, 2004; Ivanenko et al., 2005; Dominici et al.,

2011). More complex models, which introduce trial-dependent

delays in the motor primitives activation (Omlor and Giese,

2006) and try to simultaneously capture both temporal and

spatial primitives (d’Avella et al., 2003; Delis et al., 2014),

require specialized identification algorithms. This multitude of

mathematical models and identification algorithms complicates

the comparison of the results from different studies: in the

absence of a standardized framework for the definition and

identification of motor primitives, it is hard to assess whether

potential differences observed between studies are due to the

use of a different model, identification algorithm, or genuine

experimental manipulations.

To simplify such comparative analysis, we introduce here

a new unifying framework to model and identify several

popular classes of motor primitive models. Specifically, we

first show that common models of spatial, temporal, and

spatiotemporal modularity, with and without delays, can be

considered as special cases of a single generative model: the

anechoic mixture model. We then introduce a new class of

identification algorithms, which we derived extending the

Fourier-based Anechoic Demixing Algorithm (FADA—Chiovetto

and Giese, 2013) to fit all the considered modularity models.

Finally, we validate our framework by showing that it can

robustly extract different classes of motor primitives from

both simulated and experimental data with an accuracy that

is comparable and sometimes superior to that achieved using

model-specific identification methods.

2. Methods

2.1. Generative models of spatial and
temporal regularities

This section provides a brief survey of the most common

models of the modular organization of motor behavior.

In general, such models explain the spatial and temporal

invariances observed during movements as arising from spatial

and temporal modules that are fixed across trials. Such modules

are typically referred to as motor primitives or synergies. In the

following, we will assume that the activity patterns ofM degrees

of freedom (DOFs) recorded during the execution of one of L

different trials, over T time samples, are collected in an M by T

matrix Xl, where l is the trial index. Depending on the model,

it will sometimes be useful to refer to individual column vectors

xl(t), or to individual entries xlm(t) of this matrix. Depending

on the context, the DOFs represent different electromyographic

(EMG), kinetic, or kinematic signals. Signals relative to different

trials are considered to have a fixed duration Ts and to be

sampled with a constant sampling frequency.

2.1.1. The spatial decomposition model

One classical definition of motor primitives is based on

the observation, during rhythmic and goal-directed movements,

of specific covariation patterns between different DOFs that

are invariant across time and trials. Such fixed covariation

patterns are typically interpreted as reflecting the coordinated

recruitment of multiple muscles or joints. This type of model has

been particularly successful at explaining regularities in EMG

signals (Tresch et al., 1999; Ting and Macpherson, 2005; Torres-

Oviedo et al., 2006). Consistent with these observations is the

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2022.926345
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Chiovetto et al. 10.3389/fncom.2022.926345

following generative model:

xl(t) =

P
∑

p=1

wp · c
l
p(t)+ residuals (1)

In this equation, the vectors xl(t) collect the values taken

on by all the DOFs at time point t (assuming discrete time

steps, 1 ≤ t ≤ T) in trial number l. The column vectors

wp capture the invariant spatial patterns and thus represent the

motor primitives themselves. The number of primitives is P, and

the scalars clp(t) are the time-dependent mixing weights of the

primitives. Mixing weights (and residuals) can generally vary

across trials. Importantly, the components of this model are

often assumed to be non-negative [i.e., clp(t) ≥ 0 and wp,m ≥

0]. This assumption is particularly common when the model

is used to explain EMG data, which typically consist of time

series of non-negative signals [i.e., xlm(t) ≥ 0, ∀m, l] reflecting

the excitatory activity of underlying motoneurons (Farina et al.,

2014). As this model is based on the invariant patterns in the

spatial domain (i.e., in the DOF space), it is often referred to as

spatial decomposition model.

2.1.2. The temporal decomposition model

An alternative definition of motor primitives is based on the

observation of invariant covariation patterns across time, which

are thought to represent the activity of latent temporal source

functions sp(t). Temporal components based on this definition

have been identified in kinematic (Kaminski, 2007; Berret et al.,

2009; Chiovetto and Giese, 2013), kinetic (Thomas et al., 2005),

and EMG (Ivanenko et al., 2004, 2005; Chiovetto et al., 2010)

space. The underlying generative model, which we will refer to

as temporal decomposition model is defined by:

xlm(t) =

P
∑

p=1

clmp · sp(t)+ residuals (2)

In this equation, xlm(t) is the value of the m-th DOF at

time t in trial number l, and the corresponding scalar mixing

weights clmp change between different trials. The P temporal

primitives sp(t), however, are assumed to be invariant over trials.

Both the spatial (1) and the temporal (2) decomposition models

assume that the latent sources affect the activity patterns of all the

different degrees of freedom simultaneously, that is, without any

DOF-specific delays. For this reason, suchmodels are sometimes

referred to as synchronous decomposition models.

2.1.3. The temporal decomposition model with
delays

An alternative to the synchronous decomposition models

to explain temporal regularities has been proposed by Omlor

and Giese (2006, 2007, 2011). This model allows for delayed

activation of the temporal basis functions, where the delays

can potentially vary across different primitives, DOF, and

trials. This can be interpreted as reflecting, for example, delays

between the activation of different muscles within the same

temporal primitive. Mathematically, this model is characterized

by the equations:

xlm(t) =

P
∑

p=1

clmp · sp(t − τ lmp)+ residuals (3)

Importantly, in this model, the time delays τ lmp and mixing

weights clmp can vary over trials, while the basis functions sp(t)

are invariant, as in model (2). Like for model (1), inequality

constraints can be imposed on the mixing weights and source

functions of models (2) and (3) to account for the non-negativity

of EMG signals.

2.1.4. The spatiotemporal decomposition
model

The models discussed so far, defined by the Equations (1)–

(3) can only account for regularities in the spatial or temporal

domain, but not both. To deal with such a limitation, d’Avella

and Tresch (2002), d’Avella et al. (2003, 2006) introduced the

concept of spatiotemporal (or time-varying) primitives, which

can be considered as latent spatiotemporal activity patterns

that are invariant over trials. The resulting spatiotemporal

decomposition model thus assumes that the activity patterns

measured on the DOFs are generated by mixing such primitives

with trial-specific weights. Such latent sources, or primitives, can

also be shifted in time by a trial-specific delay. This results in the

following generative model:

xl(t) =

P
∑

p=1

clp · wp(t − τ lp)+ residuals (4)

Note that in this model, unlike in model (3), mixing weights

clp and delays τ lp do not change across muscles. The vector-

valued source functions wp(t) are invariant across trials and

represent the spatiotemporal primitives. Such primitives and the

correspondingmixing weights have typically been assumed to be

non-negative (d’Avella et al., 2003), although also models with

unconstrained parameters have been applied to model phasic

EMG activity (d’Avella et al., 2006).

2.1.5. The space-by-time decomposition model

An alternative approach to simultaneouslymodel spatial and

temporal regularities was introduced by Delis et al. (2014). This

model, named space-by-time decomposition model, assumes

the simultaneous existence of Psp spatial and Ptp temporal
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primitives that, unlike in model (4), are not grouped in P

spatio-temporal primitives, but are free to vary independently.

xl(t) =

Ptp
∑

p=1

Psp
∑

q=1

sp(t − τ lpq) · c
l
pq · wq + residuals (5)

In this model, wq and sp(t) define the trial-independent

spatial and temporal primitives as in models (1) and (2), while

the mixing weights clpq and time delays τ lpq are trial-dependent.

Since the model was originally designed to account for EMG

data, all parameters are typically assumed to be non-negative,

with the exception of the time delays.

2.2. The unifying anechoic mixture model

All previously discussed models can be derived as special

cases of a single model: the anechoic mixture model. This type

of model is popular in acoustics, where it is applied for modeling

acoustic mixtures in reverberation-free rooms (Torkkola, 1996;

Emile and Comon, 1998; Bofill, 2003; Yilmaz and Rickard,

2004). This model assumes typically a set of R recorded

acoustic signals yr(t) that are created by the superposition of U

acoustic source functions fu(t), where time-shifted versions of

these source functions are linearly superposed with the mixing

weights aru. The time shifts are given by the time delays τru.

This models the fact that for a reverberation-free room the

signals from the acoustic sources arrive at the receiver with

different time delays and attenuated amplitudes, which are

dependent on the distances between the acoustic sources and the

receivers. The corresponding generative model has the following

form (for 1 ≤ r ≤ R):

yr(t) =

U
∑

u=1

aru · fu(t − τru)+ residuals (6)

2.3. The anechoic mixture model
subsumes previous modular models of
movement generation

In this section, we show that all the models of spatial,

temporal, and spatiotemporal modularity discussed so far can be

considered as a special case of the anechoic mixture model (6).

2.3.1. Derivation of the spatial decomposition
model

Identifying the signals of type yr(t) with the components

of the vectors xl(t), i.e., yr(t) = x
l(r)
m(r)

(t) where the integer

functions l(r) and m(r) define a one-to-one mapping between

the m-th degree of freedom in trial l and the corresponding

signal yr(t) (with 1 ≤ r ≤ M · L), and constraining the time

delays τru to be zero, one obtains the model (1). Since in this

model the weight vectors wp are assumed to be invariant over

trials, all mixing weights arp belonging to the same DOF and

primitive number P have to be equal and independent of the trial

number, so that arp = wp,m(r), where the function m(r) returns

the number of the DOF that belongs to index r independent

of the trial number. The time-dependent mixing coefficients

clp(t) of the model (1) correspond to the source functions fu

of the model (6), thus fu(t) = c
l(u)
p(u)

(t) where here the index

u runs over all combinations of the indices p and l, thus 1 ≤

u ≤ U = P · L and where the integer functions l(u) and p(u)

establish mappings between the number of the source function

in model (6) and the time-dependent mixing weights in model

(1). Non-negativity constraints can be added for the model

parameters arpand the functions fu(t), e.g., for the modeling

of EMG data.

2.3.2. Derivation of the temporal
decomposition models

If one identifies the source functions in model (6) with the

temporal primitive functions sp(t), i.e., fp(t) = sp(t), 1 ≤

p ≤ P and again constrains the delays τru to be zero, Equation

(6) becomes equivalent to model (2). In this case, the mixing

weights arp are equated to the mixing coefficients clmp in model

(2), where the index r runs over all combinations of m and

l, formally arp = c
l(r)
m(r),p

, with appropriately chosen integer

functions m(r) and l(r). Like for model (1), the components

of the data vector have to be remapped over DOF and trials

according to the relationship yr(t) = x
l(r)
m(r)

(t). Again, non-

negativity constraints can be added for the parameters arp and

to the source functions f .

Additionally, assuming that the delays of the anechoic model

can take on any value (τru 6= 0), and equating the delays in

model (3) according to the relationship τrp = τ
l(r)
m(r),p

, makes

model (6) equivalent to model (3).

2.3.3. Derivation of the spatiotemporal
decomposition model

Introducing individual sets of basis functions for the

different DOFs, grouping them into vectors and equating the

mixing weights and temporal delays for the components of each

vector, transforms model (6) into the model (4). On the level

of the time-dependent basis functions, this equivalence can be

mathematically described by the equation fu(t) = wp(u),m(u)(t),

where wp,m corresponds to the component of the basis function

vector wp(t) that belongs to the m-th DOF, and where the

integer functionsm(u) and p(u) establish a one-to-one mapping

between the indices of the basis functions in the two models

and the number of the associated DOF. This assignment is

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2022.926345
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Chiovetto et al. 10.3389/fncom.2022.926345

TABLE 1 Constraints that make the primitive models (1), (2), (3), (4), and (5) equivalent to the general anechoic model (6). See text for details.

Anechoic (6) Spatial (1) Temporal (2) or (3) Spatiotemporal (4) Space-by-time (5)

yr(t) =
U
∑

u=1

aru · fu(t − τru) xl(t) =
P
∑

p=1

wp · c
l
p(t) xlm(t) =

P
∑

p=1

clmp · sp(t − τ l
mp) xl(t) =

P
∑

p=1

clp · wp(t − τ l
p) xl(t) =

Ptp
∑

p=1

Psp
∑

q=1

s(t − τ l
pq) · c

l
pq · wq

yr(t) = x
l(r)
m(r)(t) yr(t) = x

l(r)
m(r)(t) yr(t) = x

l(r)
m(r)(t) yr(t) = x

l(r)
m(r)(t)

fu(t) = c
l(u)
p(u)(t) fp(t) = sp(t), fu(t) = wp(u),m(u)(t) fu(t) = sp(u)(t),

arp = wp,m(r) arp = c
l(r)
m(r),p aru = c

l(r)
p(r) aru = c

l(r)
p(u),q(u) · wq(r),m(u)

τru = 0 τru = 0 or τrp = τ
l(r)
m(r),p τru = τ

l(r)
p(r) τru = τ

l(r)
p(u),q(u)

independent of the trial index l. The index r in (6) runs over all

combinations of DOF and trial numbers, thus 1 ≤ r ≤ M · L.

The integer functions m(r) and l(r) assign the corresponding

trial number and DOF to the index r in the model (6). Thus, the

assignment equation for the data vector is again given by yr(t) =

x
l(r)
m(r)

(t) for the m-th DOF in the l-th trial. The requirement

that all mixing weights and temporal delays belonging to the

same basis function vector wp are equal is equivalent to a set

of equality constraints, which can be captured by the equation

systems aru = c
l(r)
p(r)

and τru = τ
l(r)
p(r)

. Again, non-negativity

constraints can be added, if necessary.

2.3.4. Derivation of the space-by-time
decomposition model

In order to establish equivalence with the model (5), the data

vectors of the models are mapped onto each other according

to the relationship yr(t) = x
l(r)
m(r)

(t), where again l(r) and m(r)

are integer mapping functions that assign the r-th element of

the data vector of the model (6) to the m-th DOF of the data

vector xl for the l-th trial in (5) with 1 ≤ r ≤ M · L. Model

(5) has a total of Psp · Ptp temporal basis functions, where

however the functional forms of the basis functions for different

indices q (i.e., different spatial components) for the same p (i.e.,

same temporal component) just differ by time shifts. This is

equivalent to an equality constraint for these functions, which

can mathematically be characterized in the form fu(t) = sp(u)(t),

with 1 ≤ u ≤ Ptp and the index functions p(u) and q(u)

that map the index u in the model (6) onto the indices of the

temporal and spatial primitive in (5). Since all indices with the

same p(u) are mapped onto the same basis function sp, the

last equation specifies an equality constraint. With the same

integer mapping functions, finally, also the relationship between

the mixing weights can be established, which is given by the

equation aru = c
l(r)
p(u),q(u)

· wq(r),m(u), where wq,m is the m-th

element for the vector wq. The last equation specifies a bilinear

constraint for the weight parameters of the model (6). Using the

same notation, the equivalence between the delays is established

by the equation system τru = τ
l(r)
p(u),q(u)

. A summary of the

established equivalences between the general model (6) and the

other models is given in Table 1.

2.4. FADA: An e�cient algorithm for the
identification of motor primitives within
the unified framework

All algorithms for blind source separation require the

identification of a large number of parameters. For example, a

complete definition of model (6) requires the specification of:

T ·U parameters to represent the sources fu(t), R ·U parameters

to represent the activation weights aru, and R · U parameters

to represent the delays τru. Thus, fitting a dataset with L trials

and M degrees of freedom (i.e., with R = M · L), requires

the estimation of a total of (T + 2M · L) · U parameters. In

typical settings, the number of time samples T is much larger

than the number of degrees of freedomM, sources U, and trials

L. For applications in motor control, the relevant signals are

subject to additional constraints, which can be exploited for the

derivation of more efficient algorithms. Signals in motor control

are typically smooth. This allows to reduce the complexity

of the anechoic demixing problem considerably and to devise

algorithms that are more robust than those developed for

general purposes.

Here, we first present a robust algorithm for standard

anechoic demixing, which can be used for the identification

of the parameters associated with the unconstrained model

(6). This algorithm, which relies on the representation of the

signals in the frequency domain and is thus called Fourier-

based Anechoic Demixing Algorithm (FADA), was introduced

in a previous study (Chiovetto and Giese, 2013) to identify the

temporal decomposition model (3). In the present work, we

describe how this algorithm can be extended by inclusion of

additional constraints to make it suitable for the identification

of the parameters associated with all the most common models

of motor modularity (1–5). The collection of algorithms for

the estimation of all models of motor modularity is released as

a public toolbox: the FADA toolbox (FADA-T, https://tinyurl.

com/compsens).

The typical smoothness of the activity patterns (e.g.,

joint trajectories, EMG envelopes, etc.) recorded during the

execution of body movements, implies that they can be well

described by mixtures of smooth source functions (Chiovetto

and Giese, 2013). These smooth source functions can, in turn,
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be well-approximated by truncated Fourier expansions, defined

by only K nonzero complex Fourier coefficients, where K is

typically far below the Nyquist limit (K ≪ T/2). Consequently,

the number of parameters to identify to describe the original

dataset drops to (K+2M ·L) ·U. This decreases substantially the

computational costs of the parameter estimation problem and

makes it less prone to premature convergence to local minima.

Band-limited temporal signals yr(t) and source functions

fu(t) can thus be approximated by truncated Fourier expansions

of the form:

yr(t) =

K
∑

k=−K

crke
2π ikt
Ts (7)

and

fu(t − τru) ∼=

K
∑

k=−K

νuke
−ik τrue

2π ikt
Ts (8)

where crk and νuk are complex constants (i.e., crk =
∣

∣crk
∣

∣ e
iϕcrk and νuk =

∣

∣νuk
∣

∣ e
iϕνuk , where i is the imaginary

unit, and ϕcrk and ϕνrk are real numbers). The positive integer

K is determined by Shannon’s theorem according to the limit

frequency of the signals, and Ts is the temporal duration of the

signal. The source separation algorithm tries to ensure that the

source functions fu(t) are uncorrelated over the distributions of

the approximated signals. This implies E
{

fu(t) · fu′ (t
′)
}

= 0 for

u 6= u′ and any pair t 6= t′. For the corresponding Fourier

coefficients this implies E
{

νuk · νu′k′
}

= 0 for u 6= u′ and any

pair k 6= k′. Combining Equations (6), (7), and (8) we obtain by

comparison of the terms for the same frequency

crk =

U
∑

u=1

aru · νuke
−ikτru (9)

From this follows with E
{

νuk · ν
∗
u′k′

}

= E
{

∣

∣νuk
∣

∣

2
}

· δuu′

the equation:

∣

∣crk
∣

∣

2
= E

{
∣

∣crk
∣

∣

}

=

U
∑

u=1

U
∑

u′=1

aruaru′E
{

νuk · ν
∗
u′k′

}

e−ik(τru−τru′ )

=

U
∑

u=1

a2ruE
{

∣

∣νuk
∣

∣

2
}

=

U
∑

u=1

|aru|
2
∣

∣νuk
∣

∣

2

(10)

The symbol ∗ indicates the conjugate of a complex number.

The derivation of this equation replaces the expectations of

the Fourier coefficients crk with their deterministic values and

treats the source weights ark as deterministic trial-specific

variables. This can be justified if these mixture weights are

estimated separately from the sources in an EM-like procedure.

Empirically, however, we obtain reasonable estimates of the

model components based on Equation (10) also using other

methods (see below). Since the signals fu(t) and yr(t) are real

the corresponding Fourier coefficients fulfill crk = c∗
r,−k

and

νuk = ν∗
u,−k

. Thus, the demixing problem needs to be solved

only for parameters with k ≥ 0.

The previous considerations motivate the following iterative

algorithm for the identification of the unknown parameters

in model (6). After random initialization of the parameters

to be estimated, the following steps are carried out iteratively

until convergence:

1. Compute the absolute values of the coefficients crk and solve

the following equations:

∣

∣crk
∣

∣

2
=

U
∑

u=1

|aru|
2
∣

∣νuk

∣

∣

2
(11)

with r = 0, 1, . . .R and k = 0, 1, . . .K. In our study we

exploited non-negative ICA (Højen-Sørensen et al., 2002) to

solve this equation. In the distributed version of the software,

the Equation (10) can also be solved via non-negative matrix

factorization (Lee and Seung, 1999, 2000).

2. Initialize for all pairs and iterate the following steps:

(a) Update the phases of the Fourier coefficients of

the sources, defined as ϕνuk = angle(νuk) =

arctan[Im(νuk)/Re(νuk)] by solving the following

non-linear least square problem

min
8

∥

∥C− Z(8)
∥

∥

2
F (12)

where (C)rk = crk, (Z)rk =
U
∑

u=1
arue

−ikτuk
∣

∣νuk
∣

∣ e
iϕνuk

and ‖‖F indicates the Frobenius norm. In order to

avoid cluttered notation, for the function Z(.) only

the arguments with relevance for the optimization are

explicitly written.

(b) Keeping the identified source functions fu(t) constant,

identify for each signal yr(t) the weights aru and delays τru

by minimization of the following cost functions:

argmin
ar ,τ r

∥

∥yr(t)− f(t, τ r)
′ar

∥

∥

2
F (13)

where ′ is the transposition operator. Optimization with respect

to ar and τ r is feasible, assuming uncorrelatedness of the

functions fu and independence of the time delays (Swindlehurst,

1998). The column vector ar concatenates all weights related to

DOF r, i.e., ar = [ar1, . . . , arU ]
′. The vector function fr(t, τ r) =
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[

f1(t − τr1), . . . , fU (t − τrU )
]′

concatenates the functions fu,

shifted by the time delays related to the r-th DOF.

The original version of the FADA algorithm was

designed to solve the source separation problems without

constraints. Additional constraints, such as the non-

negativity of the parameters or additional equality constraints

for the weights and delays can be easily added, due

to the modular structure of the algorithm. A detailed

description of how we imposed such constraints can be

found in the Appendix. Importantly, the addition of such

constraints allowed us to develop a unifying method to

identify the parameters of all the considered models of

motor modularity.

2.5. Validation of the proposed
framework

To validate our framework, we used both biologically

realistic simulated data and real experimental data. The

simulated data included a total of 20 noisy realization

from the models (1–5), for five different noise levels.

Importantly, for models (1–3), we generated data from

both the unconstrained and the non-negative variants

(Figure 1). This allowed us to simulate kinematic-like and

EMG-like signals from a total of eight different models. We

used the data generated from these models to benchmark the

ability of FADA-T to identify the ground-truth generative

models against that of other standard model-specific

identification methods. These methods included: the fast

Independent Component Analysis (fastICA—Hyvärinen and

Oja, 1997), the Non-negative Matrix Factorization algorithm

(NMF—Lee and Seung, 1999) the Anechoic Demixing

algorithm (AnDem—Omlor and Giese, 2011), the Shifted

ICA (SICA—Mørup et al., 2007b), the Anechoic NMF

algorithm (AnNMF—Omlor and Giese, 2011), the shifted

NMF (sNMF—Mørup et al., 2007a), the spatiotemporal NMF

(stNMF—d’Avella et al., 2003), and the sample-based Non-

negative Matrix tri-Factorization algorithm (sNM3F—Delis

et al., 2014).

The experimental data included a dataset of body joint

kinematics recorded during the execution of emotional

walks (Omlor and Giese, 2007; Roether et al., 2009; Endres

et al., 2013), and a dataset of arm EMG signals recorded

during the execution of reaching movements (d’Avella

et al., 2006). We fitted the temporal decomposition

model with delays (3) to the kinematic dataset, and

the spatiotemporal decomposition model (5) to the

EMG dataset.

To assess the performance of the identification algorithms,

we considered two measures. Specifically, as a measure of the

ability of the algorithms to retrieve a solution consistent with

the observed data, we computed the fraction of explained

variance R2. As a measure of the ability of the algorithms to

identify the ground-truth primitives, activation coefficients,

and delays, we computed the normalized similarity SN between

the identified and ground-truth quantities. To normalize

such measures, we computed a baseline similarity measure,

which estimates the average similarity between random

pairs of realizations of a single model. The normalized

similarity SN takes on values between zero and one, where

zero indicates random estimates. Further details about the

procedure we used to generate biologically realistic signals,

the experimental dataset, the benchmark model-specific

identification algorithms, and the similarity measures, can be

found in the Appendix.

2.6. Statistical analyses

All tested measures were normally distributed according to

a Chi-square goodness-of-fit test. Student’s t-test was used to

test whether the reconstruction and similarity measures were

statistically different from the chance level. Group differences

were statistically tested by two-way ANOVAs with Algorithm

and Noise Level as factors. When appropriate, we performed

post-hoc analysis with the Tukey-Kramer test. As a level

of significance for the rejection of the null hypotheses we

chose α = 0.05.

3. Results

3.1. Evaluation of algorithm performance
on simulated data sets

To assess the identification performance of FADA-T, we

generated EMG-like and kinematic-like ground-truth data,

based on the mixture models defined by the Equations (1),

(2), (3), (4), and (5). The aim of our comparison was to

assess whether FADA-T could identify mixture parameters at

least as well as other established model-specific unsupervised

learning methods.

Figure 2A shows the average performance (±SD) of

the FADA-T and the fastICA algorithms (Hyvärinen and

Oja, 1997) on the identification of the parameters of the

spatial decomposition model (1). The bar plots represent the

reconstruction accuracy (R2) and the normalized similarity

(SN ) between the ground-truth and the extracted primitives

and weights, averaged across 20 realizations, for five different

levels of signal-dependent noise. Asterisks indicate significant

differences between algorithms, according to post-hoc testing.

Qualitatively, both algorithms provided a good level of

reconstruction accuracy and resulted in an accurate estimation

of the original model parameters. Accuracy measures were
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FIGURE 1

Representative primitives generated to assess the identification performance of FADA-T. (A) Unconstrained spatial primitives, associated with

model (1). (B) Non-negative spatial primitives, associated with model (1) and (5). (C) Unconstrained temporal primitives, associated with models

(2) and (3). (D) Non-negative (EMG-like) temporal primitives, associated with models (2), (3), and (5). (E) Spatiotemporal non-negative primitives,

associated with model (4).

typically larger than 0.5, and the similarity measures for the

recovered primitives and weighting coefficients were always

significantly larger than chance [t(19) > 9.93, p < 0.001].

The two-factor ANOVAs revealed a significant main effect of

the Noise factor on both the reconstruction accuracy and the

identification of the primitives [F(4, 190) ≥ 5.08, p < 0.001],

indicating a general decrease in performance for increasing

levels of noise. Additionally, we found a significant main effect

of the Algorithm factor on all the tested parameters [F(1, 190) ≥

11.92, p < 0.001]. The interaction between the two factors was

also significant for the similarity of the primitives [F(4, 190) ≥

5.08, p < 0.001]. The post-hoc analysis revealed that the FADA

and fastICA algorithms were equally able to retrieve the correct

primitives and weights (p > 0.05), and that FADA-T was

better able to reconstruct the simulated signals in the absence

of noise (p < 0.05). However, fastICA tended to have higher

reconstruction accuracy in the presence of noise (p < 0.05).

Figure 2B reports the identification performance of FADA-

T on the spatial decomposition model (1) with non-negativity

constraints. In this case, FADA-T was compared against the
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FIGURE 2

Identification of the spatial decomposition model. Performance (mean ± SD) of the Fourier-based Anechoic Demixing Algorithm Toolbox

(FADA-T), fast Independent Component Analysis (factICA), and Non-negative Matrix Factorization (NMF) on artificial datasets generated with the

spatial decomposition model and corrupted by increasing amounts of noise. (A) Unconstrained variant. From left to right: fraction of variance

explained by the identified model, normalized similarities between original and identified primitives and activation weights. (B) Corresponding

statistics for the model with positivity constraints. The * symbol indicates the statistically significant values of p < 0.05.

NMF algorithm (Lee and Seung, 1999), as fastICA does not

provide a way to constrain parameters to be non-negative. Also

in this case, both algorithms provided a good fit of the data

and accurate estimates of the original primitives and mixture

weights. Not surprisingly, performance of both algorithms

degraded with increasing noise. ANOVAs indicated a significant

main effect of the factor Algorithm on the similarity of the

weighting coefficients [F(1, 190) = 23.14, p < 0.001]. We also

found a main effect of Noise Level on the R2 and SN measures

[F(4, 190) ≥ 20.85, p < 0.001]. The interaction of both factors

was significant only for the R2 measure [F(4, 190) = 5.51,p <

0.001]. The post-hoc analysis showed that FADA-T had a higher

reconstruction accuracy (p = 0.01) for the highest tested

noise level (35%), and that FADA-T had a lower identification

performance (p < 0.05) on the weight coefficients for the 25%

noise level. Finally, all the measures were significantly above

chance level [t(19) ≥ 6.85, p < 0.001].

Figure 3A shows the identification performance of FADA-

T and fastICA on the identification of the parameters

of the temporal decomposition model without delays (2).

Qualitatively, reconstruction accuracy and primitive similarity

were modulated by the noise level, while weight similarity

was not. ANOVAs confirmed this trend revealing a significant

main effect of Noise on reconstruction accuracy and primitive

similarity [F(4, 190) ≥ 9.67, p<0.001]. The interaction between

Algorithm and Noise Level was significant only for R2

[F(4, 190) = 5.12, p < 0.001]. Post-hoc testing revealed that

FADA-T and fastICA performed similarly (p > 0.05), with

the exception of the reconstruction quality for 35% noise level,

where FADA-T outperformed fastICA.

Figure 3B shows the results of the comparison between

FADA-T and NMF on the identification of the parameters of

the temporal decomposition model without delays (2) with

non-negativity constraints. The differences in performance
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FIGURE 3

Identification of the temporal decomposition model (2). Performance of the FADA-T, factICA, and NMF algorithms on artificial datasets

generated with the temporal decomposition model. (A) Unconstrained variant; from left to right: fraction of variance explained by the identified

model, normalized similarities between original and identified primitives and activation weights. (B) Corresponding statistics for the model with

positivity constraints. The * symbol indicates the statistically significant values of p < 0.05.

between the two methods for the same noise levels were very

small. Correspondingly, ANOVAs showed that the Algorithm

factor had a significant main effect only on the reconstruction

accuracy R2 [F(1, 190) = 25.99, p < 0.001], while the

Noise factor had significant main effects on all three tested

measures [F(4, 190) ≥ 17.38p < 0.001]. Post-hoc testing

revealed that, for the two highest noise levels, the NMF

algorithm approximated the original data with significantly

higher reconstruction accuracy (p < 0.05). Finally, all measures

in Figure 3 were significantly above chance level [t(19) ≥

8.86, p < 0.001].

Taken together, Figures 2, 3 show that, when applied to data

generated with the synchronous models (1) and (2), FADA-

T exhibited reconstruction performance overall comparable to

those provided by the fastICA and NMF algorithms. In terms

of the identification of the actual parameters, the differences

between the tested algorithms were even smaller, with FADA-

T underperforming only on the estimation of the weights

of the constrained spatial decomposition model with 25%

noise level.

In Figure 4, we show the performance of FADA-T on the

identification of the temporal decomposition model with delays

(3). For the unconstrained variant (Figure 4A), we compared

FADA-T against the AnDem (Omlor and Giese, 2011) and the

SICA (Mørup et al., 2007b) algorithms, while for the constrained

variant (Figure 4B) we considered the AnNMF (Omlor and

Giese, 2011) and the sNMF (Mørup et al., 2007a) algorithms.

In addition to the similarity measures assessed for the models

considered above, we also quantified the similarity between

original and identified delays.

Figure 4A shows that, overall, FADA-T reconstructed the

signals and identified the parameters of the unconstrained

anechoic mixture better than the benchmark algorithms, for all

the noise levels. ANOVAs revealed a significant main effect of

the Algorithm factor on all the considered measures [F(2, 190) ≥

210.5, p < 0.001]. Post-hoc analysis revealed that, compared to
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FIGURE 4

Identification of the temporal decomposition model with delays. Performance of FADA-T, Anechoic Demixing (AnDem), Shifted Independent

Component Analysis (SICA), Anechoic Demixing with Non-negativity constraints (AnNMF), and shifted Non-negative Matrix Factorization

(sNMF), on artificial datasets generated with the temporal decomposition model with delays. (A) Unconstrained variant. From top to bottom:

fraction of variance explained by the identified model, normalized similarities between original and identified primitives, activation weights, and

delays. (B) Corresponding statistics for the model with positivity constraints. The ** symbol represent two significant pairwise group di�erences

(p < 0.05), each represented with a single asterisk (*).
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AnDem, FADA-T provided significantly higher reconstruction

accuracy, primitive similarity, and weight similarity (p <

0.05). Additionally, compared to SICA, FADA-T had a higher

reconstruction accuracy for all noise levels (p < 0.001), and a

higher delay similarity for noise levels >15% (p < 0.001). All

measures in Figure 4A were significantly different from chance

[t(19) ≥ 3.23, p < 0.001].

Figure 4B shows that FADA-T tended to reconstruct the

signals and identify the primitives of the non-negatives anechoic

mixture model better than the benchmark algorithms, for all the

noise levels. Specifically, we found a significant main effect of the

factor Algorithm on R2, primitive similarity, and delay similarity

[F(2, 190) ≥ 6.64, p < 0.05]. Post-hoc testing revealed that,

compared to the AnNMF, FADA-T had higher reconstruction

accuracy across all noise levels (p < 0.001), a higher primitive

similarity for the 5, 15, 25, and 35% noise levels (p < 0.05), and a

higher delay similarity for the 15% noise level (p < 0.05). On the

other hand, FADA-T had a lower delay similarity than AnNMF

for the noise levels 0% and 5%. Compared to sNMF, FADA-T had

higher reconstruction accuracy across all noise levels (p < 0.05),

and higher primitive similarity for the 0, 5, 25, and 35% noise

levels (p < 0.05). All similarity measures in Figure 4B were

significantly above chance level [t(19) ≥ 30.8, p < 0.01], except

for the reconstruction accuracy provided by sNMF for the most

noisy data sets [t(19) = 0.25, p = 0.80].

In Figure 5, we report the results on the identification of

the spatiotemporal decomposition model (4). In this case, we

compared FADA-T against the stNMF algorithm (d’Avella et al.,

2003), developed specifically to fit this model. In this case, we

found a significant main effect of the Algorithm factor on the

reconstruction accuracy, weight similarity, and delay similarity

[F(1, 190) ≥ 13.34, p < 0.001], but not on the primitive

similarity [F(1, 190) = 0.4, p > 0.05]. We also found a significant

Algorithm by Noise interaction on reconstruction quality and

delay similarity [F(4, 190) ≥ 2.84, p < 0.05]. Post-hoc testing

revealed that FADA-T had a higher reconstruction accuracy than

stNMF across all noise levels (p < 0.001); however, FADA-T

had a lower delay similarity for the 35% noise level (p = 0.03).

Finally, all the tested measures were significantly above chance

level for all the noise levels [t(19) ≥ 11.78, p < 0.001].

Figure 6 summarizes the results on the identification of

the space-by-time decomposition model (5). In this case,

we compared FADA-T against the sNM3F algorithm (Delis

et al., 2014), which was developed to fit this specific model.

Qualitatively, FADA-T appears to perform better than sNM3F,

especially in terms of reconstruction quality, weight similarity

and delay similarity. The statistical analyses revealed: a main

effect of the Algorithm factor on all the variables [F(1, 190) ≥

10.72, p < 0.001]; a main effect of Noise on reconstruction

accuracy, weight similarity, and delay similarity [F(4, 190) ≥

2.74, p < 0.05]; a significant Algorithm by Noise interaction on

reconstruction accuracy, spatial primitive similarity, and weight

similarity [F(4, 190) ≥ 2.46, p < 0.05]. Post-hoc testing showed

that, in the presence of noise, FADA-T had a significantly better

reconstruction accuracy than sNM3F (p < 0.001). Additionally,

FADA-T had a higher temporal primitive similarity for the noise

levels 0 and 35% (p < 0.01), and a comparable spatial primitive

similarity (p > 0.05). Moreover, FADA-T outperformed sNM3F

on the estimation of weights and delays, across all noise levels

(p < 0.05). Finally, t-tests showed that FADA-T was always able

to provide above chance estimates [t(19) ≥ 3.68, p < 0.01], while

sNM3F provided chance-level weight estimates for the 5% noise

level [t(19) = 1.91, p = 0.07].

In summary, these results seem to indicate that, on simulated

data, FADA-T performs comparably well to model-specific

methods on the identification of synchronous mixture models

(Figures 2, 3) and better on the identification of anechoic

mixtures (Figures 4–6).

3.2. Evaluation of algorithm performance
on real experimental data

In addition to validating FADA-T on synthesized data,

we also assessed its performance on previously published

real experimental data, comparing the primitives extracted

by FADA-T with those identified with other techniques. The

first experimental data set consisted of kinematic joint angle

trajectories of the body joints of participants performing

emotional walks. Trajectories represented a single gait cycle,

resampled with 100 time steps (Roether et al., 2009; Endres

et al., 2013). In this case, we tested FADA-T against the AnDem

(Omlor and Giese, 2011) and the SICA (Mørup et al., 2007b)

algorithms on the extraction of delayed temporal primitives

(3). Figure 7A shows the fraction of explained variance (R2),

as a function of the number of primitives. Consistently with

previous studies (i.e., d’Avella et al., 2006; Berger et al., 2020),

to select the number of primitives that allow a good trade-off

between reconstruction accuracy and model complexity, we

used the elbow method: we selected the minimum number of

primitives from which a line could fit the R2 curve well (i.e., with

a mean squared error below 10−4—d’Avella et al., 2006; Berger

et al., 2020). For all methods, this point was reached for N = 3,

indicating that three anechoic components (Figure 7B) can

approximate the experimental data set well. Interestingly,

the primitives identified by the methods were almost

identical (S ≥ 0.94).

The second experimental dataset we used to validate

FADA-T comprised EMG signals recorded from 16 different

task-relevalant muscles during point-to-point arm reaching

movements (d’Avella et al., 2006). In this case, we fitted

the spatio-temporal decomposition model (4)—which was

originally shown to capture important features of the dataset

(d’Avella et al., 2006)—with both FADA-T and the stNMF

algorithm. Figure 8 shows that the methods displayed very
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FIGURE 5

Identification of the spatiotemporal decomposition model (4). Performance of FADA-T and spatiotemporal NMF (stNMF) on artificial datasets

generated with the spatiotemporal decomposition model. The (top) panels report the fraction of explained variance (left) and the normalized

similarities between original and identified spatiotemporal primitives (right). The (bottom) panels report the normalized similarities between the

corresponding activation weights (left) and delays (right). The * symbol indicates the statistically significant values of p < 0.05.

similar R2 curves (first column), which leveled off at N = 5 (as

assessed by the elbow method). Additionally, also in this case,

the identified spatiotemporal primitives identified by the two

methods were very similar (S ≥ 0.85).

Taken together, these results suggest that FADA-T performs

as well as model-specific identification methods on both real

kinematic (Figure 7) and muscle activity data (Figure 8).

4. Discussion

In this work, we have introduced a novel framework that

allows to unify a number of common methods for the definition

and identification of spatial, temporal, and spatiotemporal

motor primitives. The framework harnesses the flexibility of the

anechoic mixture model to capture qualitatively different classes

of motor modularity models, and the robustness of the Fourier-

based Anechoic Demixing Algorithm (FADA) to estimate

the parameters reliably. We tested the framework on eight

different model classes on both simulated and experimental

data and showed that the reconstruction and identification

performance were in most cases comparable to those achieved

by established model-specific identification methods. As the

experimental data comprised both electromyographic and

kinematic spatio-temporal signals collected during the execution

of qualitatively different motor behaviors, our results suggest
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FIGURE 6

Identification of the space-by-time decomposition model. Performance of FADA-T and the sample-based Non-negative Matrix tri-Factorization

(sNM3F) algorithm on artificial datasets generated with the space-by-time decomposition model. The (top) panels report the fraction of

explained variance (left) and the normalized similarities between ground-truth and estimated temporal (center) and spatial (right) primitives. The

(bottom) panels report the normalized similarities between the corresponding activation weights (left) and delays (right). The * symbol indicates

the statistically significant values of p < 0.05.

that the framework constitutes a valid unsupervised method

to identify spatial, temporal, and spatiotemporal regularities

from signals extracted from different levels of the motor

hierarchy. Our framework has thus the potential to facilitate the

identification of motor modules, and to remove the potential

confounding arising when comparing results obtained adopting

different models and identification algorithms.

The algorithmic framework we used to identify the sources,

delays, andmixing weights of the anechoic mixture model builds

on the FADA algorithm, which we originally introduced in

Chiovetto and Giese (2013) for the estimation of the temporal

decomposition model with delays (3). In the present work, we

have extended FADA to make it suitable for the identification

of other popular models of spatial and spatiotemporal

decomposition. This was accomplished by deriving classes of

relevant constraints and by appropriately adapting individual

optimization steps. The resulting classes of algorithms, which we

have released publicly in the FADA toolbox (FADA-T), solve the

well-known problem of over-determined anechoic demixing,

where the number of signals to reconstruct outnumbers that of
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FIGURE 7

Extraction of delayed temporal primitives from kinematic data of emotional walking. (A) Fraction of explained variance as a function of the

number of extracted primitives, identified with FADA-T (cyan), AnDem (green), and SICA (purple). (B) Temporal primitives identified by the three

algorithms for a model with three sources; legends indicate pairwise correlation values.

the latent source functions. A few algorithms have been proposes

to address such a problem, including the Shifted Factor Analysis

(Harshman et al., 2003), the Shifted Independent Component

Analysis (Mørup et al., 2007b), and the Anechoic Demixing

Algorithm (Omlor and Giese, 2011). However, these algorithms

tend to be computationally expensive, as they do not sufficiently

restrict the search space of the latent sources. Our identification

framework, on the other hand, imposes a smoothness prior on

the sources; this restricts the search space to band-limited source

function, which speeds up the estimation process.

Influential studies have compared the performance of

different existing identification methods for the estimation of

motor primitives (e.g., Tresch et al., 2006; Lambert-Shirzad and

Van der Loos, 2017; Ebied et al., 2018), or for the blind source

decomposition of other biological signals (Virtanen et al., 2009;

Cashero and Anderson, 2011; Erhardt et al., 2011). In contrast

to these studies, here we have introduced a novel framework for

the identification of motor primitives; moreover, we have shown

that the framework allows the estimation of several classes of

motor primitives and have benchmarked it against popular

model-specific identificationmethods. Similarly to these studies,

we have used both simulated and real experimental data to

measure the identification performance.

A key element of the FADA algorithm is the mapping onto

a finite Fourier basis. On the one hand, this strategy reduces

remarkably the number of identified parameters in comparison

to more general anechoic demixing methods (Mørup et al.,

2007b; Omlor and Giese, 2011). On the other hand, this choice

determines that only band-limited data can be adequately

modeled. However, this is usually not an issue of major

concern in fields such as motor control, where the typical

activity patterns of interest (e.g., joint kinematics, EMGs, etc.)

are naturally band-limited or artificially smoothed by filtering

and trial averaging. An additional potential limitation of our

work is that the current implementation of FADA-T includes

some constrained optimization steps performed with gradient

descent methods, which can potentially be time-consuming.

Even though FADA-T performs such steps relying on built-in

MATLAB functions, future work can potentially replace them

with more efficient ones, harnessing the highly modular pipeline

of FADA-T.

Empirically, we found that the imposed reduction of the

dimensionality of the parameter space resulted in a more robust

estimation of the primitives (even in the presence of substantial

noise levels) and in a lower probability of convergence to

local minima. Consequently, FADA-T performed better than
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FIGURE 8

Extraction of spatiotemporal primitives from EMG data during reaching movements. Primitives are extracted with the FADA-T (A) and stNMF (B),

and are grouped according to their similarity. The leftmost panels show the fraction of explained variance as function of the number of

extracted primitives. The remaining panels show the activation patterns of the spatiotemporal primitives extracted by the two algorithms.

other methods on the identification of anechoic mixture models

(Figures 4–6). This seems to be due to a stronger ability to

identify the correct weights and delays, especially in the cases

of the space-by-time decomposition model (Figure 6), and

the temporal decomposition model with delays (Figure 4A).

Preliminary analyses, also suggest a better ability of FADA-

T to deal with ambiguities in the estimation of delays and

source functions, especially for sources with higher fundamental

frequencies. Further studies, which are beyond the scope of this

paper, will investigate this issue in more depth.

The only case where FADA-T showed consistently lower

performance was on the identification of the unconstrained

spatial decomposition model (Figure 2A), where fastICA had

higher reconstruction accuracy in the presence of noise. We

speculate that this happened because the smoothness prior

imposed by FADA-T on the spatial domain was perhaps

too restrictive. However, in spite of this problem, both the

reconstruction and identification accuracy were sufficiently

high. In addition to testing FADA-T on simulated datasets,

we also considered the problem of identifying spatiotemporal

sources from real experimental data of EMG and kinematic data

sets, collected from human participants during the execution of

goal-oriented and rhythmic motor tasks. In this case, our results

show that FADA-T retrieved sources and mixing coefficients

that were consistent with those obtained with other traditional

techniques (cf. Figures 7, 8).

The central mathematical contribution of this article is the

systematical analysis of the relationship between the different

models of motor modularity, and, most importantly, their

common derivation from the anechoic mixture model (6). This

raises the question of how to identify the most appropriate

modularity model for a given experimental dataset. Even though

we have not proposed new solutions to this problem in this

work, classical model selection methods can easily be applied to

this context, including the Akaike method (Akaike, 1974) and

the Bayesian Information Criterion (Schwarz, 1978). Alternative

approaches such as Bayesian model selection (Bishop and

Nasrabadi, 2006) can also be potentially applied. For this

purpose, all tested models are embedded in a joint model space,

and one marginalizes the prediction error (evidence) using

an uninformative prior distribution over all possible model

architectures. This procedure typically finds automatically a

good balance between the goodness-of-fit and simplicity of

the model. We have proposed an implementation of this idea
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for automatic model selection in Endres et al. (2013), where

we approximated the resulting non-Gaussian distributions

with a Laplace approximation. This allowed us to obtain an

analytically tractable criterion to compare different demixing

models, including those with time delays. Interestingly, a similar

procedure can also allow to make inference about the most

suitable smoothness priors for a given data set. A more recent

AIC-based approach for the estimation of the number of motor

primitives extracted with NMF is introduced by Ranaldi et al.

(2021).

5. Conclusion

Experimental investigations over the last couple of decades

have confirmed Bernstein’s hypothesis (Bernstein, 1966) that the

CNS simplifies the control of movement by relying on amodular

organization of control (Flash and Hochner, 2005; Bizzi et al.,

2008; Bizzi and Ajemian, 2020). The modules underlying such a

control architecture have been defined in multiple ways (Tresch

et al., 2006; Chiovetto et al., 2013; Giszter, 2015), and extracted

by applying a variety of unsupervised learning algorithms to

kinematic, kinetic, EMG, and neural data. In this work, we

have introduced a unifying framework as a potential solution

to this heterogeneity of approaches. FADA-T—the toolbox we

have developed to provide a single estimation environment for

the most common models of motor modularity—promises to

facilitate the interpretation of the multimodal data recorded

during the execution of body movements, by simplifying the

process of identifying the most appropriate modularity models

for the dataset at hand. We expect FADA-T to also stimulate

the explorative adoption of the motor modularity models to

other neuroscientific domains, which can potentially lead to the

discovery of similar principles of hierarchical organization in

other functional brain systems.
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