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Objectve: Emotional brain-computer interface can recognize or regulate

human emotions for workload detection and auxiliary diagnosis of mental

illness. However, the existing EEG emotion recognition is carried out step by

step in feature engineering and classification, resulting in high engineering

complexity and limiting practical applications in traditional EEG emotion

recognition tasks. We propose an end-to-end neural network, i.e., E2ENNet.

Methods: Baseline removal and sliding window slice used for preprocessing

of the raw EEG signal, convolution blocks extracted features, LSTM network

obtained the correlations of features, and the softmax function classified

emotions.

Results: Extensive experiments in subject-dependent experimental protocol

are conducted to evaluate the performance of the proposed E2ENNet,

achieves state-of-the-art accuracy on three public datasets, i.e., 96.28% of

2-category experiment on DEAP dataset, 98.1% of 2-category experiment on

DREAMER dataset, and 41.73% of 7-category experiment on MPED dataset.

Conclusion: Experimental results show that E2ENNet can directly extractmore

discriminative features from raw EEG signals.

Significance: This study provides a methodology for implementing a plug-

and-play emotional brain-computer interface system.

KEYWORDS

electroencephalogram (EEG), neurocognitive, emotional brain-computer interface,

depthwise separable convolution, long short-term memory

1. Introduction

Emotion is the basis of daily human life and plays an essential role in human cognitive

functions, rational decisions, and interpersonal communications (Waldron, 1994; Picard

et al., 2001; Martinovski and Mao, 2009). It is extremely important to identify emotions

accurately especially in the field of brain-computer interaction (Cowie et al., 2002; Jin

et al., 2020, 2021). Automatic emotion recognition technology is introduced to human-

computer interaction, which can remarkably improve the quality of user experience and

enhance the interactions between computer and humanity (Stamos and Naeem, 2017).
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There are two reflections of emotion including external

and internal reactions: external reactions include human facial

expressions, gestures, or speeches; internal reactions include

skin electrical responses, heart rate, blood pressure, respiratory

rate, electroencephalogram (EEG), electroencephalography

(EOG) (Yu et al., 2019), magnetoencephalogram (MEG)

(Christian et al., 2014). From the perspective of neuroscience

(Lotfi and Akbarzadeh-T., 2014), the main areas of the cerebral

cortex are closely related to human emotions (Britton et al.,

2006; Etkin et al., 2011; Lindquist and Barrett, 2012), which

inspires us to record the neural activities of the brains by putting

EEG electrodes on the scalp to collect EEG signals to recognize

human emotions.

EEG signal contains emotional information, which has been

widely used in the field of emotion recognition in recent years

(Soroush et al., 2017; Sulthan et al., 2018; Alarcao and Fonseca,

2019). In traditional EEG emotion recogniton process, feature

extraction is a vital procedure. As shown in Figure 1, after

preprocessing the EEG signals, usually it is necessary to extract

features from raw EEG signals, then input them into the network

for classification and recognition (Duan et al., 2013; Chen

et al., 2021; Ma et al., 2021). Duan et al. (2013) proposed the

differential entropy (DE) feature of five frequency bands and

obtained satisfactory classification results using DE features.

Li et al. (2019) used short-time Fourier transform to extract

time-frequency features, calculated the power spectral density

(PSD) features in theta, alpha, beta, and gamma bands, and

used LSTM to discriminate emotions, which achieved significant

classification results. Ma et al. (2021) proposed a Beetle Antenna

Search (BAS) algorithm that extracted three different features

in three different bands and six channels and an SVM classifier

was applied for classification. Compared with traditional SVM

methods, the classification accuracy of the BAS-SVM method

has gained a 12.89% enhancement. In recent years, deep learning

methods are widely used in emotion recogniton (Jia et al.,

2020a; Li et al., 2020; Zhou et al., 2021). Song et al. (2018)

designed DE features based on electrode positions and used

graph convolutional neural network (GCNN) as a classifier.

Zhang et al. (2019) innovatively combined DE features extracted

from the EEG dataset with the features extracted from the facial

expression dataset and constructed a spatial-temporal recurrent

neural network (STRNN) for emotion recognition. Li et al.

(2018) proposed a bi-hemisphere domain adversarial neural

network (BiDANN), which used DE as the input feature and

conducted both subject-dependent and subject-independent

experiments on the SEED dataset, achieving relatively state-of-

the-art performance. Hao et al. (2021) proposed a lightweight

convolutional neural network that extracts PSD features as

input and conducted experiments on the DEAP dataset,

which attained 82.33 and 75.46% for Valance and Arousal,

respectively. Chen et al. (2021) proposed an integrated capsule

convolution neural network (CapsNet), which used Wavelet

packet transform (WPT) for feature extraction. The average

FIGURE 1

Traditional framework of EEG emotion recognition.

accuracy of the two-category and four-category experiments on

DEAP has reached 95.11 and 92.43%, respectively.

On the other hand, many deep learning methods need not

to extract features manually while run end-to-end. Alhagry et al.

(2017) proposed an end-to-end deep learning neural network to

identify emotions from original EEG signals. This network used

LSTM-RNN to learn features from EEG signals and a softmax

classifier used for emotion recognition. However, they ignored

the vital factor of the spatial relationship between electrodes.

Yang et al. (2018) proposed a parallel convolution recurrent

neural network to extract spatial features of EEG signals,

which achieved acceptable results in emotion recognition tasks

but ignored the point of temporal correlations. During the

procedure, it may also lose some features that contain fruitful

emotional information. It is still a worthy topic that how

to design a practical deep learning framework to recognize

and classify emotions from the original EEG signals directly.

EEGNet (Lawhern et al., 2016) is a compact convolutional

neural network suitable for EEG signals. Our study introduced

extracting EEG features and classifying emotions by using

depthwise separable convolution. Due to the solid internal

relationship between different channels of EEG signal and

the time correlations. Inspired by Lawhern et al. (2016), we

proposed an end-to-end neural network (E2ENNet) for EEG

emotion, which concatenates EEGNet and LSTM (Long-Short

Term Memory). We use depthwise separable convolution to

extract features from multi-channel original EEG signals, LSTM

for searching the correlations between those features. Finally,

a softmax classifier is applied to output the classification

results.

We evaluated the proposed model on three public

datasets, i.e., DEAP (Koelstra, 2012), DREAMER (Stamos

and Naeem, 2017), and MPED (Song et al., 2019),

achieveing state-of-the-art accuracy among existing

methods. The main contributions of this paper are as

follows:
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• We proposed E2ENNet for EEG emotion recognition.

This network combined EEGNet and LSTM, which

simultaneously considerd the spatial information and the

time correlations in EEG signals. At the same time, it

avoided the complicated manual feature extraction and

made full use of all information in raw EEG signals, which

realized end-to-end EEG emotion recognition.

• We conducted extensive subject-dependent experiments

on three public datasets: DEAP, DREAMER, MPED.

The average accuracy of two-category classification is

96.25% (Valance) and 96.16% (Arousal) on the DEAP

dataset; the average accuracy of two-category classification

is 97.84% (Valance), 98.31% (Arousal), and 98.64%

(Dominance) on the DREAMER dataset; it also achieved

an average accuracy of 41.73% for the seven-category

on the MPED dataset. Experimental results demonstrate

that the proposed method has achived state-of-the-art

performance on emotion recognition among other deep

learning methods.

The remainder of this paper is organized as follows. Section

2 presents the proposed method, E2ENNet. Section 3 discusses

extensive experiments on three different public datasets. Finally,

a conclusion is given in Section 4.

2. Proposed method

This section mainly introduces our proposed end-to-

end method, i.e., E2ENNet, including preprocessing, Conv2D,

DepthwiseConv2D, Separable Conv2D (Howard et al., 2017),

LSTM layer and classifier as shown in Figure 2. Spatial and

temporal pieces of information are extracted as emotion features

for EEG emotion recognition. Firstly, we removed the baseline

and used a sliding window to divide the signal into segments

with a duration of 1s. Then, these segments are sequentially

fed to Conv2D, DepthwiseConv2D, SeparableConv2D, LSTM

layer in order to extract spatial and temporal features. Finally,

a softmax function is used to classify the extracted features. The

ultimate result of the experiment has a remarkable increase due

to the end-to-end neural network.

2.1. Preprocessing

There are two parts of preprocessing, i.e., baseline removal

and sliding window slicing. Generally, EEG signals obtained by

video evoked material stimulation include baseline signals and

test signals (Koelstra, 2012; Stamos and Naeem, 2017). Yang

et al. (2018) mentioned that baseline removal can improve the

recognition accuracy of EEG signals on the DEAP dataset.

For every single trial, let CR = [CB,CT] ∈ R
M×N

represents the collected EEG signal with sampling frequency of

H Hz and duration of T1 s.M is the number of EEG electrodes,

N is the collected sample points. Let CB ∈ R
M×L represents the

baseline signals with duration of T2 s and L sample points. ci(i =

1, 2, . . . ,T2) represents the baseline signal in the i-th second.

Therefore, the average value of baseline signal per second can

be expressed as:

CB =

∑T2
i=1 ci

T2
(1)

where CB ∈ R
M×H represents the average value of the baseline

signal per second.

Let CT ∈ R
M×J represents the test signal, duration is T3

s, J represents the number of sample points. For removing the

baseline in the test signal, divide it into several non overlapping

slices cj(j = 1, 2, . . . ,T3) with a 1-s time window. Therefore, the

baseline removed signal per second can be expressed as:

cj
′

= cj − CB (2)

Finally, put these baseline removed slice signals cj
′
into a new

matrix CT ∈ R
M×J .

Furthermore, in order to increase the number of samples

of EEG experiment data. An EEG test signal CT ∈ R
M×J is

usually transmitted by sliding window technology into several

non overlapping samples s = s1, s2, . . . , sn. Where si(i =

1, 2, . . . , n) represents the i-th sample, T represents the sample

point of each sliding window. In this paper we use 1-s time

window to silice the EEG signals, i.e., T = H.

2.2. The framework of E2ENNet

In this paper, the preprocessed EEG signals do not

need to extract features manually and can directly become

the input of the E2ENNet model for emotion recognition.

E2ENNet is formated by four blocks, i.e., a 2D convolution

block, a depthwise convolution block, a depthwise separable

convolution block and a LSTM block. EEG features can be

extracted effectively from the original EEG signals through

the convolution blocks. The E2ENNet we proposed adds an

LSTM module behind the convolution blocks, composed of two

Reshape layers and two LSTM layers. It can make up for the

lack of exploring the channel-wise correlations of EEG signals.

Finally, a fully connected layer is applied to combine those

features and input them into a softmax classifier for emotion

classification. Table 1 shows the detailed parameters of the

E2ENNet module, where C represents the channels of EEG, T is

the number of the sample point, F1 is the number of depthwise

convolution kernels, F2 is the number of pointwise convolution

kernels, N is the number of categories of classification.

E2ENNet is a lightweight convolution neural network.

The core idea is to use depthwise separable convolution

to extract EEG features and LSTM to search for the
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FIGURE 2

The structure diagram of end-to-end neural network on EEG-based emotion recognition.

TABLE 1 Detailed parameters of E2ENNet model.

Block Layer Size Output Activation function

1* Input (C,T)

Reshape (C,T,1)

Conv2D (1,64) (C,T,F1) Linear

BatchNorm (C,T,F1)

2* DepthwiseConv2D (C,1) (1,T,2× F1) Linear

Batchnorm (1,T,2× F1)

Activation (1,T,2× F1) Elu

AveragePool2D (1,4) (1,T/4,2× F1)

Dropout (1,T/4,2× F1)

3* SeparableConv2D (1,16) (1,T/4,F2) Linear

Batchnorm (1,T/4,F2)

Activation (1,T/4,F2) Elu

AveragePool2D (1,8) (1,T/32,F2)

Dropout (1,T/32,F2)

4* Reshape (F2 × (T/32),1)

LSTM 64 64

Reshape (64,1)

LSTM 32 32

Classifier Dense N Softmax

*Block1-4 represents the 2D convolution block, depthwise Convolution block, depthwise

separable convolution block and LSTM block, respectively.

relationship between those features. Depthwise separable

convolution divides a standard convolution operation into two

steps: depthwise convolution and pointwise convolution. For

depthwise convolution, the number of convolution kernels is

the same as the number of input feature maps. Each kernel

is convoluted separately corresponding to a channel, that is,

the same number of feature maps as the input feature maps

are generated. However, this operation completes after each

channel of the input layer is convolved independently, but the

information of different feature maps in the same space can

not be made full use of. Therefore, the pointwise convolution

is introduced, which combines these different feature maps

to generate a new feature map. The pointwise convolution

operation is very similar to the conventional convolution. Except

that the size of the convolution kernel is 1 × 1 × M, M is

the number of feature maps of the previous layer. It combines

the results of depthwise convolution to generate a brand new

feature map. The number of convolution kernels is equal to

the number of feature maps. Depthwise separable convolution

greatly reduces the amount of calculation and model depth of

the neural network. However, its classification accuracy is not

lower than the traditional CNN model (Tan and Le, 2019).

In the standard convolution layer, it is assumed that for

feature map F, the format of input EEG signal is Sf ×Sf ×M, the

standard convolution of the convolution kernel K is Sk × Sk ×

M×N. The format of output feature map G is Sg × Sg ×N. The

operation of standard convolution is shown as Equation (3):

Gk,l,n =
∑

i,j,m

Ki,j,m,nFk+i−1,l+j−1,m (3)

Assuming that the number of input channels is M and the

number of output channels is N, the calculation amount of

standard convolution is: Sk× Sk×M×N× Sf × Sf . A standard

covolution Sk × Sk ×M×N can be decomposed into two steps:

depthwise convolution and pointwise convolution. These two

steps add up to form a full depthwise separable convolution.

The function of depthwise convolution is filtering, in which the
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format is Sk×Sk×1×M, and the output format is Sg ×Sg ×M.

The function of pointwise convolution is channel combination,

the format is 1×1×M×N, and the output format is Sg×Sg×N.

A complete depthwise separable convolution is expressed as

Equation (4):

ˆGk,l,n =
∑

i,j

ˆKi,j,m,nFk+i−1,l+j−1,m (4)

Where K̂ is the kernel of depthwise convolution, the size is

Sk × Sk ×M. Apply them-th kernel of K̂ to them-th channel of

F. We can get the m-th channel of filtered feature map Ĝ. The

number of input channels is M, the amount of calculation of

depthwise convolution is Sk × Sk × M × Sf × Sf . The amount

of calculation of a complete depthwise separable convolution is

Sk × Sk ×M × Sf × Sf +M × N × Sf × Sf . It is
1
N + 1

S2
k

as the

calculation of standard convolution.

In E2ENNet, as the network deepens, the amount of

parameters also grows exponentially. The sensitivity of

divergent information to the non-normalized network

decreases. Therefore, we use batch normalization (Liu et al.,

2018) to normalize the output. The normalization function is

defined as follows:

BN(Xi) =
(Xi − E(Xi))
√

Var(Xi)
(5)

Where E(Xi) is the average value of neuron Xi in each

batch of training data, and the denominator is the standard

deviation of neuron Xi’ activation in each batch of training data.

The features are reconstructed to avoid affecting the feature

distribution learned by this layer of the network:

E(Xi) =
1

m

L
∑

i=1

Xi (6)

Var(Xi) =
1

m

L
∑

i=1

[Xi − E(Xi)]
2 (7)

In E2ENNet, the batch normalization technique is used to

normalize the features learned in the convolution blocks to get a

(0,1) normal distribution.

To further figure out the relationship between multi-

channels of time-series, LSTM network (Hochreiter and

Schmidhuber, 1997) is introduced in this paper. LSTM plays

a critical role in processing time-series signals to selectively

learn information about them. It is also widely used in the

field of EEG emotion recognition (Alhagry et al., 2017; Zhang

et al., 2019). In the traditional neural network methods, the

inputs are independent, so they ignore sequence information.

RNN (Jain et al., 2016) is very effective for data with sequence

characteristics, it can mine time series information in the data

(Wang et al., 2016). Long short-term memory is a special kind

of RNN that can solve the problem of vanishing gradients and

easily learn long-term dependent information. Therefore, we use

the normalized features fBN = BN(Xi) as the input of LSTM.

Let it , gt , ct , ot be the input gate, forget gate, cell activation,

and output gate of LSTM, respectively. The calculation process

is expressed as the following equation:



































it = σ (Wxifat +Whiht−1 +Wcict−1 + bi)

gt = σ (Wxgfat +Whght−1 +Wcgct−1 + bg)

ct = gtct−1 + ittanh(Wxcfat +Whcht−1 + bc)

ot = σ (Wxofat +Whoht−1 +Wcoct−1 + bo)

ht = ottanh(ct)

(8)

Where σ represents the sigmoid function, ht represents the

hidden vector of LSTM cell unit,Wxi,Whi,Wci,Wxg ,Whg ,Wcg ,

Wxc, Whc, Wxo, Who and Wco are parameters of the model.

Finally, as the last part of E2ENNet, the softmax layer is used

as the classifier. Use the output H = [h1, h2, . . . , hn] of LSTM

as the input of softmax to recognize emotions, as following

equation:

P = softmax(ωH + b) (9)

Where P = P1, P2, . . . , Pn,Pi(i = 1, 2, . . . , n) represents the

prediction probability of the i-th EEG sample. ω and b are the

wight term and offset term. Finally, calculate the cross-entropy

error of all data that has already been labeled.

τ = −

n
∑

i=1

Ŝilog(Pi) (10)

Where Ŝi is the label of the i-th EEG sample.When the cross-

entropy loss decreases, the accuracy of emotion recognition

increases.

3. Experiments and results

3.1. Introduction of datasets

The E2ENNet model we proposed has been tested on three

public datasets: DEAP, DREAMER, and MPED. As shown in

Table 2. Here are details of three datasets below:

• DEAP: DEAP dataset is a multimodal emotion dataset

containing a variety of physiological signals, which was

proposed by the research team of Queen Mary University

in London. The dataset contains 40 music videos watched

by 32 subjects. EEG and other physiological signals were

recorded. In this experiment, the sampling frequency of

EEG signals is reduced to 128 Hz, and the EOG artifact

is removed by blind source separation technology. After

pretreatment of each experiment, the EEG data includes

60 s of test data and 3 s of baseline data. Subjects were

asked to record and evaluate each video with a value of 1–

9 in Valance, Arousal, Dominance, and liking. We selected
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TABLE 2 Details of three di�erent datasets.

Dataset Electrodes Evaluation criterion

DEAP 32 Two-category: High/Low

Valance,High/Low Arousals

DREAMER 14 Two-category: High/Low

Valance,Arousal,Dominance

MPED 62 Seven-category:

joy,fun,neutrality,sadness,

fear,disgust,anger

Valance and Arousal in the two-category experiment as the

evaluation criteria. The threshold was set to 5, which was

divided into High/Low Valance and High/Low Arousal.

• DREAMER: DREAMER dataset is a multimodal dataset

collected by the research team of the University of Western

Scotland, including EEG and ECG signals. Twenty-three

subjects watched 18 videos and were asked to record the

Valance, Arousal, and Dominance after each stimulus. EEG

signals were recorded using Emotiv EPOC equipment with

a sampling frequency of 128 Hz. The length of the video

is 65–393 s. All EEG data were edited to 61 s in this

experiment, including 60 s of test data and 1 s baseline

data. Besides, most artifacts (eye electricity, eye movement,

heartbeat interference, etc.) have been removed by the FIRS

filter. We selected Valance, Arousal, and Dominance as the

evaluation criteria. The label range is 1–5, and 3 was chosen

as the threshold, which is divided into High/Low Valance,

Arousal, and Dominance.

• MPED: MPED dataset is a large open-source emotional

dataset collected by theWenming Zheng team of Southeast

University, China, which contains four physical signals:

EEG, skin electricity, respiratory, and ECG data. The

dataset contains 28 Chinese videos watched by 23 subjects.

The video includes joy, fun, neutrality, sadness, fear,

disgust, and anger. There are seven types of emotions,

each type of emotion has four video clips. The acquisition

equipment is an ESI Neuroscan with 62 electrodes and

a sampling frequency of 1,000 Hz. The data we use in

this experiment has already removed noise interference,

downsampled to 128 Hz, and only contains the data of

EEG signal. The EEG data is clipped to 120 s and does not

contain a baseline signal.

3.2. Experiment environment and settings

E2ENNet model and preprocessing are implemented based

on Python3.8 under the Keras framework. The experimental

environment is Inter(R)Core(TM)i5-10400CPU@2.90Hz, 16GB

memory, NVIDIA Geforce GTX1060 6G graphics, 64 bit

Windows 10 system. All experiments on the database are

subject-dependent experiments, i.e., the train set an test set

come from one subject. The number of EEG channels C is set

to 32, 14, and 62 for DEAP, DREAMER, and MPED datasets,

respectively. For the number of samples, points T are all set to

128 according to the sampling frequency. F1 and F2 are set to 8

and 16, respectively. For the number of categories N, DEAP and

DREAMER two-category experiments are set to 2, and MPED

seven-category experiments are set to 7. Adam optimizer is used

to optimize the training process. The learning rate is 0.005, the

batch size is 16, and the number of iterations is 200.

3.3. Experiments on three public datasets

3.3.1. Experiments on DEAP dataset

The format of original data is 40× 32× 8064, 40 represents

40 trials, 32 represents 32 electrodes used in EEG, duration of

each video T1 = 63s, sampling frequency is 128Hz, baseline

signal T2 = 3s. Set the average value of baseline signal

for the first 3 s as CB. Then subtract the average value of

baseline signal per second CB from the test signal for the

last 60 s T3. The baseline removed slice signal is obtained as

experimental data. Moreover, use 1 s non overlapping window

to slice the experimental data. Sixty segments were obtained in

each trail. We do all experiments under the subject-dependent

experimental protocol. Each subject gets 60 × 40 = 2, 400

samples, the format of each sample is 32 × 128. We divide the

data of 40 trials into the training set and testing set according to

the ratio of 4:1, i.e., 32 trials are used as the training set, and

8 trials are used as the testing set. 8 trials of the training set

are randomly selected as the validation set. The segmentation is

performed five times until every single trial has been trained and

tested.A 5-fold cross-validation dataset is constructed, take the

average accuracy of five experiments as the final experimental

result.

We construct two traditional classification algorithms, SVM

and DBN, based on differential entropy (DE) features to verify

the model’s effectiveness. Both methods go through the same

preprocessing steps as the E2ENNet model, namely baseline

removal and sliding window slice. According to the method of

Duan et al. (2013). DE features on five frequency bands: Delta

(1–3 Hz), Theta (4–7 Hz), Alpha (8–13 Hz), Beta (13–30 Hz),

and Gamma (30–45 Hz) are extracted as the input of SVM and

DBN algorithms. And three other state-of-the-art classification

methods are compared:

• ECLGCNN (Yin et al., 2021): extract DE features from

preprocessed EEG signals to build cubes, and classify them

by fusion model of graph convolution neural network and

LSTM.
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FIGURE 3

Two-category classification comparison experiment on DEAP

dataset.

• ACRNN (Tao et al., 2020): a convolution recurrent neural

network based on an attention mechanism is proposed,

which fully considers the weights of different EEG channels

and the spatial information in EEG signals.

• CapsNet (Chen et al., 2021): wavelet packet transform

(WPT) is used to extract features, and an integrated

capsule network is used as the classifier for EEG emotion

classification.

As shown in Figure 3, we can see that the deep learning

method performs better than the two machine learning

methods. This shows that deep learning methods can better

capture the features in EEG signals for emotion recognition.

Compared with other deep learning methods, the E2ENNet

model has achieved an average classification accuracy of

96.35% and 96.2% in the dimension of Valance and Arousal,

respectively, in the emotion classification experiment on the

DEAP dataset, which is higher than the traditional machine

learning methods and the above classification methods.

3.3.2. Experiments on DREAMER dataset

The format of original data is 18× 14× 7, 808, 18 represents

18 trials, 14 represents 14 electrodes used in EEG, duration of

each video T1 = 61s, sampling frequency is 128 Hz, baseline

signal T2 = 1s. The baseline signal of the first second is CB, then

subtract the value of baseline signal CB from the test signal for

the last 60 s T3. The baseline removed slice signal is obtained

as experimental data. Furthermore, use 1 s non overlapping

window to slice the experimental data. Sixty segments were

obtained in each trial. We do all experiments under the subject-

dependent experimental protocol. Each subject gets 60 × 18 =

1, 080 samples, the format of each sample is 14× 128. We divide

the data of 18 trials into the training set and testing set according

to the ratio of 5:1, i.e., 15 trials are used as the training set, and

3 trials are used as the testing set. 3 trials of the training set

are randomly selected as the validation set. The segmentation

is performed six times until every single trial has been trained

and tested. A 6-fold cross-validation dataset is constructed, take

the average accuracy of six experiments as the final experimental

result.

To verify the effectiveness of the E2ENNet model, consistent

with Section 3.3.1. We compare the experimental results with

SVM and other deep learning methods:

• DGCNN (Song et al., 2018): A graph representation

method for multi-channel EEG data. Constructs the

connection relationship between each vertex node of the

graph by learning the adjacency matrix, use DE and other

features to classify emotions.

And ACRNN (Tao et al., 2020) on three emotional

dimensions( Valance, Arousal, and Dominance). As shown in

Figure 4, we can see:

1. E2ENNet model achieved 97.64, 98.23, and 98.42%

accuracy in Valance, Arousal, and Dominance dimensions,

respectively. Among them, the accuracy of Arousal and

Dominance is the highest among the four methods.

2. The accuracy of the Valance dimension is a little lower than

that of the ACRNNmodel, probably because its classification

accuracy has reached the bottleneck.

3.3.3. Experiments on MPED dataset

The format of original data is 28×62×1, 5360, 28 represents

28 trials, 62 represents 62 electrodes used in EEG, duration of

each video T1 = 120s, sampling frequency is downsampled

to 128Hz. Thus the EEG data used in this article has already

been removed baseline. There is no need to remove the baseline

again, and the data can be directly obtained as experimental

data. Furthermore, use 1 s no overlapping window to slice the

experimental data. One hundred and twenty segments were

obtained in each trial. Then each subject gets 120× 28 = 3, 360

samples, the format of each sample is 62× 128. According to the

experimental protocol three of Song et al. (2019)’s. The data of

21 trails are selected as the training set, and 7 trials are selected

as the testing set to ensure the samples of 7 emotions in the

training set and testing set are balanced. i.e., the sample ratio of

the training set and testing set is 3:1, and 7 trials of the training

set are randomly selected as the validation set. The segmentation

is performed four times until every single trial has been trained

and tested. Take the average accuracy of four experiments as the

final experimental result.

In order to verify the performance of the model under

multi-classes classification tasks. We compare the experimental
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FIGURE 4

Two-category classification comparison experiment on

DREAMER dataset.

results with SVM (Song et al., 2019), and other state-of-the-

art deep learning methods in subject-dependent experimental

protocol:

• A-LSTM (Song et al., 2019): adding attention mechanism

to the LSTM network, extracting discriminative features

by focusing on the temporal information of time series to

classify emotions.

• DANN (Ganin et al., 2016): drawing on the idea of

adversarial learning, classify target domain data with source

domain data.

• BiDANN (Li et al., 2021): this method takes into account

the distribution difference between training and testing

data and the asymmetry of the left and right hemispheres

of the brain, using DE features to classify emotions.

• SGA-LSTM (Liu et al., 2019): using attention mechanism

and combining GCNNwith LSTM to focus on specific EEG

channels for emotion recognition.

The experimental results can be seen in Figure 5. The

accuracy of the E2ENNet model is still improved compared

with other methods. It shows that the E2ENNet model can still

maintain a considerable classification effect for more detailed

emotion classify circumstances, which fully verifies the good

robustness of the E2ENNet model.

3.4. Model validation experiments

3.4.1. Influence of di�erent input features

Here, we discuss the influence of different input features

for the E2ENNet model. We extract DE and PSD features

that refers to Jia et al. (2020b)’s method. The two manually

extracted features, the original EEG features (Raw data), and the

FIGURE 5

Seven-category classification experiment on MPED dataset.

combination of the three are used as the input data of E2ENNet.

We conducted experiments on all three datasets.

The experimental results are shown in Table 3, where ACC

represents the recognition accuracy of the model and STD

represents the standard deviation. When inputting the manually

extracted DE and PSD features, the recognition accuracy of

the E2ENNet model is 18.61, 15.95, 9.3, 1.33, 3.89, and 1.23%

lower than that of inputting original EEG signals on DEAP,

DREAMER and MPED dataset, respectively. The standard

deviation is also higher by 1.87, 1.68, 7.75, 0.75, 0.06, and

0.04%, respectively. It shows that some valuable information

for emotion classification in original EEG signals may be lost

when manually extracting features from EEG signals. At the

same time, it also reduces some trainable samples, which also

explains the importance of end-to-end emotion recognition.

When putting PSD, DE and raw data together. The experimental

results show that the results of the three combinations are

not as good as the results of using the original signal. The

possible reasons is that our network model is to first perform a

convolution operation on the original signal, which is equivalent

to filtering, and the PSD and DE features are features that have

been filtered and then transformed. Therefore, the combined

features of the three are not suitable for our network and may

lead to redundancy of features, which reduces the effect.

3.4.2. Ablation study

To further verify the necessity of each model module,

ablation experiments on E2ENNet were carried out on DEAP,

DREAMER, and MPED datasets. It mainly includes the

following experiments: (1) Removing EEGNet module in

E2ENNet, retain LSTM module only, experiment on original

EEG signals; (2) Removing LSTM module in E2ENNet, only
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TABLE 3 Experiments on DEAP, DREAMER and MPED datasets of using di�erent input data of E2ENNet.

Feature DEAP(ACC ± STD) DREAMER(ACC ± STD) MPED(ACC ± STD)

PSD 77.60± 6.05% 88.84± 9.18% 37.84± 7.90%

DE 80.26± 5.86% 96.81± 2.18% 40.50± 7.88%

Raw data+PSD+DE 77.54± 8.80% 89.50± 9.04% 38.54± 8.68%

Raw data 96.21 ± 4.18% 98.14 ± 1.43% 41.73 ± 7.84%

Bold values represent the highest accuracy.

TABLE 4 Ablation experiments of E2ENNet on DEAP, DREAMER and MPED datasets.

Model DEAP(ACC ± STD) DREAMER(ACC ± STD) MPED(ACC ± STD)

E2ENNet(no conv)a 63.46± 8.05% 82.78± 7.34% 32.18± 9.29%

E2ENNet(no LSTM)b 94.89± 6.68% 97.38%± 1.86% 40.03± 7.34%

E2ENNetc 96.21 ± 4.18% 98.14 ± 1.43% 41.73 ± 7.84%

E2ENNet(no conv)a denotes the E2ENNet without all convolution blocks, only retain LSTM block; E2ENNet(no LSTM)b denotes the E2ENNet without LSTM block, only retain

convolution block. E2ENNetc demotes the complete E2ENNet model, containing all convolution and LSTM blocks. Bold values represent the highest accuracy.

FIGURE 6

Experiments on DEAP, DREAMER, and MPED dataset based on

di�erent LSTM layers in E2ENNet model.

retain EEGNet module, experiment on original EEG signals; (3)

Experiment on the final E2ENNet model.

The results can be seen in Table 4, where ACC represents

the recognition accuracy of the model and STD represents

the standard deviation. And the number of layers of LSTM

may influence the classification accuracy, too. We conduct

experiments based on one LSTM layer to three LSTM layers. To

further verify the effect of different LSTM layers. The results can

be seen in Figure 6. We can see that:

• Compared with the E2ENNet model, the recognition

accuracy of the LSTM model on DEAP, DREAMER,

and MPED dataset is relatively low. This shows that

the convolution network EEGNet in E2ENNet, especially

the depthwise separable convolution, can extract useful

features in original EEG signals and play an important role

in emotion recognition.

• After adding the LSTMmodule to the EEGNet module, the

classification accuracy of the E2ENNet model is improved

by 1.32, 0.76, and 1.70%, respectively, indicating that LSTM

is very sensitive to time-series and can explore helpful

pieces of information between features to improve the

classification performance of a convolution network.

• Different LSTM layers can influence the effect of E2ENNet.

After adding one layer of LSTM to the EEGNet, the

effect is improved. After adding two layers, the effect

is more obvious. After adding three layers, the effect

gradually decreases. Therefore, adding two layers of

LSTM makes the emotion recognition model optimal.

The reason for the gradual decline after the three-layer

LSTM network may be that the EEG emotion data set

is a small data set, and too many network layers lead to

over fitting.

From the above points, it can be concluded

that each part of E2ENNet is effective and

has significant contributions to the emotion

classification task and the structure of E2ENNet

is reasonable.

3.4.3. Comparison of time cost

Except for accuracy, computational efficiency (time cost)

is also a vital criterion for evaluating algorithms. Due to

the effectiveness of depthwise separable convolution we used

in E2ENNet, the amount of calculation can be reduced

significantly. We run all the codes under the same experimental
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TABLE 5 The time cost of di�erent models on DEAP dataset.

Model Training time Testing time ACC

SVM <1s <1s 75.14%

DBN / 35s 85.42%

CapsNet 181s 16s 95.33%

E2ENNet(no conv) 252s 8s 63.46%

E2ENNet(no LSTM) 51s <1s 94.89%

E2ENNet 72s <1s 96.21%

Bold values represent the lowest time cost and the highest accuracy.

environment. As shown in Table 5, we compared the training

time, testing time, and accuracy of SVM, DBN, CapsNet

(Chen et al., 2021) and three ablation models mentioned

in Section 3.4.2 on the DEAP dataset. We can see that

SVM is the least time-consuming method but the accuracy

is not very good, the testing time of DBN is too long.

The CapsNet model has relatively high accuracy, but the

time cost is very high, too. E2ENNet (no conv) has no

advantage in both time cost and accuracy. For E2ENNet

(no LSTM) and E2ENNet, the price of higher accuracy is a

heavier computation burden during training. However, once the

models are trained, we do not need to consider the training

time anymore. Our E2ENNet model has achieved relatively

the lowest testing cost and the highest accuracy, and run

end-to-end, which is very suitable for instant EEG emotion

recognition systems.

4. Conclusion

In this paper, we proposed an end-to-end emotion

recognition model, E2ENNet, which can extract more

discriminative features conductive to emotion recognition

from the original EEG signals. Through extensive validation,

E2ENNet has achieved state-of-the-art accuracy on three public

datasets, i.e., DEAP, DREAMER, and MPED. It’s an idea plug-

and-pay model for instant emotional brain-computer interface

system. At the same time, we noticed that some deeper networks

lead to overfitting due to the small EEG samples. In the future,

we will use the Generative Adversarial Network to generate EEG

data and apply a deeper model to classify emotions.
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