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Neck pain is a worldwide health problem. Clarifying the etiology and providing effective
interventions are challenging for the multifactorial nature of neck pain. As an essential
component of cervical spine function, the sensorimotor control system has been
extensively studied in both healthy and pathological conditions. Proprioceptive signals
generated from cervical structures are crucial to normal cervical functions, and abnormal
proprioception caused by neck pain leads to alterations in neural plasticity, cervical
muscle recruitment and cervical kinematics. The long-term sensorimotor disturbance
and maladaptive neural plasticity are supposed to contribute to the recurrence and
chronicity of neck pain. Therefore, multiple clinical evaluations and treatments aiming
at restoring the sensorimotor control system and neural plasticity have been proposed.
This paper provides a short review on neck pain from perspectives of proprioception,
sensorimotor control system, neural plasticity and potential interventions. Future
research may need to clarify the molecular mechanism underlying proprioception and
pain. The existing assessment methods of cervical proprioceptive impairment and
corresponding treatments may need to be systematically reevaluated and standardized.
Additionally, new precise motor parameters reflecting sensorimotor deficit and more
effective interventions targeting the sensorimotor control system or neural plasticity are
encouraged to be proposed.
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INTRODUCTION

Neck pain is one of the most commonly reported musculoskeletal disorders, causing a substantial
economic burden to healthcare systems, absence from work, and compensations (Kazeminasab
et al., 2022). Around 50% of the adult population experience at least one episode of neck pain
during their lifetime, and neck pain ranks fourth in the leading causes of global disabilities (Fejer
et al., 2006; Hoy et al., 2014). The main challenge in the long-term management of neck pain is to
provide accurate diagnosis and effective therapies (Cohen, 2015; Vardeh et al., 2016). Neck pain is
a multifactorial disease influenced by many biological, psychological, behavioral and social factors,
making it challenging to identify the main contributors and their relevance to the consequences
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of neck pain (Kazeminasab et al., 2022). A large portion of
neck pain patients is classified as non-specific since a clear
pathoanatomical etiology of the neck pain is not detected
(McLean et al., 2010; Misailidou et al., 2010), which makes
therapies tend to focus on addressing the symptoms and the
physical impairments of neck pain.

Sensorimotor control system is a very important component
of the cervical spine (Figure 1). The impaired proprioception
and disturbance of the sensorimotor control system in neck
pain have been extensively studied in previous research studies
(Reddy et al., 2019; Asiri et al., 2021; Peng et al., 2021), and the
long-term sensorimotor alteration and neural plasticity changes
due to persistent proprioceptive deficit has been suggested to
contribute to the recurrence and chronicity of neck pain (Hodges
and Tucker, 2011; Röijezon et al., 2015; Kristjansson et al.,
2016; Brumagne et al., 2019). This review presents a short
update on proprioception of the cervical spine and impaired
proprioception in patients with neck pain. First, the sensorimotor
control system of the cervical spine is introduced to evaluate
mechanisms underlying normal and neck pain conditions. Then,
maladaptive neural plasticity will be discussed in chronic neck
pain conditions, and, finally, interventions to manipulate the
sensorimotor control system and maladaptive neural plasticity
will be proposed.

PROPRIOCEPTOR AND
PROPRIOCEPTION

Cervical Proprioception
Cervical proprioception refers to sensory information generated
by muscle spindle, Golgi tendon organs (GTOs), joint receptors
and cutaneous receptors, which located in muscle, tendon,
joint capsules and skin, respectively (Hogervorst and Brand,
1998; Delhaye et al., 2018; Kröger, 2018). The constant sensory
information, together with the vestibular and visual systems,
ensures coordinated motor functions and rapid reaction of the
neck to the surrounding environment (Proske and Gandevia,
2012; Kiehn, 2016). The proprioception plays a crucial role in
maintaining posture and stability of the cervical joints during
static and dynamic situations (Strimpakos, 2011; Proske and
Gandevia, 2018). Extensive literature indicates that GTOs and
muscle spindles mainly contribute to neck proprioception, while
the contribution of joint and cutaneous receptors are minimal
(Armstrong et al., 2008; van der Wal, 2009; Proske and Gandevia,
2012). The density of muscle spindles is distributed diversely
across cervical muscles and is particularly high in the small
suboccipital muscles, which implies their roles in the fine motor
control of the neck (Kulkarni et al., 2001; Boyd-Clark et al., 2002;
Liu et al., 2003). The muscle spindles are typically innervated by
group Ia and group II afferents, while the GTOs are innervated
by group Ib afferents (Jami, 1992; Delhaye et al., 2018). With
respect to differences in the anatomical location and type of
afferents, the muscle spindles are sensitive to changes in static
muscle length and the rate of change in muscle length, while the
GTOs are sensitive to the changes in contractile force (Chalmers,
2002; Vincent et al., 2017; Wilkinson, 2022). The core function

of the proprioceptors is to transduce mechanical stimulus from
muscles and tendons into electrochemical signals and project
it via dorsal root ganglia (DRG) to the central neural system
(CNS) (Delmas et al., 2011; Bewick and Banks, 2015). As a
family of mechanosensitive membrane proteins, Piezo channels
have been reported to be the main mechanically activated cation
channels during this mechanotransduction process (Coste et al.,
2012; Murthy et al., 2017). In particular, the expression of the
Piezo2 channel is extremely high in DRG sensory neurons (Coste
et al., 2010). Additionally, when conditioned with the deletion
of Piezo2 channels in proprioceptive neurons, the experimental
mice show severe deficits in movement coordination and
sensing limb positions (Florez-Paz et al., 2016). Patients with
loss of function mutations in the Piezo2 gene display deficits
in producing coordinated movements (Chesler et al., 2016;
Szczot et al., 2018). However, the exact molecular mechanism
of proprioception still needs further research. Proprioceptive
sensory afferents typically interact with monosynaptic motor
neurons that control the same muscle or synergistic muscles
(Manuel and Zytnicki, 2011; Imai and Yoshida, 2018), and neck
pain can impaire cervical proprioception and altered motor
control strategy of cervical spine (Meisingset et al., 2015, 2016).

Impaired Proprioception During Neck
Pain
Any injuries to cervical structures affect the proprioceptive
system, as clearly demonstrated in whiplash-associated and
chronic neck patients (De Pauw et al., 2016; Mazaheri et al., 2021).
Aside from injuries, cervical structural degeneration that occurs
with aging could also lead to proprioceptive deficits (Ferlinc
et al., 2019). It has been demonstrated that aged subjects show
much fewer intrafusal fibers and denervation of muscle spindles

FIGURE 1 | The cervical sensorimotor control system. The central neural
system instantly processes proprioception generated from proprioceptors in
cervical structures (i.e., cervical muscles and passive structures) and sends
motor commends to cervical muscles to complete neck movements. The
neck movements, in turn, could affect the proprioception generation.
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from different parts of the body when compared with young
subjects (Swash and Fox, 1972). Studies have confirmed the
decline of cervical proprioceptive function in elderly participants
(Vuillerme et al., 2008; Landelle et al., 2018), and patients with
muscular dystrophy also show spindle morphology changes and
corresponding impairment of the proprioception, manifested
as postural instability and poor coordination (Kararizou et al.,
2007; Troise et al., 2014). Based on literature reviews (Peng
et al., 2021), many tests have been applied to measure the
sensorimotor control system in neck pain patients, among
which the joint position error (JPE) is the most commonly
used, reflecting the impairment in joint position sense. Patients
with neck pain, in general, show greater JPE when compared
with healthy subject, although conflicting results exist between
studies due to differences in methodologies (Stanton et al.,
2016; de Zoete et al., 2017). In a recent review, the JPE does
not differ between patients with traumatic neck pain and non-
traumatic neck pain, but both show proprioceptive deficits
compared with healthy controls (de Vries et al., 2015). Further,
previous studies have also found that cervical JPE was not
different between young and old subjects with chronic neck
pain (Alahmari et al., 2017). These results indicate that pain
itself may have a major influence on the proprioceptive system
over degeneration with aging and structural damage to the neck.
This point was proved in abundant experimental and clinical
neck pain research studies (Malmström et al., 2013; Gizzi et al.,
2015; Zaproudina et al., 2015). Furthermore, some previous
studies reported that the cervical JPE was positively correlated
with neck pain intensity in subjects with cervical spondylosis
(Reddy et al., 2019).

Although still unclear, pain may affect cervical proprioception
at any stage during the signal transduction process according
to the complex neurological pathway (Röijezon et al., 2015).
The evidence indicated that the activation of nociceptors (type
III and type IV afferents) could inhibit the activity of gamma
motor neurons, which leads to proprioceptive disturbance
(Riemann and Lephart, 2002; Bennell et al., 2003). Moreover,
the cellular bodies of nociceptors are embedded in the dorsal
root ganglion as well, and the proprioceptive signals could
be competitively suppressed by nociceptive signals in higher
CNS centers (Schomburg et al., 1999). Abnormal proprioception
from the peripheral cervical structures could cause cortical
neuroplastic changes, modify the sensorimotor control system
and eventually result in altered motor outputs (Woodhouse et al.,
2010; Meisingset et al., 2015; DePauw et al., 2017).

SENSORIMOTOR CONTROL SYSTEM

Sensorimotor Control of the Neck
Three interactive systems are involved in the sensorimotor
control of neck movements: the active system (cervical muscles),
the passive system (vertebrae, intervertebral disks, ligaments,
joint capsules and facet joints) and the central nervous system
(Panjabi, 1992a; Izzo et al., 2013). It has been estimated that
the mechanical stability of the cervical spine is 20% from the
osseoligamentous structures and 80% from the musculature

structures (Panjabi et al., 1998). Cervical muscles are the
direct performers of the sensorimotor control system, and the
coordination between cervical muscles ensures the dynamic
stability of the cervical spine during neck movements (Panjabi,
1992b; McGill et al., 2003). More than 20 pairs of cervical
muscles surround the cervical spine column, including deep
and superficial muscles (Blouin et al., 2007). The deep cervical
muscles, typically attached to the cervical vertebrae directly
with a small moment during neck movements, are supposed
to control individual cervical joint motion (e.g., longus colli,
longus capitis, and multifidus muscles) (Blouin et al., 2007;
Schomacher and Falla, 2013). By contrast, superficial cervical
muscles cross several cervical vertebrae or the entire cervical
spine and work as the posture maintainer and movement
initiator (e.g., sternocleidomastoid and trapezius muscles)
(Blouin et al., 2007; Schomacher and Falla, 2013). Cervical
ligaments are traditionally supposed to have only mechanical
properties, limiting the cervical joint motion at the extremes
of neck movements (Hartman et al., 2016). The ligaments are
important passive stabilizers but functionally connected to the
surrounding muscles by the ligamento-muscular reflex (Dyhre-
Poulsen and Krogsgaard, 2000; Chu et al., 2003; Hendershot
et al., 2011). Paraspinal muscles (such as multifidus muscle)
could be activated by stimulus in ligaments and restrict
the segmental cervical joint motion during neck movements
(Solomonow et al., 1998). With respect to a specific movement,
the central nervous system continuously collects proprioception
feedback and adjusts the motor command to regulate muscle
activities and achieve dynamic balance, movement acuity
and coordination (Strimpakos, 2011; Röijezon et al., 2015;
Qu et al., 2019b).

Motor Control Strategy During Neck Pain
Neck pain is associated with disturbance in cervical sensorimotor
control (Woodhouse and Vasseljen, 2008; Gizzi et al., 2015).
The motor control strategy of the cervical spine has been
most commonly studied by measuring electromyographic (EMG)
activity of the cervical muscles involved in a specific motor
task (Falla and Farina, 2008). The structural complexity of the
cervical spine reflects its potential compensatory mechanism
under pathologic conditions (Vasavada et al., 2002; Falla and
Farina, 2008). In experimental neck pain studies, the same
submaximal-load motor task could be accomplished in the
presence of pain by reorganizing the activation of the cervical
muscles involved (Tucker et al., 2009; Muceli et al., 2014;
Abboud et al., 2016). This kind of reorganization strategy exists
between different parts of the same muscle or muscle groups
involved in the task (Falla et al., 2007b; Falla and Farina, 2008;
Samani et al., 2009). In principle, the CNS explores control
strategies to complete the same motor task by minimizing the
use of the painful muscle in order to reduce further pain or
injuries (Falla, 2004; Falla et al., 2007a). Therefore, the painful
muscle generally shows decreased EMG activity during the
motor task, together with redistribution of activation among
the synergist and antagonist muscles (Falla and Farina, 2007,
2008; Falla et al., 2007a). The altered motor control strategy, in
consequence, is often task-specific and direction-specific due to
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the role of the painful muscles (agonist or antagonist) in the task
(Falla et al., 2007a).

Patients with neck pain are typically associated with
decreased activity of deep cervical muscles and increased
activity of superficial cervical muscles (Schomacher and Falla,
2013; Tsang et al., 2014). In addition, enhanced cervical
muscle co-activation has also been demonstrated in previous
studies, which is considered to be a strategy to increase
the stiffness of the cervical spine (Cheng et al., 2014). This
finding aligns with previous studies showing that the cervical
spine is controlled in a more stiffening pattern with neck
pain (Meisingset et al., 2015). Delayed onset of activation,
prolonged activation and reduced resting periods are the other
manifestations of deep cervical muscles in patients with neck pain
(Falla et al., 2004a,b).

Quantitative and Qualitative Kinematics
With Neck Pain
The deficit in the sensorimotor control system alters the
kinematic characteristics of the cervical spine in patients with
neck pain, including both the quantitative and qualitative aspects,
which have been widely reported in previous studies (Ylinen
et al., 2004; Sjölander et al., 2008; Sarig Bahat et al., 2010;
Tsang et al., 2013). The quantitative measurements reflect the
ability of the neck to achieve a specific motor task, such
as maximal voluntary contraction (MVC) and cervical range
of motion (ROM), which are reported to be reduced in
patients with neck pain if beyond the compensatory capacity
of the cervical spine (Lindstroem et al., 2012; Rudolfsson
et al., 2012). On the other hand, the qualitative parameters
indicate the quality of the motor task execution and more
representatively reflect the altered motor control strategy during
the motion process with neck pain. The velocity, acceleration,
smoothness, accuracy, conjunct motion, and ROM-variability
of neck movements have been demonstrated to be different
between patients with neck pain and healthy controls (Sjölander
et al., 2008; Sarig Bahat et al., 2010). However, the quantitative
and qualitative measurements both showed conflicting results in
previous studies or reviews, which may result from methodologic
differences and sample bias et al. (Kauther et al., 2012;
Franov et al., 2022). The above-mentioned parameters are gross
motor outputs and cannot reflect the individual cervical joint
impairment. Meanwhile, the motor deficit of an individual
joint will be compensated by the other joints due to the
compensative mechanism within the cervical spine resulting in
unchanged motor outputs (Schwab et al., 2006; Lan et al., 2014).
Theoretically, the altered motor control strategy during pain
could change tissue loading, the direction and magnitude of
joint forces and contributes to the altered cervical joint motion
patterns (Yoganandan et al., 2001). The motor impairments
are sometimes subtle and cannot be detected by traditional
physical examination (Oddsdottir and Kristjansson, 2012). New
dynamic motion parameters, such as anti-directional joint
motion or joint motion variability, are needed to precisely
capture this motor alteration at individual cervical joints
(Qu et al., 2019a,b, 2020).

NEURAL PLASTICITY

Neural Plasticity and Proprioception
The ability of neurons to change function, form and number
is called neural plasticity (Citri and Malenka, 2008). Adaptive
neural plasticity results in changes in the synaptic connection
strength between neurons under physiological conditions, and
it is a critical process for improving brain functioning (Citri
and Malenka, 2008). It is, for example, an essential neuronal
substrate for learning and memory (Pascual-Leone et al., 1994).
Maladaptive neural plasticity is the pathological side of adaptative
neural plasticity and is caused by an imbalance in the synaptic
activity of the nervous system (Kuner and Flor, 2017). The
effect of maladaptive neural plasticity is a loss of nervous
system coordination and function, resulting in impairment and
deterioration in the quality of life. Maladaptive neural plasticity
during prolonged and persistent pain has been suggested in
recent years, and it has been proposed that sustained nociceptive
inputs from an injured tissue might result in dysfunctional neural
plasticity changes (Kuner and Flor, 2017). Based on various
neurophysiological and neuroimaging studies, dysfunctional
nervous system activity (Tsao et al., 2011), coupled with structural
remodeling (Mansour et al., 2013; Baliki and Apkarian, 2015),
has been reported in individuals suffering from persistent
musculoskeletal pain, including neck pain (DePauw et al., 2017).

Maladaptive Neural Plasticity and Neck
Pain
Clinically, somatosensory, proprioceptive and neuromuscular
impairments are commonly reported in patients with chronic
neck pain. Some of these impairments include cold and
mechanical pain hyperalgesia in the neck region (Johnston et al.,
2009; Walton et al., 2011), forward head posture (Mahmoud
et al., 2019), altered joint motion pattern (Qu et al., 2020),
and dysfunction of the deep cervical flexor muscles (Falla
et al., 2004b). Patients with chronic neck pain also tend to
show unsuitable emotional and cognitive factors associated
with pain, such as pain catastrophizing and fear of movement
(Dimitriadis et al., 2015; Lee et al., 2015), and nociceptive
pain episodes increase the probability of becoming chronic
pain when various psychosocial variables exacerbate maladaptive
processes triggered by pathophysiological factors (Kuner and
Flor, 2017). Since, in many patients with neck pain, particularly
those with chronic symptoms, a clear pathophysiological origin
explaining the experience of pain is lacking (Elliott et al.,
2009), or the nociceptive source is not significant enough to
justify the neck pain reported by patients, researchers have
moved the focus away from abnormal musculoskeletal tissue
explanations and started exploring the role of the nervous
system, such as central sensitization (Latremoliere and Woolf,
2009; Peirs and Seal, 2016). Central sensitization mainly
occurs due to persistent peripheral nociceptive stimulation,
is reported to contribute to the chronic pain and mainly
depends on neuronal changes in the CNS (Ji et al., 2018;
Bonanni et al., 2022). In some of those patients, there is
frequently clinical evidence of maladaptive pain neural plasticity
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(Van Oosterwijck et al., 2013), a general term used to indicate
an alteration in the function of neurons and circuits in
nociceptive pathways (Lefaucheur et al., 2014). In the last few
decades, the involvement of the nervous system in chronic pain
conditions has been widely explored using electrophysiological
and imaging techniques (Kuner and Flor, 2017). For instance,
from a sensory perspective, reorganization of the primary
somatosensory cortex has been examined in patients affected
by chronic low back pain using magnetoencephalography (Flor
et al., 1997). Motor-evoked potentials (MEPs) to transcranial
magnetic stimulation (TMS) have also demonstrated a smudging
of corticospinal excitability of specific muscles (overlap of motor
cortical maps and centers of gravity) in individuals affected by
persistence/recurrence of low back pain compared to healthy
control (Tsao et al., 2008; Schabrun et al., 2017). These results
may indicate that the primary somatosensory cortex and motor
corticospinal excitability show maladaptive neural plasticity in
people affected by musculoskeletal pain, including chronic neck
pain. Furthermore, neuroimaging studies have also demonstrated
that emotional and cognitive regions of the brain, such as the
medial prefrontal cortex, amygdala and hippocampus (Mutso
et al., 2014; Baliki and Apkarian, 2015), are altered in chronic
musculoskeletal pain patients, suggesting that these regions may
also be critically involved in the abatement of chronic neck pain.

INTERVENTIONS

Sensorimotor Control System Training
Exploring the effective treatment of neck pain has long
been a challenge. For the importance of the sensorimotor
control system, treatments aiming to restore sensorimotor
function have been proposed as important managements of
neck pain, including balance exercise, joint position and
movement sense training, gaze direction recognition exercise,
sensory discrimination training, and coordinative exercises
(Beinert and Taube, 2013; Kälin et al., 2016; Duray et al.,
2018; Saadat et al., 2019). These treatments, in essence, either
enhance position/motion sense by repeatedly provoking the
proprioceptors or correct motor patterns by increasing the
targeted muscle activity (Peng et al., 2021). Abundant evidence
has revealed that the proprioceptive training and motor control
exercises could improve the joint reposition accuracy and neck
disability, and reduce the pain intensity in patients with neck
pain, although treatment methods vary among studies (Beinert
and Taube, 2013; Sarig Bahat et al., 2015; Duray et al., 2018;
Saadat et al., 2019). In a balance exercise, subjects typically
need to keep their head upright when standing by a single leg
or on a wobble board with/without visual feedback. Beinert
and Taube et al. found that the balance exercise can reduce
pain intensity and improve the JPE in patients with neck pain
(Beinert and Taube, 2013). Gaze direction recognition exercise
is able to enhance the beneficial effect of conventional physical
therapy on pain reduction, functionality recovery and balance
performance (Duray et al., 2018). Deep cervical flexor and
extensor training are reported to reduce pain intensity and
functional disability in patients with chronic mechanical neck

pain, but the effect on strength and endurance remain conflicting
(Blomgren et al., 2018; Suvarnnato et al., 2019). Coordination
exercises, aiming to restore the active neck movements and
retrain the fine movement control of the cervical spine, are
reported to reduce pain and alter motor control strategy
between deep and superficial cervical muscles (Rudolfsson
et al., 2014). With the development of virtual reality (VR)
techniques, the VR-based kinematic training on patients with
neck pain shows improvements in range of motion, accuracy,
velocity, smoothness, fine motor control and coordination of
the cervical spine (Nusser et al., 2021). It is believed that
the VR-based kinematic training could motivate the visual
systems, vestibular systems and sensorimotor control system
simultaneously in patients with neck pain (Sarig Bahat et al.,
2015). Furthermore, the VR-based training method shows an
effect on overcoming kinesiophobia in patients with neck pain
(Tejera et al., 2020). However, no conclusion could be made
that the sensorimotor therapy is better than other kinds of
treatments since there is no unification in terms of interventions,
therapy time, populations and variety of control groups across
research studies (McCaskey et al., 2014). The beneficial effects
of proprioceptive training could be augmented when combined
with other therapy exercises, such as physical exercises and
biofeedback (Sielski et al., 2017; Saadat et al., 2019; Tsiringakis
et al., 2020). Therefore, more large samples of randomized
controlled trials are needed to provide robust evidence on
sensorimotor control system training. Evidence has shown that
proprioceptive training is associated with reorganization within
the sensorimotor cortex (Aman et al., 2014). Previous studies
indicate that the sensorimotor therapies may reverse the pain-
induced cortical changes to a normal level based on the plasticity
property of the nervous system, which partially explains the
symptoms relief and functions recovery in patients with neck
pain (Moseley and Flor, 2012).

Modulation of Maladaptive Neural
Plasticity in Neck Pain
Based on electrophysiological and neuroimaging findings in
chronic pain patients, treatments that reverse maladaptive
neural plasticity, such as non-invasive brain stimulation
techniques, have been proposed as a substantial potential
for improving future rehabilitation processes (Schabrun and
Chipchase, 2012). Non-invasive brain stimulation techniques
utilize electromagnetic principles to modulate neural activity
non-invasively by generating cortical electrical fields (Rossini
et al., 2015). Two main classes of non-invasive brain stimulation
are currently applied for research and clinical purposes:
repetitive transcranial brain stimulation (rTMS) and transcranial
electrical stimulation (tES). Both techniques have generally been
shown to be partially effective in reducing pain for some non-
musculoskeletal pain conditions, such as peripheral neuropathic
pain and migraine, and musculoskeletal pain conditions, such
as low back pain (Lefaucheur et al., 2014). However, the clinical
evidence for non-invasive brain stimulation in chronic neck pain
is still lacking, although some preliminary modulatory effects on
motor cortex excitability and analgesic effects have been proven
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in chronic low back pain (Schabrun et al., 2014;
Ambriz-Tututi et al., 2016).

A recent meta-analysis demonstrated that non-invasive brain
stimulation increased pain thresholds across all modalities,
including mechanical and thermal, in healthy individuals when
pooling studies of rTMS and tES of the primary motor
cortex (Giannoni-Luza et al., 2020). A recent randomized
controlled trial in individuals with chronic low back pain
looked at the efficacy of rTMS (Ambriz-Tututi et al., 2016),
and by the third week of treatment, 41 patients who received
20-Hz rTMS stimulation over the primary motor cortex
showed an 80% reduction in pain from baseline, which was
considerably lower than those who received sham rTMS.
Pressure pain thresholds also increased in healthy individuals
following daily sessions of rTMS on the left dorsolateral
prefrontal cortex (De Martino et al., 2019a). In a sham-
controlled design study, daily rTMS sessions targeting the left
dorsolateral prefrontal cortex reduced long-term pain intensity
induced by intramuscular nerve growth factor injections, as
well as reversing pain-induced pressure hyperalgesia, altered
cortical somatosensory excitability, and corticomotor excitability
(Seminowicz et al., 2018; De Martino et al., 2019b). Similar
analgesic findings were observed following rTMS to the
primary motor cortex in a similar long-term pain paradigm
(Cavaleri et al., 2019). This proof of concept demonstrates
the use of rTMS in larger musculoskeletal pain studies,
and, with more research and a stronger focus on clinical
outcomes, it is possible that rTMS may become an integral
part of the treatment arsenal for therapists for chronic neck
pain in the future.

Using non-invasive brain stimulation to the primary motor
cortex has also been shown to augment motor training-induced
plasticity by producing a rapid and powerful after-effect in
facilitating or depressing the motor cortex excitability, outlasting
the stimulation period (Bolognini et al., 2009). Although the
mechanics are still unclear, non-invasive brain stimulation
techniques may cause different patterns of calcium influx to
postsynaptic neurons through N-methyl-D-aspartate channels

and gamma-aminobutyric acid receptors, resulting in long-term
potentiation and long-term depression in the motor cortex
(Huang et al., 2017). There is preliminary evidence that therapies
aimed at motor control can improve motor cortex excitability and
alleviate pain in chronic musculoskeletal disorders. For example,
in the case of chronic low back pain, interventions targeting
the primary motor cortex representation of lumbar multifidus
muscles or the primary somatosensory cortex of the low back
could alleviate pain symptoms (Flor et al., 2001; Moseley et al.,
2008; Tsao et al., 2010, 2011). Because sensorimotor skill training
changes the motor cortex excitability (Pascual-Leone et al., 1995,
2005), therapeutic techniques targeting the primary motor cortex
may be able to restore optimal muscle function. However, to date,
no studies have investigated the effect of rTMS on the cervical
motor output and it is still unknown whether rTMS can produce
changes in the cervical motor control strategy.

SUMMARY AND OUTLOOKS

Altered cervical sensorimotor control system and maladaptive
neural plasticity are likely to play a major role in chronic
neck pain, and, consequently, various clinical assessments and
treatments have been proposed. However, previous research has
found conflicting results when these assessments or treatments
have been applied to patients with neck pain, likely due
to no established standardization. The molecular mechanism
underlying proprioception needs to be clarified in the future,
which may help to develop mechanism-based therapies for neck
pain. New precise motor parameters reflecting sensorimotor
deficit and more effective interventions targeting sensorimotor
control system or neural plasticity are encouraged to be proposed.
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