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Let G = (V(G), E(G)) be a graph with no loops, numerous edges, and only one
component, which is made up of the vertex set V(G) and the edge set E(G). The
distance d(u, v) between two vertices u, v that belong to the vertex set of H is
the shortest path between them. A k-ordered partition of vertices is defined
as B = {B1.B2..... B} If all distances d(v, By) are finite for all vertices v € V,
then the k-tuple (d(v, B1).d(v, Bo), ..., d(v, Bx)) represents vertex v in terms of
B. and is represented by r(v|B). If every vertex has a different presentation, the
k-partition B is a resolving partition. The partition dimension of G, indicated by
pd(G), is the minimal k for which there is a resolving k-partition of V(G). The
partition dimension of Toeplitz graphs formed by two and three generators is
constant, as shown in the following paper. The resolving set allows obtaining
a unique representation for computer structures. In particular, they are used
in pharmaceutical research for discovering patterns common to a variety of
drugs. The above definitions are based on the hypothesis of chemical graph
theory and it is a customary depiction of chemical compounds in form of
graph structures, where the node and edge represent the atom and bond types,
respectively.

KEYWORDS

Toeplitz graph, resolving sets, constant partition dimension, bounds on partition
dimension, partition resolving set

1. Introduction

Mathematics plays a key role in social science such as computer science, physics,
and chemistry. If L = {lj,lp,...,[;} is a graph’s ordered set of vertices and
v € G, then the k-tuple r(v|[L) = (r(v,I1),r(v,12),...,7(v,])). The notation
r is the representation of v with regard to L, and the symbol L is said to
be a resolving set if the different vertices of G have different representations
regard to L. H’s metric dimension, indicated by dim(H), is the minimal number
of vertices in the resolving set. The task of computing a graph’s locating set
is a Non-deterministic Polynomial time problem or NP-hard (Lewis et al., 1983).
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FIGURE 1
The corresponding Toeplitz graph and the adjacency matrix T
Ts(1,3,4).

These ideas have been mentioned in the literature (Chvatal,
1983; Slater, 1988; Khuller et al., 1996; Chartrand et al., 2000a,
2003; Buczkowski et al., 2003; Caceres et al., 2007).

Another form of dimension is partition dimension, which
is similar to the metric dimension (Chartrand et al., 2000b)
as follows: The k-ordered partition is designed as g =
(Bl 2 B} and r(vIB) = {d(v. B1).d(v, B)......d(v. By)} are
named as k-tuple representations. If each v in V(G) has a
unique representation with regard to B, then the resolving
partition of the vertex set is termed f, and the least value of the
resolving partition set of V(G) is called the partition dimension
of G and is indicated as pd(G) (Chartrand et al., 2000b). The
metric dimension problem’s computational complexity and NP-
hardness were studied in Lewis et al. (1983). Because computing
the pd is a more advanced variant of computing the metric
dimension, it is likewise an NP-complete task. For simple
graphs, there is a well-known inequality between dim, and pd
(Chartrand et al., 2000b).

pd(G) < dim(G) + 1. (1)
A n x n matrix A = ayy is a Toeplitz matrix if ayy =
ax+1,y+1 for each x,y = 1,2,..,n — 1. A loopless and having
no multi-edges graph termed as T} is Toeplitz graph if the
matrix is the symmetric Toeplitz matrix. The Topelitz graph
Tult1,t2,t3,...,tp), where 0 < 1) < fp <
V(H) = {1,2,3,...,n} has E(H) = {(x,y),] < x <y < n},
iff y—1 = tg for some g, 1 < g < p (Liu et al,, 2019). Let
n =5k =21 = 1,t = 3,and t3 = 4. Figure 1 highlight
the adjacency matrix T and its corresponding Toeplitz graphs
T5(1,3,4).
Toeplitz matrices play a major role in physical data-

...tp < n with

processing and in determining the discrete form of an integral
and differential equations are considered as applications.
Furthermore, matrices also contributed in process of stationary,
the theories of polynomials of orthogonals and moment problem
(Heinig and Rost, 1984) for more details reader can see (Ku and
Kuo, 1992; Hua et al., 2010).

The researchers in Harary and Melter (1976) founded the
concept of resolvability in graphs. Chartrand et al. (2000b) first
time introduced the concept of pd. Javaid and Shokat (2008)
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discussed the pd of wheel graphs. Yero and Veldzquez (2010)
computed the pd of the cartesian product of graphs. Fehr et al.
(2006) disproved a conjecture regarding the pd of products of
graphs. The upper bound for the pd of the parallel composition
of any graph was studied by Mohan et al. (2019). They also
came up with an exact solution for the parallel composition
of pathways of various lengths. Some updated references are
(Ahmad et al., 2021; Ali et al., 2021; Azeem et al., 2021, 2022;
Shanmukha et al., 2022a,b,c; Usha et al., 2022).

Resolvability of the graph has application in many fields
of science such as in chemistry for representing chemical
compounds (Browsable, 1998), Djokovic-Winkler relation
(Caceres et al., 2007), strategies for the mastermind game
(Chvatal, 1983), pattern recognition and image processing,
hierarchical data structures (Melter and Tomescu, 1984), and
robots navigation in networks (Khuller et al, 1994). For a
better understanding of this topic, some very detailed articles
are (Chartrand et al., 2000b; Saenpholphat and Zhang, 2002;
Javaid et al., 2012; Velazquez et al., 2012; Velazquez et al., 2014;
Yero et al., 2014; Siddiqui and Imran, 2015; Alatawi et al., 2022;
Alshehri et al., 2022; Khabyah et al., 2022; Koam et al., 2022,a,b;
Nadeem et al., 2022).

The theorems that follow are quite useful for calculating the
pd of graphs.

Theorem 1 (Chartrand et al., 2000b). “Let G be a connected
graph of order n > 2. Then pd(G) = 2 ifand only if G = P;,”.
Theorem 2 Chartrand et al. (2000b) “Let ¢ be a resolving
partition of e(Y) and €1, €2 € e(Y). If d(e1, w) = d(e2, w) for all
vertices w € &(Y)\(€1, €2), then €1, €5 belong to different classes
of ¢.”

This study’s findings the pd of Toeplitz graph with two
generators 1 and ¢ in Section 2 and Toeplitz graph partition
dimension with three generators 1, 2, and ¢ in Section 3.

2. Partition dimension of Tp(1, t)

The coming section is containing the discussion on the pd of
the Toeplitz graph Ty (1, t), for t > 2 the pd of the graph is three.

Theorem 2.1. A Toeplitz graph withn > 4 is Ty (1, 2). After that,
pd(Ty(1,2)) = 3.

Proof. Let the Toeplitz graph with n > 4 is Tj(1,2) Then we
will show that the Toeplitz graph with generators 1 and 2 consist
a resolving partition set, 8 = {1, B2, B3} with three elements,
where 1 = {v1}, B2 = {Vitk=0(mod 2)» B3 = {Vitk=1(mod 2)-
Let 8 = {B1, B2, B3} resolve the vertices of graph G with V(G) =
B1U B2 U Bs.

When k = 1,2,...,n. In terms of resolving partition set 8, we
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have the following representations of vy.

1 k=1

k (_1)k+1+1

A [FYNETSETH Fi
g 2 2 (1)% k=2

Because all of the representations of different vertices are distinct
pA(Ty(1,2)) <3. 2

Conversely: Now, we will show that pd(T,(1,2)) > 3. Suppose
on contrary that pd(Ty(1,2)) = 2. We know that pd(G) = 2, iff
G is a path graph by Theorem 1, it is not possible for T5(1,2).
Thus,

pd(Ty(1,2)) = 3. (3)
Hence, from Inequalities (2) and (3), we have
pd(Tu(1,2)) = 3.

Theorem 2.2. Let a Toeplitz graph Ty(1,3) with n > 5. Then
pd(Tn(1,3)) = 3.

Proof. Let a Toeplitz graph T,(1,3) with n > 5. We will
show that the Toeplitz graph with generators (1,3) consist of
a resolving partition set, 8 = {81, B2, B3} with three elements,

where 81 = {v1}, B2 = {v2,.. ., vt}, B3 = {Vi+1,. .., Vn}. There
are two cases for f:

Case 1: If 1 < k < 3, then we can write the representation of v
with respect to B as

r(vilB) = (k - 1,4 1)

where g = L%J, this shows that all the representations are

different so B resolves the vertex set of graph T (1, 3).
Case 2: If 4 < k < n, then we can write the representation of vy
with respect to 8 a

r(vlB) = (4 +j,4,0)

where g = P%ﬂ and k — 1 = j(mod 3), this shows that all the
representations are different, thus,

pA(Ty(1,3)) < 3. )

Conversely: We will prove that pd(Ty(1,3)) > 3. On contrary
suppose that pd(Ty(1,3)) = 2. Theorem 1 demonstrates that
pd(G) = 2, iff G is a path graph, then it is not possible for
Tp(1,3). Thus,

pd(Ty(1,3)) = 3. (5)
Hence, from Inequalities (4) and (5), we have

pd(Tn(1,3)) = 3.
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Theorem 2.3. Let a Toeplitz graph with notation Ty(1,t) with
even generator t > 4, n > t + 2. Then pd(Ty(1,t)) = 3.

Proof. Let a Toeplitz graph with notation Ty(l,t) with
even generator t > 4, n > t + 2. The Toeplitz graph with
generators (1,t) consisting of a resolving partition set will be
demonstrated. 8 = {B1, B2, B3}, where B1 = {v1}, B2 = {vi2 },
B3 = {Yvi|vk & B1, B2}. There are three cases with respect tozvk,
which are the following;

Case 1: When k = 2,3,..., %(mod t). We have the following
representation of v with regard to resolving partition set f;

r(vilB) = (k—pt—}—p_ 1, 2p + 1)t+2(p_k+1),0>

2
where p = LH .

Case 2: When k = %(modt). We have the following
representation of vj with respect to resolving partition set f3;

r(vglB) = (k— pt+p—1, 2p +k— 1)2— (2p + l)t,z)

where p = L]?(J ,z=1whenk = % and otherwise z = 0.
Case 3: When k = 0,1, #, #, ...t — 1(mod t). We
have the following representation of v; with respect to resolving
partition set j;

rglB) = (pt— ki oy, 2o tk=D = Cp = 1)t’z)

2
where p = L%J ,z = 1when k = 1 and otherwise z = 0.
It is clear that no two vertices have the same representation,
implying that there are not any two vertices with the same
representation.

pad(Ty(1,1) < 3. (6)
On contrary, we shall now demonstrate that pd(Ty(1,t)) >
3. Suppose on the contrary that pd(T,(1,t)) = 2. We know
that by Theorem 1, it is not possible for even ¢ of graph
Tn(1,t). Thus,

pd(Tn(1,1)) = 3. (7)
Hence, from Inequalities (6) and (7), we have

pd(Tn(1, 1)) = 3.

Theorem 2.4. Let a Toeplitz graph Ty, (1,t) with odd t > 5,
n > t+ 2. Then pd(Ty(1,t)) = 3.

frontiersin.org


https://doi.org/10.3389/fncom.2022.959105
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Luo et al.

Proof. Let a Toeplitz graph Ty(1,t) withodd t > 5,n > t + 2.
We will show that the Toeplitz graph with generators 1 and
t, consists of a resolving partition set, 8 = {B1, B2, B3} with
three elements, where 1 = {vi,v2, vi+1}, B2 = {v%,v%},

B3 = {Yvilvk ¢ {B1, B2}} -

There are two cases for 81

r(vklB1)

k=24 q0 -0, k=2,..., % 4+ 1(mod 1)
Stk D (@ —s) +s k=015 42, ¢ — 1(mod 1)

where q1 = L%J ,q2 = L“FLZJ’ and s = L%J
There are two cases for 3,

r(vkl B2)

1=k D -, k=2,3,..., % (mod )
T k-1 () + -0 +st, k=01 41, t—1(mod 1)

where g1 = \}J and s = #.where Q@ = |—t+L2J and s = L%J.

For B3, we have the following values

2 fork=1
rvlB2) = |1 fork =1, 42 141

0 otherwise
From all these cases of 81, B2, and 3
r(vilB) = (r(vil B1)s r(vil B2), r(vi|B3))

We conclude that all representations are unique, and no two
vertices have identical representations.

pd(Ty(l,t)) <3 (®)
In contrary, we shall now demonstrate that pd(T,(1,t)) > 3.
Suppose on the contrary that pd(T (1, t)) = 2. We know that by
Theorem 1, it is not possible for odd t of graph T} (1, t). So

pd(Tn(l,t)) > 3 )

Hence, from Inequalities (8) and (9), we can say that

pd(Tn(1,1)) =3

3. Partition dimension of Th(1, 2, t)

In this section, we are going to discuss the partition
dimension of T, (1,2,t). If t = 3,4,5,and t = 2i,i > 3
,n >t + 2 then partition dimension is 4.
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Theorem 3.1. Let Ty(1,2,t) be a Toeplitz graph. Then
PAd(Ty(1,2,1)) = 4.

Proof. We split our theorem into three cases.

Case A: When t = 3,4,5.

Let Ty(1,2,t) be a Toeplitz graph with t = 3,4,5,n > t + 2,
then we will show that vertices of the Toeplitz graph
with three generators consist of a resolving partition
set, B = {B1,B2,B3, B4} where f1 = {n}, Bo = {n2},
B3 = {v3,...,v},and B4 = {vi41,...,vu}. Then there are the
three cases that follow:

Case 1: If k = 1(mod t), then we can write the unique
position of vj regarding B as;

r(vglB) = (q—k+1,q—k+2—{%Js,q—k—}—Z—s,w)

where g = (t + 1) L%J ,s = {k—;l-‘, and w = Lk-"ﬁJ . This
shows that all the representations are different so § resolves the
vertices of Ty (1,2, 1)

Case 2: If k = 2, 3(mod t), we can write the representations of vy
regarding B as;

r(vilB) = <q+1,k—2—|—(1 —t)g.q+ L%J,s)

where g = L#J and s = Lkﬂ-ﬁj . This indicates that all

the representations are different so B resolves the vertices of
Tp(1,2,8).

Case 3: If k = 4, 5(mod t), we can write the representations of v
with respect to 8 as

r(velB) = (q+2’ H + EJ b HJ)

k

where g = ;1J This shows that all the representations

7
are different so B resolve the vertices. From all three cases, we

conclude that

Case B: When t = 6, 8.

Let B = {B1, B2, B3, P4} be a resolving partition set. Where
Br = {1}, B2 = {va,wh, B3 = {v3,..., 2}, and By =
{vi—1,Vi+1,. .., vn}. We have different cases on vy, which are
following;
There are two cases for f1;

(vl B1)

HEGIHEEE

(52 +6—K) +(t+1) L"%J+z, k=0,6,7,....t— 1(mod 1)

k=1,2,3,4,5(mod t)
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where z1 = 1 when k = even, z = 1 when k = 0(mod 8) and
otherwise both are 0.

There are three cases for 83;

(vl B2)
m —1-(52) m +2, k=2,3,4(mod t)

- (%+67k)7L§J+(%)HJ+Z, k=5,...,t — 1(mod t)
LL;IJ k= 0,1(mod 1)

where z = 0 when 5 < k < t — 1 and otherwise z = 2, and z;
has defined in f;.

There are three cases for 83;

|52 - (552) [&], k=1.20m0d0)
r(vklB3) = LH k=3,...,t—2(modt)

[£H)

There is the only case for B4;

k=0,t— 1(mod t)

k=1,...t—4
r(vilBe) =

0 otherwise

It is clear that no two vertices have the same representation,
implying that there are no two vertices with the same
representation.

Case C: When t = 2i,i > 5.

Let 8 = {B1, B2, B3, B4} be a resolving partition set. Where
B1 = {n2}, B2 = {ve}, B3 = {va}, and By = {Vwilv; ¢
B1, B2, B3}. wherea = 2 % .
The following is a representation of all vertices v; with regard to
the resolving partition set S.
There are two cases for f1;

(vl B1)

k=1
2

k=3,4,...,t —3(mod t)

Il
e,
w
|
—
L
|
+ o~
N‘T
N}
~
—
NI

et J+(%) L{SJ +1%], k=0,1,2,t—2,t—1(mod 1)

2) LHLIJ + TZJ k=0,1(mod 1) t = 10,12
)

k=0,1(mod t),t > 14

r(vilBa) = . EJ"'(J)LJ k=23 6(mod t)
: i =2,3,...,
(

2
)| %), k=7.8,....t = 1(mod t)
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There are four cases for 3;

k=12

|

HE
H2] —k+3,
a

[ k=34
r(vel B3) = ka

t — 1(mod t),k > 2a
% - L%J-‘r(%) HJ — 2z, k=5,...,t—3(modt)

where z1 = 0 when k = even, otherwise 1 and z; = 1 when
k = odd, otherwise 0.
There is the only case for B4;

1, k=2,6,a
r(vklBa) =

0, otherwise

It is clear that no two vertices have the same representation,
implying that there does not exist two vertices with the same
representation.

pd(Ty(1,2,t)) < 4. (12)
Converse A, B, and C:

We will show that pd(T,(1,2,t)) > 4. On contrary, suppose
that pd(Ty(1,2,t)) = 3.

Different cases on behalf of our assumption that
pd(Tu(1,2,1)) is 3. If p" = {B1,p2,B3}, where B"
consists of sets of different resolving partition set that
are following:

Case 1: 1 = {vi.wa) B2 = (v3.vah B3 = (Wi)iZh
then we have the following different vertices with same
representation; r(v3|8") = r(v4]8") = (1,0, 1).

Case 2: f1 = {vi,vsh o = {va,wh B3 = {viliZ5,
then we have the following different vertices with same
representation; r(v2| ™) = r(v4|f") = (1,0, 1).

Case 3: f1 = {vi,va,v3}, B2 = {wa} B3 = {wiliZh,
then we have the following different vertices with same
representation; r(v2|8") = r(v3|p") = (0,1, 1).

Case 4: f1 = {(vi,v2}, B2 = {v3}, B3 = {vi};Z}.then
we have the following different vertices with same
representation; (v |") = r(v218") = (0,1, 1).

Case 5: B1 = {n} fo = {3} B = (w2}
then we have the following different vertices with same
representation; r(vey2|B") = r(ve+3|8™) = (2,1,0).

Case 6: f1 = {vi,va,val, B2 = (w3} B3 = {wiliZth,
then we have the following different vertices with same
representation; r(v2|8") = r(v4| ") = (0,1, 1).

Case 7: B1 = {vi,v3,v4a), B2 = {n}, B3 = {(vi}iZh,
then we have the following different vertices with same
representation; r(vey3|B") = r(vey3| ™) = (1,2,0).

frontiersin.org
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(0,1,1,1)

(1,1,1,0)

(2,2,2,0)

(1,0,1,1)

FIGURE 2
Toeplitz graph Tg(1, 2, 3) with partition dimension 4.

Case 8: B = (1} B2 = {vaval B3 = {va.vi)iZh
then we have the following different vertices with same
representation; r(v3|8") = r(vg| ") = (1,1,0).

Case 9: f1 = (), 2 = {vava,va) B3 = (Wi)iZh
then we have the following different vertices with same
representation; r(v2|8") = r(v3|f") = (1,0, 1).

Case 10: pr = {n}h o = f{vv3vsh B3 =
{v3,vi}iZF, then we have the following different vertices
with same representation; r(viy3|") = r(va4118") =
eIk

Case 11: 1 = {vi,vs}, B2 = {v2,va}, B3 = {v3,vi}i=0,
then we have the following different vertices with same
representation; r(vq|8") = r(vs|8") = (0,1, 1).

Case 12: 1 = {vi,va), 2 = (v3,v5), B3 = (2. vilize,
then we have the following different vertices with same
representation; r(v1|8") = r(v4|8") = (0,1, 1).

Case 13: f1 = {v1,va}, B2 = {v2,v5}, B3 = {va,vi}i=l,
then we have the following different vertices with same
representation; r(v2|8") = r(v4|") = (1,0, 1).

Case 14: B1 = 1(mod 3), By = 2(mod 3), B3 = 0(mod 3),
then we have the following different vertices with same
representation; r(v1|8") = r(v4lB") = r(v7Ip") =
0,1,1).

According to the above cases, we can easily conclude that
our supposition is wrong, and we can not resolve the vertices of
Ty (1,2,t) into three resolving partition sets. Thus,

pd(Ty(1,2,1)) > 4 (13)
Hence, from Inequalities (1-3) and (13), we can say that

pd(Tn(1,2,1)) = 4

4. Conclusion and open problems

In this study, we looked at different families of Toeplitz
graphs and established that the partition dimension of each
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family is the constant, if the Toeplitz graph consists of two
generators, then pd(Ty(1,t))=3, where t > 2 and if Toeplitz
graph consists of three generators, pd(Ty((1,2,t))) = 4, where
t=23,5andt =2iandi > 2.

In this paper, inequality (1) also satisfied the metric dimension
results (Liu et al., 2019) with our results for partition
dimension (Figure 2).

Open Problem 1. The partition dimension of the Toeplitz graph
with two generators k > 2, s > 3 and gcd(k,s) = 1, is constant,
bounded or unbounded?

Open Problem 2. The partition dimension of the Toeplitz graph
with three generators k > 2, s > 3,t > 4 and gcd(k,s,t) = 1, is
constant, bounded or unbounded?

Open Problem 3. If the generators of the Toeplitz graph are
increasing then the partition dimension either increasing or
decreasing ?
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