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Introduction

The field of sensorimotor learning investigated people’s ability to adjust its

movements in face of sensory perturbations (Cunningham, 1989; Hwang et al., 2006;

Telgen et al., 2014; Kim et al., 2021). A bulk of behavioral paradigms strongly support

that sensorimotor learning has two distinct components: an explicit component in

which participants are aware of the perturbations and would employ strategies, and an

implicit component where the motor controller implicitly adapts itself (Benson et al.,

2011; Huberdeau et al., 2015). One canonical phenomenon of sensorimotor learning is

that humans are explicitly aware of the sensory perturbations but do not seem to have

voluntary control over their behavioral learning; in some cases, implicit adaptation would

even act against the participants’ explicit strategies (Mazzoni and Krakauer, 2006; Taylor

and Ivry, 2012; Hadjiosif et al., 2021; Yang et al., 2021).

One possible way to interpret sensorimotor learning and explain its puzzling

phenomena is through a neural dynamics framework (Shenoy et al., 2013; Kaufman et al.,

2014; Vyas et al., 2020; Barack and Krakauer, 2021; Sohn et al., 2021). We will navigate

through the concepts of sensorimotor learning and neural dynamics, and propose a

neural dynamics framework for the explanandum.

Explicit and implicit systems of sensorimotor
learning

In a canonical experiment of visuomotor rotation, participants were instructed to

counter the imposed perturbation using an explicit strategy in a pointing task (Mazzoni

and Krakauer, 2006). They were told exactly of the nature of perturbation: a 45◦

counterclockwise rotation from the desired target. Soon after the onset of perturbation,

the participants realized it and employed the following explicit strategy: aim for the

direction 45◦ clockwise to the presented target. The strategy initially works perfectly

and reduces performance error to nearly zero, but surprisingly performance keeps
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deteriorating as the experiment continues. Moreover, the

amount of learning, quantified as the directional difference

between the reach directions for the same target at the start

and the end of learning, was the same for the experiment

group and the control group (the experiment group uses explicit

strategy, and the control group is not allowed to do so).

While sensorimotor learning improved task performance for the

control group, it deteriorated performance for the experiment

group. The results strongly suggest the existence of an implicit

learning system that is distinct from the explicit system we are

commonly aware of during sensorimotor perturbation.

By incorporating catch trials, Benson et al. showed that the

employment of explicit strategy decreased the degree of implicit

learning throughout trials and led to a decreased aftereffect at the

end (Benson et al., 2011). In a recent study of manual tracking

tasks, Yang et al. show that humans were able to rapidly build a

new controller for movement de novo when facing a completely

different operational environment. The results also suggest that

participants do not rely on any explicit processes to establish the

new controller (Yang et al., 2021).

To better characterize the two components, Taylor et al.

quantified the exact contributions of explicit and implicit

learning in a visuomotor rotation experiment (Taylor et al.,

2014). They employed a novel task design that allows them

to probe the explicit aiming directions of the participants. In

each trial, participants first indicated the aiming direction they

planned before the actual reaching. As such, the experimenters

were able to assess the explicit aiming directions and actual

reaching directions, which corresponded to explicit learning

and implicit learning, respectively. The results show remarkable

time course differences between implicit and explicit learning:

while explicit learning was rapid and large at the beginning,

implicit learning was slow and monotonic. Continuous error

feedback increased the contribution of implicit learning to

overall learning over time. McDougle and Taylor later show

that the explicit component of sensorimotor learning involves

not a single but many different cognitive strategies throughout

the course of sensorimotor learning (McDougle and Taylor,

2019).

A recent study by Miyamoto et al. provides interesting

insight into why humans perhaps need two systems for

sensorimotor learning. The task design allowed experimenters

to probe into the interactions between implicit and explicit

learning in both perturbation-driven and perturbation-free

conditions. Before each reaching, the participants were asked

to indicate their aiming strategy by positioning a marker. The

explicit learning component is operationally defined as the

difference between the marker and the cursor target, while the

implicit learning component was defined as what’s leftover.

The trial sequence was composed of sine-shaped components

at different frequencies. The results showed that implicit and

explicit learning synergize in drive dimensions and cancel each

other in undriven dimensions, and the cancellation happens

since implicit learning is compensating the noises of low-fidelity

explicit learning (Miyamoto et al., 2020).

In short, numerous studies have shown that there are

two distinct systems under sensorimotor learning: an explicit

strategy learning system and an implicit adaptation learning

system (Funahashi et al., 1997; Jueptner et al., 1997; Hoshi et al.,

2000; Tanji and Hoshi, 2008; Lee et al., 2020). The intriguing

question followed would be what the neural underpinnings of

such characteristics of human sensorimotor learning could be.

Understanding sensorimotor
learning through neural dynamics

There is a growing trend in current neuroscience to use

methods of dynamics and manifolds to understand possible

mechanisms of neural representation and computation, and

motor neuroscience particularly is a field where neural dynamics

has offered valuable insights (Shenoy et al., 2013; Kaufman et al.,

2014; Abbott et al., 2016; Vyas et al., 2020).

The brain cortex is a system of interconnected neurons,

and its activity can be described with two classes of features:

the firing of individual neurons, and the biochemical structure

defined by cell membrane properties, intracellular fluid, synaptic

strength, and so forth. While neuronal firing takes place and

changes over a short time scale, the latter generally changes

much less rapidly. Alternative to the connectionist view of

neuron groups as circuits, the perspective of the neural dynamics

sees the spiking activity (probability) of each neuron at a

particular moment as one dimension of a vector. Then, the

neural ensemble as a whole has a position in high dimensional

state space at any moment, and across time the shifting positions

form a continuous trajectory of state evolution with time as a

latent variable.

The non-spiking features of a neuron group entail that these

trajectories cannot possibly reach the whole state space, because

the synaptic weights between neurons make certain spiking

profiles physiologically impossible. Therefore, in the steady

stage, a neuron ensemble only lives in a subspace or manifold

in the whole space (Barack and Krakauer, 2021). It has been

shown with various cognitive and motor processes that neural

trajectories follow stereotyped patterns or shapes embedded in

the manifolds (Kaufman et al., 2014; Sohn et al., 2019; Vyas et al.,

2020). What’s also observed is that trajectories are clustered into

distinct groups, either significantly separated from each other or

even progressing toward opposite directions in the state space.

In different experiment tasks, such clustering stably encodes

different task variables including motion strength, movement

direction, and motor memories, etc. (Kaufman et al., 2014;

Bachschmid-Romano et al., 2022; Sun et al., 2022). The clusters

of trajectories also have distinct clusters of initial points, so for

a particular trial its trajectory can be reliably predicted by the
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initial state of the neural ensemble (Kaufman et al., 2014; Sohn

et al., 2019).

We hypothesize that the explicit component of sensorimotor

learning toggles the initial point of neural trajectory and

tries different existing movements without reshaping the

manifold. The implicit component, on the other hand,

changes the synaptic weights among neurons and reshapes

the manifold. Implicit learning is a slow and gradual process

characterized by persistent aftereffects (Mazzoni and Krakauer,

2006; Hadjiosif et al., 2021)). These characteristics well-

correspond to the change of synaptic weights and manifold

shape: biochemical processes are relatively slow, and their

effects cannot be quickly undone. In the implicit learning

paradigms, the aftereffects themselves suggest that implicit

learning creates a novel mapping between sensory goals and

motor commands, and in the perspective of the neural dynamics,

that would require the manifold itself to be adapted. Though

few studies had directly addressed implicit adaptation with

neural dynamics, the reassociation between behavior and

neural activity and the reorganization between preparation-

related activity and movement-related activity have been well-

characterized by state-space models (Rokni et al., 2007; Elsayed

et al., 2016; Golub et al., 2018; Sauerbrei et al., 2020). The

high similarity between such reassociation and the observations

of implicit adaptation may imply a similar or even common

neural basis.

The absence of lasting aftereffects for explicit learning and

its relatively rapid time scale imply that it doesn’t involve a

permanent change of manifold shape and patterns of neural

trajectories. In our framework, we propose that explicit learning

sets the initial point of neural trajectory for movement, and

by setting different initial points in the state space, one is

able to explicitly learn the sensorimotor task in a trial-and-

error manner. Motor preparation studies support that cortical

regions upstream toM1 send direction-specific inputs to the M1

manifold to generate a movement in that particular direction by

setting the initial conditions for the dynamics of the network

(Shenoy et al., 2013; Kao et al., 2021; Bachschmid-Romano

et al., 2022). Explicit sensorimotor learning boils down to re-

aiming strategies that explicitly select existing motor plans,

and it is likely that motor preparation and explicit learning

share a similar or the same neural basis. Therefore, the way

explicit learning interacts with the M1 manifold can well

be the selection of initial points. The prefrontal cortex is

likely the neural correlate of explicit learning (Hoshi et al.,

2000; Tanji and Hoshi, 2008; Goto et al., 2011; Ono et al.,

2015). During the course of a visuomotor rotation task, as

we shall see that, at the very beginning, the neuronal activity

in the prefrontal cortex tries out different initial points on

the manifold to try to solve the task, which is known as the

explicit system of sensorimotor learning; then, as the learning

continues, the synaptic weights and thus the manifold are

modified by the implicit system in the sensorimotor learning

(Matsumoto et al., 2003; Graydon et al., 2005; Narayanan and

Laubach, 2006; Levy and Wagner, 2011).

Here we give an exemplary prediction in neural dynamics

framework in the Mazzoni et al. experiment. It’s a very

speculative one for the purpose of showing how concrete

predictions could be raised under the language of neural

dynamics framework. Mazzoni et al. observed that in the early

stage of learning the visuomotor rotation task, participants were

able to solve the task perfectly with explicit re-aiming, but as

learning progressed their explicit strategy was overridden by its

implicit counterpart (Mazzoni and Krakauer, 2006). Previous

studies showed that a highly possible neural correlate of explicit

motor learning is the prefrontal cortex (Pascual-Leone et al.,

1996; Matsumoto et al., 2003; Anguera et al., 2010; Liew et al.,

2018; Lee et al., 2020). Thus, a best first-hand guess is to

place the electrode recording arrays in prefrontal cortex to

investigate explicit learning. For implicit learning, cerebellum

has been long suggested as the neural correlate (Galea et al.,

2010; Liew et al., 2018). Recently, neural dynamics analysis

has been performed in other motor tasks for Purkinje cells

in cerebellum (Zobeiri and Cullen, 2022). Thus, it’s reasonable

to investigate our cerebellum cells with neural dynamics first.

Neural recording shall be taken throughout the course of

reproduction of Mazzoni et al. experiment. Then there could

be constructed a highly dimensional neural dynamics space by

taking every neuron activity as a single dimension of the space.

Then, for each trial of visuomotor adaption, a neural trajectory

in this highly dimensional space could be constructed taking all

individual neural activities as dimensions. At the early phase, we

hypothesize: when it’s mostly explicit learning at work, we shall

see the neural trajectory is taking different initial points but very

similar trajectories, as we explained in the previous paragraph,

explicit learning is easier and more variable and in manifolds

it’s easier to take different initial points rather than altering the

whole trajectories. However, as in the late phase where implicit

learning is taking over explicit learning, we shall see neural

trajectories taking very close initial points but every different

trajectories in the highly dimensional space. This example is

a speculative but specific one of how a hypothesis could be

risen under the framework of neural dynamics. Fruitful progress

could be yielded utilizing this new framework re-investigating

behavioral experiments of implicit-explicit motor learning.

While there is a general consensus of the loci of explicit

learning, the loci of implicit learning are still under debates until

today. Cerebellum has been thought to be the most potential

candidate (Galea et al., 2010; Butcher et al., 2017). However,

more recent tDCS study shows no effects of stimulating

cerebellum on motor learning in visuomotor rotation tasks

(Liew et al., 2018). It’s possible that the rich neural dynamical

processes in cerebellum might not survive through global

stimulation like tDCS (Zobeiri and Cullen, 2022). Thus, it’s

important if cerebellum studies of motor learning could

incorporate framework of neural dynamics. Also, there is
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also a rich repertoire of implicit processes in the cortices

for sensorimotor control, which potentially underlies the

implicit component of sensorimotor learning. A fronto-basal-

ganglia circuit is an underlying neural correlate for “dorsal

pathway” natural grasping motor control (Milner and Goodale,

2006; Prabhu et al., 2007). Another fronto-parietal circuit

is the underlying mechanism for motor stop-signal control

(Verbruggen and Logan, 2008). While more research are needed

to better understand the relation between sensorimotor learning

and sensorimotor control, the neural dynamics framework does

not limit from the problem of limit understanding; instead, it’s

here to yield more understanding. Neural dynamics analysis

potentially could place sensorimotor control and sensorimotor

learning into the same analysis space, since, at the end of the

day, there are the same group of neurons firing just in different

patterns. Further analysis could be done on comparing the

neural dynamics under sensorimotor control tasks and neural

dynamics under sensorimotor learning tasks. Therefore, neural

dynamics framework could be also very useful to learn about

the underlying neural correlate of implicit learning, and relation

between sensorimotor learning and sensorimotor control.

In short, we review literature from behavioral studies of

implicit-explicit motor learning and electrophysiology studies of

neural dynamics. We provide examples of how future research

could combine the two lines of inquiries, and suggest how

potential fruitful results could be yielded.
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