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forward modeling of LFP and
MEG signals
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Mallory Carlu and Alain Destexhe

CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Saclay, France

The use of mean-field models to describe the activity of large neuronal

populations has become a very powerful tool for large-scale or whole brain

simulations. However, the calculation of brain signals frommean-field models,

such as the electric and magnetic fields, is still under development. Thus,

the emergence of new methods for an accurate and e�cient calculation of

such brain signals is currently of great relevance. In this paper we propose

a novel method to calculate the local field potentials (LFP) and magnetic

fields from mean-field models. The calculation of LFP is done via a kernel

method based on unitary LFP’s (the LFP generated by a single axon) that

was recently introduced for spiking-networks simulations and that we adapt

here for mean-field models. The calculation of the magnetic field is based on

current-dipole and volume-conductor models, where the secondary currents

(due to the conducting extracellular medium) are estimated using the LFP

calculated via the kernel method and the e�ects of medium-inhomogeneities

are incorporated. We provide an example of the application of our method

for the calculation of LFP and MEG under slow-waves of neuronal activity

generated by a mean-field model of a network of Adaptive-Exponential

Integrate-and-Fire (AdEx) neurons. We validate our method via comparison

with results obtained from the corresponding spiking neuronal networks.

Finally we provide an example of our method for whole brain simulations

performedwith The Virtual Brain (TVB), a recently developed tool for large scale

simulations of the brain. Our method provides an e�cient way of calculating

electric and magnetic fields from mean-field models. This method exhibits a

great potential for its application in large-scale or whole-brain simulations,

where calculations via detailed biological models are not feasible.

KEYWORDS

magnetoencephalography (MEG), local field potential (LFP), mean field (MF), whole
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1. Introduction

The electric and magnetic fields generated by neuronal

currents are two commonly used brain signals to study

neuronal activity. The measurement of these two signals involve

different experimental techniques that can capture neuronal

activity at different scales. The registration of electric local

field potentials (LFP) involves invasive experimental techniques

to measure the electric potential in the cerebral extracellular

medium and it captures the activity of thousands of nearby

neurons, in particular their synaptic activity (Niedermeyer

and Lopes Da Silva, 2005; Buzsáki et al., 2012). On the

other hand, the measurement of the magnetic field in MEG

(magnetoencephalogram) is a non-invasive technique that

captures the field generated by thousands to millions of neurons.

Among non-invasive techniques to measure neuronal activity,

MEG provides a relatively high spatial and temporal resolution,

which are currently in the order of millimeters and milliseconds,

respectively (De Pasquale et al., 2010; Hansen et al., 2010; Stokes

et al., 2015).

The calculation of these signals from the underlying

neuronal sources (usually referred to as “forward-modeling”)

can be performed via detailed biophysical models (Hämäläinen

et al., 1993; Bédard et al., 2004; Nunez et al., 2006; Bédard

and Destexhe, 2012; Lindén et al., 2014; Hagen et al., 2018;

Ilmoniemi and Sarvas, 2019). Although successful, this turns

out to be very computationally demanding, specially when

large populations of neurons are into consideration. Nowadays

the utilization of mean-field models describing the activity of

neuronal populations has become a powerful tool for large-

scale simulations (Sanz Leon et al., 2013; Depannemaecker et al.,

2021), however the calculation of brain signals from the mean-

field models is still under development. Thus, the emergence of

new modeling-frameworks that allow an accurate and efficient

calculation of multiple brain-signals from mean-field models is

currently of great interest.

In this paper we provide a method to calculate the LFP and

MEG signals from mean-field models. To calculate the LFP we

base our method on the unitary LFP (uLFP), which is the LFP

generated by the post-synaptic currents from a single axon. We

adopt a recently developed kernel-method based on uLFP’s for

spiking neural networks (Telenczuk et al., 2020) and we adapt

this method for its application to mean-field models. Kernel

methods based on neuronal models (Hagen et al., 2016) and

experimental data (Telenczuk et al., 2020) have been proposed

for the calculation of LFP’s. In our approach we use a kernel

method based on experimental data of uLFP’s (Telenczuk et al.,

2020), which is not restricted by specific model constraints.

To calculate the magnetic-field we make use of current-

dipole and volume-conductor models for an inhomogeneous

medium. We estimate the contribution of neuronal currents to

the magnetic field from a mean-field model and we incorporate

the previous estimation of the LFP to calculate the contribution

of secondary currents due to the medium conduction. We

provide an example of our method for the calculation of the

LFP and MEG under slow-wave activity generated by a mean-

field model of Adaptive-Exponential Integrate-and-Fire (AdEx)

neurons. To validate our method we compare the results with

the ones obtained from simulations of the corresponding spiking

neural networks. Finally we provide an example of our method

for whole brain simulations performed with The Virtual Brain

(TVB), a recently developed tool for large scale simulations of

the brain (Sanz Leon et al., 2013; Goldman et al., 2020).

2. Method

2.1. Calculation of the electric potential
from mean-field models

To calculate the extracellular electric potential (LFP) we

will make use of a recently developed kernel method based

on unitary-LFP’s (uLFP) (Telenczuk et al., 2020). This method

was designed for the estimation of LFP’s from spiking network

simulations and consists in convolving the spikes of the network

with two kernels, according to the formula:

Ve(Ex, t) =

∫

Ke(Ex, t − τ )





∑

j

δ(τ − te,j)



 dτ

+

∫

Ki(Ex, t − τ )





∑

j

δ(τ − ti,j)



 dτ , (1)

where Ke(Ex, t − τ ) and Ki(Ex, t − τ ) are the kernels associated

with spikes from excitatory and inhibitory neurons, respectively,

while {te,j} and {ti,j} are the spiking times of excitatory and

inhibitory neurons. In mean-field models, we typically deal

with the mean firing activity of two populations, excitatory and

inhibitory neurons, which we will note by νe and νi. To adapt

this method to mean-field models, the precise timing spikes in

the previous expression can be replaced by the rates of spiking

activity, νe and νi, which yields:

Ve(Ex, t) =

∫

Ke(Ex, t − τ ) νe(τ ) dτ

+

∫

Ki(Ex, t − τ ) νi(τ ) dτ . (2)

where we have assumed that the spiking rates are high enough

such that the typical inter-spike interval is small compared to

the characteristic time of the kernel and thus the discrete spiking

times can be replaced by the average firing rate. We notice that

a typical size of a neuronal population in a mean-field is of

thousands of cells with individual firing rates up to tens of Hz.

Thus, for an electrode registering the activity of the population,

this gives an inter-spike interval in the order of 1x10−2 ms, while
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the kernels (as shown below) have characteristic times of a few

ms, which validates the previous assumption.

The kernels functions Ke and Ki were estimated from

experimental data, by fitting a Gaussian template to the relation

between single spikes and LFP’s obtained in micro-electrode

recordings (i.e., unitary LFP’s) (Teleńczuk et al., 2017; Telenczuk

et al., 2020). The kernels at position Ex and time t are given by:

K(Ex, t) = A(Ex) exp
[

−(t − tp)
2/(2σ 2)

]

, (3)

where A is the amplitude (which can be negative), σ is the

standard deviation of the kernel in time, and tp is the peak time

of the kernel. The latter is given by

tp = t0 + d + |Ex− Ex0|/va, (4)

where t0 is the time of the spike of the cell, |Ex−Ex0| is the distance

between position of the electrode Ex and the position Ex0 of the

current source, d is a constant delay, and va is the axonal speed.

We use the value of va = 200 mm/s, estimated from human LFP

recordings (Teleńczuk et al., 2017).

To model the observed near-exponential amplitude decay

with distance, the following expression can be used for A(Ex), in

cylindrical coordinates (Teleńczuk et al., 2017):

A(Ex) = A0(z) exp[−|x− x0|/λ], (5)

where A0(z) is the maximal amplitude, which depends on

coordinate z (cortical depth), |x − x0| is the radial distance

between position of the electrode Ex and the source at Ex0 (see

coordinate system in Figure 1 for a cylindrical region) and λ is

the space constant of the decay. From human microelectrode

recordings, λ was consistently found around 200–250 µm

(Teleńczuk et al., 2017). A diagram of the kernel and the

corresponding values for A0(z) are shown in Figure 1.

To perform the calculation of the LFP from mean-field

models we will replace the single neuron magnitudes in the

previous expressions by their mean values over the neuronal

population. For the spatial dependence we take the average value

of the function A(Ex) over a circular region around the point Ex

where the field is measured. Taking into account the exponential

decay, we will assume that the radius of the region of interest

around Ex (rregion) is defined by the characteristic distance λ,

and we will take rregion = 2λ. For the temporal part of the

kernel we will neglect the term corresponding to the axonal

propagation, which holds valid as far as the propagation time is

small compared with the typical temporal scale of the kernel, for

example in the case where the region comprised by the neuronal

population is small enough, as we will show in the example

provided in the Results section. Thus, we will take: A(Ex) ≈

A0(z) < exp[−|x− x0|/λ] > |r=2λ = A0(z)
1
2 (1 − 3

e2
) ≈

0.3A0(z) (independent of λ) and tp = d, where ‘<>’ indicates

the mean over the area defined by the radius rregion = 2λ.

FIGURE 1

(A) Diagram of a pyramidal neuron and the coordinate system.

The dashed lines indicate the two compartments considered for

the calculation of the magnetic fields. (B) Experimental

measurements of the uLFP (circles) at di�erent distances from

the soma (x-coordinate) together with the uLFP kernel of

Equation (3) (solid line). (C) Numerically estimated uLFP

amplitude as a function of depth (z-coordinate) for inhibitory

neurons (white and black circles correspond to di�erent

simulations of the same system, see Telenczuk et al., 2020). (D)

Amplitude of the uLFP for inhibitory and excitatory neurons at

selected depths: Deep layers (z = –400 µm), Soma (z =

0),Superficial layers (z = 400 µm) and Surface (z = 800 µm).

Adapted from Telenczuk et al. (2020).

2.2. Calculation of the magnetic field
from mean-field models

To estimate the magnetic field generated by a neuronal

population we will assume that the variations in charge

and current densities are slow enough (frequencies below

the thousands of hertz) such that time derivatives in

Maxwell equations can be neglected. Within this quasi-

static approximation, the magnetic field generated by a current

density J(r, t) is given by (Geselowitz, 1970; Hagen et al., 2018;

Garcia-Rodriguez and Destexhe, 2021):

B(r, t) ≈
µ0

4π

∫

J(r′, t) ×
r − r′

∣

∣r − r′
∣

∣

3
d3r′ (6)

where µ0 is the magnetic susceptibility, r′ is the location of the

source and r the point where the field is measured. For the case

where |r − r′o| >> |r′ − r′o|, where r
′
o represents the location

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2022.968278
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Tesler et al. 10.3389/fncom.2022.968278

of the center of the neuronal population we can take the far-field

approximation and we have:

B(r, t) ≈
µ0

4π
Q ×

r − r′o
∣

∣r − r′o
∣

∣

3
. (7)

where Q =
∫

J(r′, t) d3r′ is the total dipole moment. This is in

particular valid for the case of MEG, where sensors are located

outside the scalp, far from the neuronal population generating

the field.

In the brain, neurons are surrounded by the extracellular

medium which is an electrical conductor. The current J is then

composed of three main sources: synaptic currents (Js), action

potentials (Ja) and conduction currents (Jc), the last ones being

related to the induced currents in the conducting surrounding

medium. Thus, we can write Q(r, t) = Qs + Qa + Qc. Currents

related with action potentials tend to cancel each other, and

their contribution to the magnetic field can be neglected (Lindén

et al., 2014). In the following we show how to estimate the

contributions from the conduction and synaptic currents. The

conduction currents, given a medium conductivity σ (r, t), can

be written as:

Jc = σ (r, t)E(r, t) = −σ (r, t)∇8 (8)

where E(r, t) is the electric field at point r and 8 is the local

electric field potential (LFP). The conductivity σ (r, t) will in

general depend on the position and may vary with time. We

will compartmentalize the brain or region under study into small

volume domains of constant conductivity, such that we can write

for Qc (Geselowitz, 1970; De Munck et al., 2012):

Qc = −

∫

σ (r′, t)∇8(r′, t) d3r′

= −
∑

i

(σi(t)
′ − σi(t)

′′)

∫

8(r′, t)dS′i

(9)

where the summation goes over all surfaces of discontinuity,

σi(t)
′ and σi(t)

′′ are the conductivities at the two regions

separated by the surface i, ds′ is the differential area element

for surface i and where the identity
∫

Vi

∇
′8(r′, t) d3r′ =

∫

S(i)

8(r′, t) dS′i was used. We notice that the electric field

potential 8 can be estimated from the mean-field models using

the kernel method described in the previous section, from

where the contribution of Qc to the magnetic field is fully

determined. We notice in addition that the conductivity σ may

also depend on the frequency and direction. For simplicity in

this paper we will assume an isotropic medium and independent

of the frequency, but in principle these dependencies can be

incorporated within our method.

To estimate the contributions of intrinsic neuronal currents

to the MEG we will take into account that axial currents

are believed to be the main source for the magnetic-field (in

opposition to transmembrane currents) (Hämäläinen et al.,

1993). We notice however that, in general, the mean-field

and AdEx models are based on point-neurons (i.e., a single-

compartment neuronal model). In order to incorporate axial

currents to our model we will extend our description and

consider the mean-field model in combination with a two

compartment model (sometimes referred to as an “hybrid

modeling”; Hagen et al., 2018), which is the minimum

configuration that incorporates intra-neuron current flow. We

show the diagram of the two-compartment model in Figure 1A.

One of the compartments corresponds to the soma-perisomatic

region and the other to the apical dendrites. We will assume that

the membrane voltage for each of these compartment is given

by:

C1
dV1

dt
= gL1(EL − V1)+ I1syn −W + IA

C2
dV2

dt
= gL2(EL − V2)+ I2syn − IA

(10)

where gL and EL are the conductance and reversal potential of

the leakage channel, I
j
syn is the synaptic input to compartment j,

W is a variable describing neuronal adaptation (which we only

consider affecting the first compartment for simplicity) and IA

is the axial current between the two compartments, i.e., IA =

(V1 − V2)/RA, being RA the axial resistance.

Following Kuhn et al. (2004), we will assume that the mean

membrane potential of each compartment can be obtained by

taking the stationary solution of (Equation 10) to static synaptic

currents given by the synaptic bombardment with firing rates νe

and νi (Di Volo et al., 2019). Thus, subtracting both expressions

in Equation 10, and taking the stationary solution we get (for

gL1 = gL2 = gL):

µV1 − µV2 =
I1syn − I2syn −W

2/RA + gL
(11)

where µVj indicates the mean voltage of compartment j

and from where the mean axial current (over the neuronal

population) can be estimated. We notice that in general the

synaptic currents will be a function of the voltage of each

compartment and the firing rates of the population, in which

case both stationary solutions of Equation 10 have to be

considered. In a very general way we can write I
j
syn = I

j
synex +

I
j
synin , with I

j
synex ,I

j
synin the excitatotory and inhibitory synaptic

currents, respectively, given by:

I
j
synex = K

j
eµGe (Ee − µVj)

I
j
synin = K

j
iµGi (Ei − µVj)

(12)

where µGe(i)
is the mean excitatory (inhibitory) synaptic

conductance and K
j
e(i)

is the number of excitatory (inhibitory)

synaptic connections arriving to compartment j (Di Volo et al.,

2019). The estimation of the mean synaptic conductances is to
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be defined from the mean-field model of use. In the examples

presented in this paper we will consider a conductance based

network, where the conductance at each synaptic terminal is

increased by a quantal amount qe(i) for each pre-synaptic spike

(see Section 3 for details). For these networks and assuming that

the spiking activity follows a poissonian distribution, then the

mean conductances can be written as (Di Volo et al., 2019):

µGe(i)
= νe(i)τe(i)qe(i) (13)

where τe(i) is the characteristic decay time of the synaptic

conductance. With the definition of the synaptic currents

and mean conductances, Equations (10) and (11) are fully

determined and the axial currents can be calculated (see

Supplementary material for further details). By further assuming

that excitatory neurons are the main source of the magnetic

fields then we have:

Qs = neLI
e
A (14)

which gives the mean dipole moment generated by intrinsic

neuronal currents, where L is a characteristic length of the dipole

and ne is the number of excitatory neurons. Thus, together

with Equation (9) (Qc) and (7) the magnetic field is completely

determined.

In the Results section we will present an example of the use

of the method for a recently developed mean-field model of

a network of Adaptive-exponential-Integrate-and-Fire (AdEx)

neurons.

2.3. The TVB simulation platform

The Virtual Brain simulator platform (TVB) provides an

environment for large-scale brain simulations, where the brain

is compartmentalized in macro-domains represented as nodes

in a network. Each node in the network is described via a mean-

field model. The connectivity among brain regions is provided

via a brain connectome. The size of the compartmentalization

can be defined by the user, depending on the characteristic of the

study and computational resources. For our simulations we will

consider a coarse-grain simulation where each node represents

a different brain region. For more details on our simulations see

the Section 3. For details on the TVB platform see Sanz Leon

et al. (2013) and Melozzi et al. (2017).

3. Results

We present in the following an example of our method for

the calculation of the Local Field Potential (LFP) and magnetic

fields from a mean-field model. We will validate our method

via comparison with results obtained from simulations of the

corresponding spiking neural networks. The example we present

is based on simulations of slow-waves of neuronal activity

obtained with a mean-field model of Adaptive-Exponential

Integrate-and-Fire neurons. Slow-waves (0.5-3.5 Hz, δ-band) are

a key feature of neuronal activity during deep-sleep and can be

experimental measured via LFP andMEG (Destexhe et al., 1999;

Simon et al., 2000; Lopes da Silva, 2013).

3.1. AdEx mean-field model

To provide an example and validate our method we will

consider a recently developed mean-field model of a network of

inhibitory and excitatory Adaptive-Exponential-Integrate-and-

Fire (AdEx) neurons (Brette and Gerstner, 2005). The spiking

AdEx neuronal model is defined by the system of equations:

C
dV

dt
= gL(EL − V)+ gL1 exp

(

V − VT

1T

)

− w+ Isyn (15)

dw

dt
= b

∑

δ(t − tsp)+
a

τw
(V − EL)−

w

τw
(16)

where V is the membrane potential, w is an adaptation current,

C = 200 pF is the membrane capacity, gL = 10 nS is the

leakage conductance, EL = −63 mV is the leakage reversal

potential, VT = −50 mV, 1 = 2 mV (0.5 mV) for excitatory

(inhibitory) neurons, Isyn is the synaptic current, a is the sub-

threshold adaptation constant and b is the spiking adaptation

constant. When V > VT at time t = tsp a spike is generated, the

membrane potential is reset to Vres = −65 mV and remains at

this value for a refractory time tref = 5 ms, and the adaptation

variable is increased by an amount b. In our simulations we will

consider that no adaptation occurs in inhibitory neurons (i.e.,

a = b = 0), while for excitatory neurons we will consider

b = 60 pA and a = 0. The synaptic current Isyn received

by a neuron is given by the spiking activity of all presynaptic

neurons connected to it. The total synaptic current can be

written as a sum of the excitatory and inhibitory synaptic activity

Isyn = Ge(Ee − V) + Gi(Ei − V), where Ee = 0 (Ei =

−80 mV) is the excitatory (inhibitory) reversal potential and

Ge, Gi are the synaptic conductances. We model the synaptic

conductances as decaying exponential functions that experience

a quantal increase qe and qi at each pre-synaptic spike: Ge(i) =

qe(i)
∑

2(t− tsp)e

t−tsp
τe(i) , where qe = 1.5 nS, qi = 5 nS, τe = τi =

5 ms.

We will consider a network of 10,000 neurons, with 80%

of excitatory and 20% of inhibitory neurons. Neurons in the

network are randomly connected with probability p = 5%.
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The mean-field equations for the AdEx network are given to

a first-order by (Di Volo et al., 2019):

T
dνe,i

dt
= Fe,i(W, ν̄e, νi)− νe,i

dW

dt
= −

W

τw
+ bνe + a(µV (ν̄e, νi,W)− EL)

(17)

where νe,i is the mean neuronal firing rate of the excitatory

and inhibitory population, respectively, W is the mean value

of the adaptation variable, F is the neuron transfer function

(i.e., output firing rate of a neuron when receiving excitatory

and inhibitory inputs with mean rates νe and νi and with

a level of adaptation W), a and b are the sub-threshold

and spiking adaptation constants, tw is the characteristic time

of the adaptation variable, T is a characteristic time for

neuronal response, µV is the average membrane voltage and

EL is the leakage reversal potential (see Di Volo et al., 2019

for details).

3.2. Two compartment AdEx model

To validate the results of our method for the calculation

of magnetic fields, we will compare the estimation from our

method with the results obtained from a two-compartment

spiking AdEx network. In this network inhibitory neurons

will be consider as point neurons as before, while excitatory

neurons will be described by a two-compartment model in

analogy to the model proposed in Equation (10). The equations

corresponding to the peri-somatic area (Equations 18 and

19) will take into account the spiking mechanism and the

adaptation. We will consider that the soma receives inputs from

synaptic currents and from the axial current coming from the

dendritic region:

CS
dVS

dt
= gLS (EL − V)+ gLS1Texp

(

V − VT

1T

)

(18)

−w+ IA + Isyn−S

dw

dt
= b

∑

δ(t − tsp)+
a

τw
(VS − EL)−

w

tw
(19)

Where CS = 200 pF, gLS = 10 nS, EL = −63 mV, VT = −50

mV, 1T = 2 mV, τw = 500 ms, b = 60 pA a = 0.

The axial current is defined as before IA = gA(VD−VS) with

gA = 400nS.

The dendritic membrane potential is described by a

leak current and receives input from synaptic currents. The

membrane voltage of the dendrite is described by:

CD
dVD

dt
= gLD(EL − VD)− IA + Isyn−D (20)

With CD = 10 pF, and gL−D = 2 nS.

For both populations when an action potential is emitted

(voltage is greater thanVT), the system is reset to its resting value

and remains at that value for a refractory period of tref = 5 ms.

We will take VT = −40 mV, VR = −55 mV for excitatory cells

and VT = −47.5 mV, VR = −65 mV for inhibitory cells.

To estimate the magnetic field from the spiking network

we will take the mean axial current generated in the excitatory

neurons of the network and proceed to calculate themean dipole

moment as in Equation (14).

3.3. LFP from the AdEX mean-field model

We provide next two examples of the method to calculate

the LFP. First we show the results for a single mean-field model

of an AdEx network, and the second example consists in a large-

scale simulation of the human brain performed with The Virtual

Brain simulator platform.

In Figure 2 we show the results of the mean-field model

and the LFP calculations for the first example. To validate our

results we show the comparison with the calculation of the LFP

for the corresponding spiking AdEx network. For the latter case

we show the raster plot and the corresponding mean firing rate

of the excitatory and inhibitory populations. We can see that

the results from the mean-field model can correctly capture the

amplitude and duration of the up-and-down states obtained in

the LFP from spiking-networks. The average amplitude of the

high-state in the LFP is of (206 ± 26) µV for the spiking case

and (209± 2) µV for the mean-field case. The average duration

of the high-state in the LFP is (0.59 ± 0.14) s for the method

applied to the spiking network and (0.57± 0.09) s for the mean-

field case. The duration is measured as the time between the

beginning and the end of the high state, where the criteria for

the starting and ending points is defined as the crossing point of

3 standard deviations from the base state.

The second example we present consists in a large-scale

simulation of the human brain, performed with the TVB

simulator platform. In this simulation each region of the brain

is represented by one neuronal ensemble of AdEx neurons

(as described in the first example). The connection between

regions was defined by human tractography data (https://

zenodo.org/record/4263723,Berlinsubjects/QL_20120814) from

the Berlin empirical data processing pipeline (Schirner et al.,

2015; Goldman et al., 2021). A parcellation of 68 regions is

used, with long-range excitatory connections and delays defined

by 120 tract length and weight estimates in human diffusion

magnetic resonance imaging (dMRI) data (Sanz-Leon et al.,

2015; Goldman et al., 2021). The LFP is calculated using the

kernel-method, for which it has been incorporated in the TVB

platform. For details on the connectome and the simulations

with the TVB see Sanz Leon et al. (2013), Schirner et al. (2015),

Sanz-Leon et al. (2015), and Goldman et al. (2021). The results
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FIGURE 2

(A) LFP calculations obtained with the kernel method on spiking-network simulations (in blue) at di�erent depths (Surface, Superficial, Soma and

Deep, see table in Figure 1). Simulations were performed on a network of 10,000 AdEx neurons and LFP was calculated according to

Equation (1). Neurons where uniformly distributed over a square surface of 1 x 1 mm2 (see diagram in Figure 4C for reference). We show on the

top the raster plot of the neuronal activity during the simulation, for excitatory (green) and inhibitory (red) neurons together with the

corresponding firing rate for each population. (B) LFP calculations obtained with the kernel method from mean-field simulations. We show the

average firing rate for the excitatory and inhibitory neurons (top) in a network of 10,000 AdEx neurons, computed from Equation (17) and the

corresponding LFP obtained with Equation (2) (blue).

are shown in Figure 3, where we show only the LFP for the

Surface depth. All the simulations presented in the paper were

performed using the python language and the TVB simulation

platform for whole brain simulations.

3.4. Magnetic field from the AdEx
mean-field model

In the following we proceed with the calculation of the

magnetic field for the example of the AdEx mean-field model,

as explained in the Section 2. As for the LFP, we consider two

examples, one consisting in a single mean-field and another

comprising a large-scale simulation of the human brain.

To perform the calculations two points are to be specified:

i) the synaptic input and ii) the specific geometry and neuronal

distribution of the area under study. The first one is defined

by the mean-field model adopted for the simulations while the

second depends on the specific features of the study. In our case

the synaptic currents are given by Equation (12) and (13). For

our simulations we adopt τe(i) = 5ms, qe(i) = 1.5nS (5 nS)

and Ee(i) = 0 (−80 mv). For K
j
e(i)

we take K
j
e(i)

= ne(i)p
j
e(i)

with ne(i) the number of excitatory (inhibitory) neurons in

the population and p
j
e(i)

the connectivity probability of an

excitatory (inhibitory) synapse at compartment j. To define p
j
e(i)

we assume as before that every two neurons in the network are

connected with a probability po = 0.05. In addition, following

experimental data, we will assume that inhibitory synapses

have a higher concentration around the soma while excitatory

synapses dominate in the apical dendrites (Megıas et al., 2001).

We will consider a 60–40% distribution for inhibitory synapses

(60% in the peri-somatic region, 40% at the apical dendrites) and

a 30–70% distribution for excitatory synapses (see Figure 4A for

a diagram of the two-compartment model). Thus, p1
e(i)

= 0.3po

(0.6po) and p
2
e(i)

= 0.7po (0.4po). Given the synaptic currents for

each compartment, the axial current and its associated magnetic

field is determined from Equation (7), (10), and (14).

To perform the simulations a concrete geometry and

neuronal distribution for the region under study must be

defined. For this, we will assume that neurons are aligned as

shown in Figure 4B and uniformly distributed. It is easy to see

that current dipoles oriented perpendicular to the scalp have a

smaller or null contribution to the magnetic field and that the

MEG is rather driven by dipoles oriented tangentially, which

is a commonly accepted feature (Hämäläinen et al., 1993). For

our simulations we will consider cubic regions as indicated in

Figure 4C and for simplicity we will assume that only neurons

and dipole moments with purely tangential currents (parallel

to the scalp) contribute to the magnetic field. Furthermore,
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FIGURE 3

Whole brain simulations of the human brain performed with The

Virtual Brain (TVB) platform. (A) Top: time course of the average

firing rates for each brain region in the simulations. Bottom:

Local field potential calculated with the kernel method for each

region. (B) Colormap of the LFP amplitude at each brain region

for a down (t = 0) and up (t = 0.26 s) states during one

slow-wave oscillation. For details on the TVB simulator of the

human brain see Sanz Leon et al. (2013), Schirner et al. (2015),

Sanz-Leon et al. (2015), and Goldman et al. (2021).

we will assume that the vector r − r′o between the dipole and

the sensor is aligned in the radial direction (i.e., perpendicular

to the scalp), such that the calculated field corresponds to a

purely tangential component (a generalization for an arbitrary

angle is straightforward). We assume that the sensor is located

at a distance of 3 cm from the neuronal population. For the

contribution of the conduction currents (Equations 8 and 9)

we will consider a single interface between two regions of

different conductivity. In particular we will assume that the two

conductivities correspond to the one of the gray matter and

the cerebrospinal fluid, respectively, which exhibit a relatively

high difference in conductivity (we use σ = 0.3 and 2.1

S/m, respectively, McCann et al., 2019; Mandija et al., 2021).

The calculation of the LFP for Equation (9) and the related

parameters follow the ones indicated for Figure 2.

In Figure 5B we show the results of our simulations. We

show here the total magnetic field and the field generated by each

different source (synaptic and conductance currents). For the

FIGURE 4

(A) Diagram of the two compartment neuronal model used for

MEG calculations. One compartment covers the soma and

perisomatic region with high concentration of inhibitory

synapses (red) and the second compartment covers the apical

dendrites with dominant concentration of excitatory synapses

(green). (B) Diagram of the cerebral cortex with the arrangement

and orientation of neurons in the gyrus and sulcus. The di�erent

depth layers used for LFP calculations are indicated by dashed

lines. (C) Diagram of the domains, layers and surface consider

for the MEG simulations. Xm indicates the position of the sensor.

conductance currents we show the contribution of each depth

to the field. To validate our results we show the results obtained

from the spiking AdEx two-compartment model in Figure 5A.

For the spiking networks we show the raster plot, themean firing

rates and the resulting magnetic field. For this last one we only

consider the contribution of synaptic (i.e., axial) currents to the

field. The results from the mean-field method can reasonably

capture the amplitude and duration of the up-and-down states

obtained from the spiking network. The average amplitude of

the up-state in the MEG is of (276 +/− 40) fT for the spiking

case and (305 +/− 3) fT for the mean-field case. The average

duration is of (0.87 +/− 0.43) s for the spiking case and (0.53

+/− 0.01) s for the mean-field case.

From these simulations we can see that the axial neuronal

currents constitute the main source for the MEG, which is
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FIGURE 5

Calculation of the MEG signal. (A) Simulations from a spiking

two-compartment AdEx network. We show the raster plot (top),

the mean firing rate (middle) and the magnetic field generated

by axional neuronal currents (bottom). (B) Results obtained with

our method from the AdEx mean-field model. In the first plot

(top) we show the total magnetic field generated by the system

(axial neuronal currents and conduction currents, dashed black

line) together with the contribution of the axial currents (solid

red line). Bottom: Contribution to the magnetic field by of the

conduction currents. The contribution of the di�erent depths is

shown.

in agreement with typical experiments. In our simulations

we took only a single interface between regions of different

conductivity. The contribution of the different sources to the

MEG will depends of course on the particular geometry,

conductivities and neuronal distributions. Nevertheless, it is

usually accepted that the magnetic field is mainly driven by

axial neuronal currents (Hämäläinen et al., 1993). Our analysis

would agree with this, but it also provides means to further

analyze the different contributions and in particular to explore

the possible contributions of different layers. For a comparison

with experimentally measured slow-waves with MEG see for

example Simon et al. (2000).

To end this section we present the results of the MEG

calculations for a large-scale simulation of the human brain with

The Virtual Brain platform, corresponding to the same set of

simulations as in Figure 3. For the MEG we aim to describe the

FIGURE 6

Whole brain simulations of the MEG signal in the human brain

performed with The Virtual Brain (TVB) platform. (A) Top: time

course of the mean firing rates for each brain region in the

simulations. Bottom: magnetic field for each region calculated

with the method introduced in this paper. (B) Colormap of the

magnetic field amplitude at each brain region for a down (t = 0)

and up (t = 0.26 s) states during one slow-wave oscillation. For

details on the TVB simulations of the human brain

see Sanz Leon et al. (2013), Schirner et al. (2015), Sanz-Leon

et al. (2015), and Goldman et al. (2021).

fields measured by N sensors and generated by the M sources

(brain regions in our case). The magnetic field measured by a

sensor at position r outside the conductor can be written in

general as (Mosher et al., 1999 and Sanz-Leon et al., 2015):

B = G(r, rQ)Q (21)

where Q indicates the corresponding dipole moments, rQ is the

location of the sources (dipoles) and G(r, rQ) is called the gain

or transfer matrix and contains all the information regarding

the geometry of the specific head-model under consideration.

This is a generalization of Equation (7). In the TVB platform

the gain matrix can be computed and registered for different

head-models given the locations of sources and sensors (Sanz-

Leon et al., 2015). In our simulations we will consider that each

dipole moment is located at the center of the corresponding

brain region and that there is one sensor per each brain region.
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For simplicity we will considerG =
µ0

4π |r−r′|2
I, where, as before,

we assume that the vector r− r′ is aligned in the radial direction,
∣

∣r − r′
∣

∣ is a typical distance between the sensor and the source,

and I is the identity matrix, such that each sensor measures only

the field generated by each brain region. For a more detailed

calculation ofMEG, amore detailed head-model and orientation

of dipoles should be taken into consideration.

We show in Figure 6 the results of our whole brain

simulations. In Figure 6A of the figure we show the time series

of the mean firing rates of each region and the corresponding

magnetic field for each sensor registered in the simulation. For

these simulations we are assuming an homogeneous medium

(i.e., uniform conductivity), from where the only source of the

magnetic field are the neuronal axial currents. In Figure 6B we

show a colormap of the magnetic field for region corresponding

to a single slow-wave in our simulations.

4. Discussion

In this paper we have introduced a method for forward

modeling of local field potentials (LFP) and magnetic fields

generated by neuronal activity. Our method allows to calculate

these signals from mean-field models of neuronal populations.

We have proposed a method based on a phenomenologically

defined kernel to calculate the LFP, which provides an estimation

of the field as a function of depth and distances from

the cell body. To calculate the magnetic-field we utilized

a current-dipole and volume conductor model which we

combined with the kernel method of LFP to estimate the

secondary currents induced in the conducting medium by

the neuronal electric fields. Our method considers a very

general scenario with a non-homogeneous conducting medium.

Other efforts to calculate LFP signals from kernel methods

have been previously proposed (Hagen et al., 2016; Skaar

et al., 2020), where kernels are estimated from simulations of

detailed biophysical neuronal models. Our method is based on

experimentally measured uLFP’s, which is not limited by specific

model constraints.

We have presented an example of the application of our

method for amean-field of a population of Adaptive Exponential

Integrate and Fire neurons. For the example shown in the paper

the magnetic-field is mainly generated by neuronal currents (i.e.,

primary currents) with a nearly negligible contribution of the

conduction currents (secondary currents).

One possible source of limitations of our method is

associated with the characteristic of the mean-field models. In

particular, the mean-field models presented here correspond to

randomly connected networks, which prevents the utilization of

specific network structures.

Finally, our method exhibits a great potential for application

in large-scale or whole-brain simulations, where calculations via

detailed biological models are not feasible. Further improvement

of our method would include the refinement of the kernel used

for the LFP calculations, which is envisioned for the near future.

The specification of the kernel for different brain-regions and a

more detailed analysis of its depth-dependence will lead to more

accurate calculations of the local field potential and the MEG

signal.
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