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Backpropagation (BP) has been used to train neural networks for many

years, allowing them to solve a wide variety of tasks like image classification,

speech recognition, and reinforcement learning tasks. But the biological

plausibility of BP as a mechanism of neural learning has been questioned.

Equilibrium Propagation (EP) has been proposed as a more biologically

plausible alternative and achieves comparable accuracy on the CIFAR-10

image classification task. This study proposes the first EP-based reinforcement

learning architecture: an Actor-Critic architecture with the actor network

trained by EP. We show that this model can solve the basic control tasks often

used as benchmarks for BP-based models. Interestingly, our trained model

demonstrates more consistent high-reward behavior than a comparable

model trained exclusively by BP.

KEYWORDS

Equilibrium Propagation, Actor-Critic (AC), biologically plausible, reinforcement
learning, backpropagation

Introduction

The backpropagation (BP) algorithm (Rumelhart et al., 1986) has long been the
workhorse of deep neural networks, allowing their successful application to many
tasks. BP-powered neural networks have enabled reinforcement learning systems to
outperform humans at Go (Silver et al., 2016) and Atari games (Mnih et al., 2015). But
BP has been criticized as being not biologically plausible (it seems unlikely that neurons
do anything like compute partial derivatives). It has also been observed that humans still
outperform deep neural networks on many tasks, like adversarial examples (Goodfellow
et al., 2014), art and music. Could more biologically plausible learning mechanisms help
close this gap?

In the reinforcement learning context, one biologically plausible method is
the REINFORCE framework–a policy-gradient algorithm that was described in a
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neuroscience context by Williams (1992). The parallels between
REINFORCE and biological neural learning have been discussed
by Sutton and Barto (2018) and Chung (2020), and it has
led to more recent developments such as the Attention-
Gated Brain Propagation approach (Pozzi et al., 2020).
Actor-Critic is another reinforcement learning architecture
with parallels to biological learning: several studies have
seen the Actor-Critic architecture as an analog of learning
mechanisms in the basal ganglia (Joel et al., 2002; Takahashi
et al., 2008; Sheikhnezhad Fard, 2018). Biologically plausible
reinforcement learning approaches can demonstrate more
human-like behavior (Chalmers and Luczak, 2022), and
so may provide important insights into human learning
and intelligence.

In the supervised learning context, Equilibrium Propagation
(EP) has been proposed as a more biologically plausible
alternative to BP (Scellier and Bengio, 2017, 2019; Ernoult
et al., 2019; O’Connor et al., 2019; Laborieux et al., 2021).
EP is an extension of Contrastive Hebbian Learning (Almeida,
1987; Pineda, 1987; Baldi and Pineda, 1991) that sees the
neural network as a dynamical system whose steady state
can be perturbed by inputs during an initial “free” phase,
and then clamped by teaching signals in a second “clamped”
phase, affecting learning in a biologically realistic way. EP has
successfully trained algorithms to perform image classification
tasks like MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky
and Hinton, 2009), and Laborieux et al. (2021) showed that
convolutional networks trained by EP can achieve comparable
accuracy to BP in the CIFAR10 task. A further extension of
EP by Luczak et al. (2022) showed how learning might occur
in a single phase–making the algorithm even more biologically
plausible–while still achieving good classification accuracy.

A biologically plausible reinforcement learning approach
based on EP has not yet been proposed. Here we explore an
Actor-Critic architecture trained by both BP and by brain-
inspired modification of EP proposed by Luczak et al. (2022).
This study provides two contributions:

1. We propose the first application of EP to reinforcement
learning, in the form of an Actor-Critic architecture
trained by a combination of EP (Actor) and BP (Critic).

2. We demonstrate that our architecture can solve several
control tasks, and that its learned behaviors are more
consistently rewarding than behaviors learned using BP
alone.

Materials and methods

This section details how our Actor-Critic architecture
was implemented.

Actor-Critic architecture

Actor-Critic is a two-part architecture for reinforcement
learning. The “Actor” is a model that encapsulates the learner’s
policy: it observes the current state and outputs an action to
execute. The “Critic” is a separate model that estimates the value
of an action given a particular state. It observes the effect of each
executed action, often in the form of a difference between the
predicted value of the action and the value actually experienced
(a “temporal difference error”). It uses the temporal difference
error as a learning signal to improve its own future value
estimates, and also to update the Actor to make high-value
actions more likely, and low-value actions less likely.

Actor network (trained by Equilibrium
Propagation)

Equilibrium Propagation envisions a neural network as a
dynamical system that learns in two phases. First is the “free
phase,” in which an input is applied and the network is allowed
to equilibrate. During this phase the network dynamics obey the
equations:

xj,t = xj,t−1

+ h ∗
(
− xj,t−1 + p

(
6i wi,jxi,t−1 + γ6o wo,jxo,t−1 + bj

))
(1)

xo,t = xo,t−1 + h ∗
(
− xo,t−1 + p

(
6j wj,oxj,t−1 + bo

))
(2)

where x is an activation, w is weights for each layer, i, j, and o,
are indexes of input, hidden and output layer neurons, b is a bias.
P is an activation function such as the sigmoid function, and is
the feedback parameter. h is the Euler method’s time-step. Please
note that for consistency with our previous work (Luczak et al.,
2022) we use letter o for indexing output units. We hope that
“o” will not be confused with number 0, which is not present
in our equations.

After the network has reached a free-phase steady state, the
second “clamped” phase begins. During this phase the output
neurons are clamped (or rather, weakly clamped or nudged)
toward the target values. In conventional EP the dynamics
during this phase obey the equations:

xj,t = xj,t−1

+ h ∗
(
− xj,t−1 + p

(
6i wi,jxi,t−1 + γ6o wo,jxo,t−1 + bj

))
(3)

xo,t = xo,t−1

+h ∗ (−xo,t−1 + p(6j wj,oxj,t−1 + bo)+ β ∗ (T−xo,t−1)) (4)

where T is a target for the classification task.
However, in a reinforcement learning setting there is no

target signal per se; only the reward signal, which the learner
must use to estimate values of particular states and actions in
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the environment. To accommodate this different paradigm, our
Actor network modifies Eq. 4 as follows:

xo,t = xo,t−1 + h ∗ (− xo,t−1 + p
(

6
j

wj,oxj,t−1 + bo

)
+ β ∗ V ∗ (a− xo,t−1)), (5)

where a is the action that was taken, and V is the estimated
value of the state, as estimated by the critic network (see
Supplementary Section “Dynamics for Actor” for further
discussion on the forms of Eqs 2, 5). Each xo is the output of
a unit corresponding to a particular action. Alternatively, V can
be replaced with a temporal-difference-style quantity to reduce
variance:

A(s) = r + V
(
s′
)
− V(s), (6)

where s is the current state, and s′ is the new state (arrived
at after executing a). Making this substitution into Eq. 5 gives
the following equation for the clamped-phase dynamics at the
output:

xo,t = xo,t−1 + h ∗ (− xo,t−1 + p
(

6
j

wj,oxj,t−1 + bo

)
+β ∗ A(s) ∗

{
a− xo,t−1

}
), (7)

After the network reaches a clamped-phase steady state, weights
could be updated according to the rule derived in the original
EP paper (Scellier and Bengio, 2017):

1wpre,post =
1
β
α
(
x̂prex̂post − x̌prex̌post

)
(8)

where x̂ is an activity at the weakly clamped phase, x? is an
activity at the free phase, α is the learning rate, β is a nudging
parameter, pre and post are previous and post layer neuron
indexes, respectively (e.g., for 1wi,j, pre and post will be i and
j, respectively).

Here we replace Eq. 8 with the new rule proposed in our
previous work (Luczak et al., 2022), which allows learning to
occur in a single phase by assuming that neurons may predict
their own future activity. The study showed that a rule of
this form emerges naturally if we assume that each neuron
is working to maximize its metabolic energy. The new rule
is:

1wpre,post ∝
1
β
α
(
x̂prex̂post − x̂prex̌post

)
=

1
β
α x̂pre

(
x̂post − x̌post

)
. (9)

In this study we use this update rule for training the
Actor, but omit the feature of neurons predicting their
own future activity for simplicity [i.e., we assume perfect
predictions by using the free-phase and clamped-phase
activities directly. For details of how the prediction feature
was implemented previously, see Luczak et al. (2022)].
Interestingly, this new, single-phase learning rule performs

ALGORITHM 1 Train Actor-Critic by EP and BP.

Input: Initialize action value function with synaptic weights w and b. Initialize
replay memory D, episode size E, maximum step for each episode J. maximum
iteration T for actor, learning rate α, nudging parameter β, time step dt,
activation function p

for episode = 1, 2,...., E do

for j = 1, 2,..., J do

Compute xj,f with Eqs 1, 2 // index f means free phase

Select action based on the probability of xj,f

Execute action aj in emulator and observe reward rj and state sj + 1

store transition (aj , rj , sj , sj + 1) in D

set s = s′

if D has enough transition then

Sample random minibatch of transitions (ak , rk , sk , sk + 1) from D

y =

 rk, for terminal

rk + V(sk+1), for non terminal


Compute A(sk) with y and V(sk) by Eq. 6

// Update actor weights

Compute xk,f by Eqs 1, 2 // index f means free phase

Compute xk,c with A(s) and ak by Eqs 3, 7 // index c means clamped phase

Compute 1w by Eq. 9 with xk,f , xk,c

w← w+1w

// Update critic weights

Perform a gradient stop on (y−V(s))2

end if

end for

end for

similarly or slightly better than the original rule in Eq. 8
[see Supplementary Section “Original update rule for Actor
(Equilibrium Propagation)”].

Critic network (trained by
backpropagation)

Equation 5 represents a prediction error–the error between
r + V(s′), the actual value of the present experience, and V(s),
the predicted value. The mean squared prediction error is then:

L = ||(r + V
(
s′
)
)− V(s)||22 (10)

The critic network is tuned using BP in the usual way to
minimize this prediction error.

Experience replay

We use experience replay (Lin, 1992; Mnih et al., 2013,
2015; Wang et al., 2016) to make our model more stable.
This method stores the agent’s experiences (including states,
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TABLE 1 Parameters for our models on each task.

Task NN Actor NN Critic α1 for Actor α2 for Actor β for Actor α for Critic Iteration for Actor

1st phase 2nd phase

CartPole 4-256-2 4-256-1 0.0001 0.0001 0.02 0.001 150 25

Acrobot 6-256-3 6-256-1 0.001 0.001 0.02 0.001 150 25

LunarLander 8-512-4 8-512-1 0.0001 0.002 0.03 0.0003 180 25

NN describes number of neurons in each layer, α1 is the learning rate for the weights between the input and hidden layer, α2 is the learning rate for the weights between the hidden and
output layers, and 1st and 2nd phases mean duration of free phase and weakly clamped phases, respectively. Results for additional learning rates may be found in our Supplementary
Section “The other learning rates for EP-BP”.

FIGURE 1

Images of environments in tasks for our model: CartPole-v0 (left), Acrobot-v1 (center), and LunarLander-v2 (right). CartPole-v0 task: A pole is
on a cart, and this pole is unstable. The goal of this task is to move the cart to left or right to balance the pole. Acrobot-v1: a robot arm is
composed of two joints. The goal of this task is to swing the arm to reach the black horizontal line. LunarLander-v2: There is a spaceship that
tries to land. The goal of this task is to land the spaceship between the flags smoothly by moving the spaceship.

FIGURE 2

Plotting the reward vs. episode for CartPole-v0 (left), Acrobot-v1 (center), and LunarLander-v2 (right) on both backpropagation (BP) and EP-BP.
Solid lines shows mean across 8 runs and shaded area denote standard deviation. Note that for Acrobot-v1, the agent receives –1 as
punishment until it reaches the target.

actions, rewards, and next-states) and makes them available for
learning later. It is worth noting that experience replay is also
biologically plausible; analogous to memory replay during sleep
(Wilson and McNaughton, 1994).

The complete algorithm is shown in Algorithm 1.
The code to reproduce our results is located at: https://

github.com/ykubo82/HybridRL.

Experiments

We tested our model in three simple Open AI gym
tasks (Brockman et al., 2016): CartPole-v0, Acrobot-v1, and

LunarLander-v2 (Figure 1 shows the images of these tasks). All
of these tasks feature continuous states and discrete actions.
Our model uses multilayer perceptrons for both Actor and
Critic networks, trained by EP and BP, respectively (For
comparison we also trained the actor using BP through time,
but performance was not as good. Those results can be
found in Supplementary Section “Backpropagation through
time with Actor”). Each multilayer-perceptron neural network
(MLP) consists of 1 hidden layer with 256 nodes. For
LunarLander-v2, we increased the hidden size to 512 due to the
complexity of the task.

The activation function for the hidden layer on both Actor
and Critic is the hard sigmoid from Laborieux et al. (2021)
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FIGURE 3

Average rewards and std error (SEM) for the last 25% of episodes for backpropagation (BP) and EP-BP on CartPole-v0, Acrobot-v1, and
LunarLander-v2.

FIGURE 4

Average variability and std error (SEM) for the last 25% of episodes for backpropagation (BP) and EP-BP on CartPole-v0, Acrobot-v1, and
LunarLander-v2.

for CartPole-v0 and LunarLander-v2, the hard sigmoid from
Ernoult et al. (2019) for Acrobot-v1. The activation function for
the Actor’s output layer is the softmax function. A maximum
of 1000 experiences were stored for experience replay, and
the mini-batch size was 20. The learner was allowed 1000
steps for the CartPole-v0 and Acrobot-v1 tasks, and 2000 for
LunarLander-v2. Parameter settings are shown in Table 1.
Experimental results for additional BP learning rates may be
found in our Supplementary Section “Small learning rate for
BP.” For critic networks trained by BP, we used Adam optimizer
(Kingma and Ba, 2014) to accelerate models’ training.

For comparison, we also implement a model with the same
architecture as described above, but trained purely by BP.
Hereafter we refer to our model with Actor trained by EP and
Critic trained by backpropagation as EP-BP, while the baseline
Actor-Critic model trained entirely by backpropagation as BP.
All models were run eight times, and means and standard
deviations were recorded.

Results

Figure 2 shows performance of EP-BP and BP on each
task. On all tasks our EP-BP model converges to more stable
rewarding behavior than the baseline model train with BP only.
This is quantified in Figure 3 which shows the mean reward
obtained in the last 25% episodes. In each case the mean

reward obtained by EP-BP is higher as compared to BP model.
Moreover, closer examination of traces in Figure 2 showed
higher variability in reward for BP trained model. To quantify it,
for each of 8 runs of the model we calculated standard deviation
(SD) from the last 25% of episodes. Figure 4 shows average SD
across 8 runs for each model. This measure of variability was
consistently lower for our EP-BP model. This tells us that our
model is more stable than the base line model.

As an internal measure of learning, similar to Römer
et al. (2022), we recorded the softmax probability for each

FIGURE 5

Mean and std error (SEM) (shaded area) for the probability of
actions that EP-BP and backpropagation (BP) models takes on
CartPole-v0.
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action executed by the Actor network throughout learning.
For each episode, we saved the probabilities of actions that
EP-BP and BP took. Figure 5 shows EP-BP executing actions
with very high (>90%) confidence after about 600 episodes in
the CarPole-v0 task. This means that less than 10% of actions
are selected randomly. Randomness might be important for
exploring the environment in the early phase for gathering
information about the environment (exploration), but in the last
phase, the model should take the optimal action after getting
enough information (exploitation) (Maroti, 2019). However,
if a model does not have a high enough confidence which
action is optimal, the model might not take that action because
there is still some randomness. For example, a person knows
that A route is always busy with traffic jams based on his
experience (thanks to exploration), thus he always takes B
route to the office and arrives on time (exploitation). However,
another person also knows that A route is always busy based
on his experience, but he sometimes takes the A route (more
often than the first person) because he does not have enough
confidence for the B route (this means he thinks sometimes
the B route might not be busy), and he is sometimes late.
Thus, the BP model’s confidence is lower after learning, which
may explain its somewhat less consistent behavior (this means
the BP model takes more often non-optimal actions than
EP-BP model). Of course, it is possible to drive the BP
model’s action probabilities up by decreasing the temperature
of the softmax operation, but this does not outperform our
model (see Supplementary Section “Softmax function with low
temperature for BP model”).

Discussion

This study has explored the value of EP in reinforcement
learning by proposing an Actor-Critic model with the Actor
network trained by EP and the Critic network trained by BP. The
resulting models learn more consistent high-reward behavior
than a baseline model trained exclusively by BP. EP has been
previously applied to image classification, but to our knowledge
this is the first attempt to formulate an EP-based reinforcement
learning system. Thus, we consider it to be an important
development toward the next generation of biologically
plausible algorithms. Other, future developments should include
application of EP to tasks like video classification (Karpathy
et al., 2014) and speech recognition (Malik et al., 2021).

By exploring an EP-BP hybrid, this work provides an
important step toward a completely biologically plausible Actor-
Critic model. Conventional, purely BP-based models, being
not very biologically plausible, can be interpreted as purely
abstract models of real biological learning processes. Here we
have replaced the abstract BP-based Actor with a biologically
plausible EP-based Actor, while allowing the Critic to remain

an abstract model of the sophisticated neuronal system that
evaluates actions. At present, we find this is necessary to
achieve stability: we have implemented AC models trained
purely by EP and found they do not always converge [for
these results, see our Supplementary Section “Critic network
(trained by Equilibrium Propagation)”]. Thus, a stable method
for reducing both Actor and Critic to biologically plausible
networks remains elusive.

In addition to pursuing a purely EP learning system, future
work should consider a convolutional network for application to
more complex tasks such as Atari games (Bellemare et al., 2013)
or for neuronal data analysis tasks (Luczak et al., 2004; Luczak
and Narayanan, 2005; Ponjavic-Conte et al., 2012; Ryait et al.,
2019). Another avenue for exploration would be the inclusion of
neural adaptation (Luczak and Kubo, 2021; Kubo et al., 2022);
a biologically inspired modification to EP which previous work
has shown to work well on image classification tasks, and may
have value in reinforcement learning as well.

On three tasks investigated here, our EP-BP model works
better than the AC trained only by BP. One of the reasons
why it works better is, again, the higher probabilities of action.
In the last phase of the training, we could see that our
model is very stable and has higher probabilities of action.
This means our model has enough information about the
environment of the tasks, and the model takes optimal actions.
Another, related reason may be the somewhat slower learning
of EP-BP, as observed in Figures 2, 5. This could indicate a
more thorough exploration of the environment in the early
stages of learning.
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