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Frequency-dependent plasticity refers to changes in synaptic strength in response to

di�erent stimulation frequencies. Resonance is a factor known to be of importance in

such frequency dependence, however, the role of neural noise in the process remains

elusive. Considering the brain is an inherently noisy system, understanding its e�ects

may prove beneficial in shaping therapeutic interventions based on non-invasive brain

stimulation protocols. The Wilson-Cowan (WC) model is a well-established model

to describe the average dynamics of neural populations and has been shown to

exhibit bistability in the presence of noise. However, the important question of how

the di�erent stable regimes in the WC model can a�ect synaptic plasticity when

cortical populations interact has not yet been addressed. Therefore, we investigated

plasticity dynamics in a WC-based model of interacting neural populations coupled

with activity-dependent synapses in which a periodic stimulation was applied in the

presence of noise of controlled intensity. The results indicate that for a narrow range of

the noise variance, synaptic strength can be optimized. In particular, there is a regime

of noise intensity for which synaptic strength presents a triple-stable state. Regulating

noise intensity a�ects the probability that the system chooses one of the stable states,

thereby controlling plasticity. These results suggest that noise is a highly influential

factor in determining the outcome of plasticity induced by stimulation.

KEYWORDS

Wilson-Cowan model, plasticity, multistability, synapses, homeostatic, functional

connectivity, neural mass model

1. Introduction

One hypothesis for the basis for communication in the brain is that it occurs via the

transient coherence of neuronal assemblies (Fries, 2005). Neural architecture must allow for

temporally and spatially distinct sub-networks to form and exchange information on a sub-

millisecond timescale. Multistability has been proposed as a potential mechanism underlying

this process (Kelso, 2012; Tognoli and Kelso, 2014; Alderson et al., 2020), and is thought to

play a crucial role in the brain in the context of numerous cognitive processes and pathologies,

including perception, binocular rivalry, auditory stream segregation, and epilepsy (Leopold and

Logothetis, 1999; Winkler et al., 2012; Jirsa et al., 2017; Courtiol et al., 2020). There is a growing

body of work surrounding the multistable brain; however, there has been minimal focus on

the interaction between multistable brain states and their effect on plasticity processes within

neural networks. Here we address this open question with a focus on frequency-dependent

plasticity which involves applying a periodic stimulus at a specified frequency to elicit changes

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1017075
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2023.1017075&domain=pdf&date_stamp=2023-02-02
mailto:caroline.lea-carnall@manchester.ac.uk
mailto:marcelo.montemurro@open.ac.uk
https://doi.org/10.3389/fncom.2023.1017075
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1017075/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lea-Carnall et al. 10.3389/fncom.2023.1017075

in connectivity in the brain (Ragert et al., 2008; David et al., 2015;

Lea-Carnall et al., 2017, 2020).

Plasticity is the mechanism by which the nervous system adapts

to external stimuli over multiple spatial and temporal scales. The

phenomenon can manifest in functional or structural changes to

neural networks as we experience the world and underlies cognitive

processes such as learning and memory. In a previous study, we

applied a periodic stimulus at a range of frequencies to a neural

network model based on Wilson-Cowan (WC) oscillators connected

via an activity-dependent learning rule. We showed that there was

a relationship between the frequency of stimulation and network

connectivity and validated the model against human behavioral and

neuroimaging data (Lea-Carnall et al., 2017). However, it is unknown

how the multistable states in the dynamics of neural populations

can affect plasticity in the brain under entrainment by different

stimulation frequencies.

Experimental evidence has shown the existence of both

multistability and metastability in biological neural networks (see

Tognoli and Kelso, 2014 for a review). The distinction between

these is that in a metastable system, the system spontaneously

fluctuates between stable states, whereas amultistable system requires

exogenous input to drive shifting between the states. On a theoretical

level, metastability provides an explanation as to how brain regions

can coordinate over a vast range of spatial and temporal scales

in order to support cortical function (Bressler and Kelso, 2001,

2016; Jirsa and McIntosh, 2007; Deco et al., 2013). The fact

that no energy is required to switch between states protects the

brain from becoming trapped in a stationary state which could

be pathological.

On the other hand, multistability is ubiquitous in biological

systems in general (for example, Crabb et al., 1996; Rietkerk et al.,

2004), and particularly in the brain where it is observed across

multiple spatial scales from single synapses to neural networks (see

Braun and Mattia, 2010). Multistability is hypothesized to underlie

human perception (Ditzinger and Haken, 1989; Lumer et al., 1998;

Haynes et al., 2005; Sterzer et al., 2009) (see also Freyer et al., 2011),

decision making (Deco and Rolls, 2006), behavior (Schöner and

Kelso, 1988), audition (Kondo et al., 2017), and motor dynamics

(Jantzen et al., 2009). The term refers to the existence of attractor

states, which in the brain can be thought of as stable patterns of

activity which persist for some period of time and to which the

system returns to again after perturbation (Kelso, 2012). It is thought

that neural assemblies switch their activity between stable states in

response to specific network tasks providing a mechanism for self-

organization (Kelso, 1995, 2012). In terms of learning and plasticity,

it is currently unknown how a multistable dynamical landscape

affects plasticity processes. Changes in connectivity may allow the

network access to new attractor states or may stabilize or destabilize

existing ones. An understanding of the biophysical implications of

the interaction between these two critical features of neural networks

would have fundamental consequences in allowing us to optimize

stimulation paradigms to maximize plasticity outcomes. Theoretical

work has shown that the WC model, as well as many mathematical

neural models, exhibits multi- and metastability both at rest and in

response to stimulation (Golos et al., 2015; Deco et al., 2017; Zhang

et al., 2022), which makes it an ideal test model to investigate the

effects of multistable plasticity regimes.

Moreover, noise in dynamical systems can have a significant

role in determining the stable-state landscape and in allowing

transitions (switching) between those states. Therefore, our aim

was to characterize synaptic plasticity dynamics in a model of

interacting neural populations as a function of stimulation frequency

and noise intensity. To that purpose, we implemented a WC model

of neural activity that included activity-dependent and homeostatic

plasticity mechanisms.

2. Methods

2.1. Wilson-Cowan units

The mathematical details describing the time-evolution of the

activity for the E and I populations are given in Equations (1–3).

In the equations, the subindex i refers to a reference unit while the

subindex j runs over the rest of the units in the network, and the

parameters without subindices have the same value for all units.

τE
dEi

dt
= −Ei + S

(

WEEEi +WEIIi + E0

+
∑

j6=i

wijEj + f (t)+ zξi(t)− SE,i

)

(1)

τI
dIi

dt
= −Ii + S



WIEEi +WIIIi + I0 +
∑

j6=i

uijEj − SI,i



 (2)

S(x) =
1

1+ e−m(x−n)
(3)

Where E/I denotes the activity of the excitatory/inhibitory

population for each mass, the strength of intra-unit connectivity

is governed by the parameters WEE,WEI ,WIE,WII . The model also

receives zero-mean and unit-variance white-noise input, ξi(t) which

is independent for each unit, and a deterministic input given by f (t)

which is the sinusoidal input applied at the same frequency and phase

to all units. The parameter z sets the standard deviation of the noise

input. In all simulations, WEE = 23,WII = 0,WIE = 35,WEI = 15,

as these have been shown to generate stable oscillatory behavior when

coupled with the background activity levels given below, see Wang

et al. (2014). The sigmoidal function S , is given in Equation (3)

which is increasing in the interval x ∈ (−∞,∞); m controls the

steepness of the curve, and n the offset from 0. These parameters

were fixed as m = 1, n = 4 so as to generate stable oscillations as

in Wang et al. (2014). Background activity levels were controlled by

the parameters E0, I0 for the E and I populations respectively and

fixed as E0 = 0.5, I0 = −5, as in Lea-Carnall et al. (2016). The

homeostatic scaling parameters SE/I , and the weights wij controlling

excitatory connections are described in the next section. A schematic

of the models are given in Figure 1.

The WC unit has an intrinsic resonance frequency, fr , that is

controlled via the excitatory and inhibitory time constants τE and τI
(Wang et al., 2014). The time constants were varied for each condition

to tune the units to a specific internal resonance frequency. The

specific values used were fr = 4 Hz: τE = 0.017 s, τI = 0.013 s, fr = 8

Hz: τE = 0.024 s, τI = 0.014 s, fr = 12 Hz: τE = 0.011 s, τI =

0.007 s, and fr = 23 Hz: τE = 0.014 s, τI = 0.006 s, these were

derived computationally.
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FIGURE 1

Schematic diagrams for the networks used in analysis. (A) The two-unit network used throughout the paper (units i and j refer to units 1 and 2 here, but

indices were kept to relate explicitly to the general model equations): a single unit contains an excitatory (E) and inhibitory (I) population of neurons,

inter-population connectivity strengths are described by the parameters WEE , WIE , WII, and WEI. Inter-unit connection strength is governed by

connectivity parameters contained in the connectivity matrices wjk and ujk . Mathematical details for the model dynamics are given in Equations (1–6). (B)

Ten-unit model: each unit contains an E and I population as in the previous example, the network is fully connected with each gray connection indicating

a bi-directional E and I connection.

2.2. Synaptic dynamics and homeostatic
scaling within the model

Inter-unit connectivity structure and strength are contained in

the quantities wij and uij. In particular, all connections to the

inhibitory populations are set uij = 0.1. For the connections to

the excitatory population, an initial value is set for wij = 0.15

at t = 0. Connections to the excitatory populations are plastic

and evolve according to an activity-dependent learning rule. Two

different model architectures were used. We first implemented a two-

unit model, with unit 1 receiving synapses from unit 2. Finally, a

ten-unit network was implemented where units were connected via

all-to-all coupling and the initial connection strengths were set as

stated above (see Figure 1).

Equation (4) specifies the learning rule which governs the

dynamics of the excitatory connections wij. In order for wij to

increase, the product of the rates Ei and Ej must be greater than a

threshold h, which results in a positive contribution to the rate of

change of wij and the synapse is enhanced. Conversely, if Ei = Ej = 0

or if the product of the fractional firing rates Ei and Ej is less than the

threshold h, then wij will decay toward zero. The nonlinear threshold

is implemented by the Heaviside function 2(x), which is zero for

x ≤ 0 and 1 otherwise. Equations (5, 6) describe the homeostatic

scaling processes developed by Remme and Wadman (2012) which

scale the activity of both populations to maintain their activity within

a desired range. The value for SE/I is calculated for each population

for each unit and is subtracted from the population’s activity at each

point in time, see Remme and Wadman (2012) for details.

τh
dwij

dt
= −wij + γEiEj2

(

EiEj − h
)

(4)

τSE
dSE,i

dt
= Ei − E∞ (5)

τSI
dSI,i

dt
= Ii − I∞ (6)

Where τh = 2.5 s, γ = 1,E∞ = 0.2, I∞ = 0.2, τSE = 1 s,

τSI = 2 s, and h = 0.04, as in Lea-Carnall et al. (2017). The parameter

h was chosen as the square of the mean fractional firing rate for

the excitatory population in response to white noise. Therefore, in

order for the connectivity to increase between two units, at least

50% of the excitatory population of each of the connected units

must be firing; τh and γ were chosen so that the slope of the decay

(when the two units were not coincidentally firing) was equal to

that of the increase, as in Lea-Carnall et al. (2017). The learning

rate, decay rate, and homeostatic processes all act on timescales of

seconds. The first has been shown to be biologically relevant (Zenke

and Gerstner, 2017) requiring the latter parameters to act on the

same scale as a computational necessity to avoid runaway plasticity

(Zenke et al., 2017).

2.3. Model input and integration

Each unit within the network received an independent Gaussian

white-noise input, ξ (t), then scaled by amultiplicative factor, z, which

was varied across conditions.

In the case of the rhythmic input f (t) we generated a sine wave

at the desired frequency with a height of 0.5 and applied a jitter

to the start time within the first 1,000 ms to cancel out any phase

interactions of the input with the model’s endogenous oscillations.

The Euler-Murayama method was used for the integration of

stochastic differential equations with an integration step of 1 ms

(Higham, 2001). For each experiment we ran 100 trials unless

specified otherwise. For each trial we allowed the model to run for

5× 105 time steps in the case of the 2-unit model and 106 time-steps

for the 10-unit model. The results given in Figures 5, 7 relate to a

single trial and so the simulation ran for longer to illustrate the model

behavior. In the first instance, the model ran for 106 time-steps and

the first 3×105 were discarded, while in the second, the model ran for

2× 106 time-steps and 1× 105 were discarded. Transmission delays

were assumed to be instantaneous, although we note that in models
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of STDP, delays within the network have been shown to influence

plasticity outcomes (Madadi Asl et al., 2018a,b).

2.4. Other methods

Initially, each time series was band-pass filtered± 5 Hz around fr ,

Hilbert transformed, and then the instantaneous phase was extracted

for each point in time n over the window of length N.

The complex phase locking value (cPLV) is defined as follows,

cPLV ≡ PLVei8 =
1

N

N
∑

n=1

ei1φ(n) , (7)

Where1φ(n) is the instantaneous phase difference φ1(n)−φ2(n)

at each discrete time point n between the two filtered signals. The

modulus of the cPLV is the real phase locking value (PLV), which is a

measure of phase locking (or synchrony) between two time series. If

the two signals are phase-locked, then PLV will be close to 1 and it is

smaller otherwise, Lachaux et al. (1999). The phase 8 of the cPLV

provides an average phase difference between the unit’s individual

phases, as in Petkoski et al. (2018).

In Figures 5E, F, the simulated time-series data for the two units

was segmented according to whether w̄ was in the “low,” “mid,”

or “high,” regime. This was achieved by applying a cut-off to the

weight parameter of w̄ < 0.01 for “low,” 0.025 < w̄ < 0.0275 for

“mid,” and w̄ > 0.06 for “high” and then and then calculating the

phase difference between the time series as well as the phase of cPLV

pertaining to each state.

The Kuramoto order parameter (Kuramoto, 1984; Daffertshofer

et al., 2018; Petkoski et al., 2018) quantifies the degree of order over a

network of phase oscillators, and is defined as,

ζ (t) ≡ r(t)eψ(t) =
1

K

K
∑

i=1

eφi(t) , (8)

WhereK is the size of the ensemble. The quantity r(t) is ameasure

of the spatial global coherence of the ensemble at each time point,

while ψ(t) is an instantaneous average phase. In Figure 7 we used

the modulus of the Kuramoto order parameter, r(t), as a measure of

instantaneous global coherence.

All simulations were performed in Matlab (The Mathworks Inc.,

MATLAB ver. R2019b).

3. Results

The WC model, a neural mass model, is used to represent each

unit (or mass) within our network (Wilson and Cowan, 1972, 1973).

Each unit can produce a range of behaviors, including oscillations and

evoked responses, depending on the choice of parameters. A “unit”

consists of two interconnected populations; one excitatory (E) and

one inhibitory (I). The output of the WC model is a fractional firing

rate of the E-population and is interpreted as the proportion of cells

within that population that is firing at any point in time. Inter-unit

connectivity structure and strength are contained in the quantities

wij, for excitatory connections and uij, for inhibitory connections

which are fixed connecting unit j to unit i. Inter-unit connections

between excitatory populations are plastic and evolve according to

an activity-dependent learning rule. In the results that follow, we

examine the interaction between the resonance frequency of the

model, the frequency of stimulation, and the level of additive noise

and assess the effect these have on the multistable states of the plastic

excitatory connection strengths.

3.1. E�ect of stimulation frequency on
connection strength

We first consider a model consisting of two WC units, with

w12 and u12 being the only non-zero synapses. Since there is only

one excitatory weight w12, from this point we omit the subscript

and refer to it as w. To characterize the synaptic dynamics of

the model, we first computed the final strength of the excitatory

synapse as a function of the driving (stimulation) frequency (fd)

for different resonant frequencies of the units (fr) and levels of

noise intensity (z), see Methods for details of how these parameters

were computed. The final connection strength (w) between the

units per condition are presented in Figure 2. We observe that for

zero and low levels of noise (left three columns in Figure 2) there

exist multistable states (highlighted in pink; each dot represents a

single trial) that begin approximately when the driving frequency

reaches double the resonance frequency of the system. Then when

the value of the driving frequency is approximately 10 times the

resonance frequency of the system, there is a transition either to

a bi-stable state or a single state that becomes broader for low

fr frequencies. There is a cut-off point for z beyond which there

are no multistable states for any combination of fr and driving

frequency (fd). Within the multistability, there is further structure

evidenced by the appearance of a staircase-like pattern, with sub-

structures that repeat at approximately every first sub-harmonic of

the resonance (fr). The multistability appears for all values of fr
shown, indicating that this behavior could be present in different

regions of the human brain known to exhibit a preferred resonance

frequency (Galambos et al., 1981; Snyder, 1992; Herrmann, 2001).We

also find that the range of fd in which multistability occurs extends

further for systems with higher resonance frequencies (fr). The

resonance frequencies chosen here are 4 (delta), 8 (theta), 12 (alpha),

and 23 (beta) Hz; broadly chosen to represent the natural dominant

frequencies found in the brain. To see the temporal evolution of

w over a range of z demonstrating multistable plasticity, please see

Supplementary Information.

3.2. E�ect of additive noise on connection
strength

In order to explore the effect of synaptic noise on the dynamics

of the synaptic strength, we analyzed the behavior of the connectivity

strength for four fixed combinations of intrinsic resonance (fr) and

driving frequency (fd), for z varied between 0 and 0.02, as shown in

Figure 3. In particular, for each value of the noise intensity, z, and

synaptic strength w, Figure 3 shows the color-coded probability of

the weight for each given value of the noise as P(w|z). It can be seen

that for each of the 4 combinations of fr and fd (chosen so as to
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FIGURE 2

E�ect of noise and driving frequency on connection strength. The e�ect of driving frequency (fd) and noise (z) on the synaptic strength w. We display the

final w (each dot represents a single trial) between 2 units in response to a driving frequency presented between 1 and 100 Hz at a range of noise levels

for networks tuned to have intrinsic resonance values (fr) of 4 Hz (top panel), 8 Hz, (second panel), 12 Hz (third panel) and 23 Hz (bottom panel). It can

be seen that for additive noise values shown here of less than z = 0.01 (left 3 columns), there is a region of the plot that exhibits multistable behavior

(highlighted in pink), which begins at driving frequencies close to the resonance of the network and collapses at approximately ten times this value. For

the lower two panels, the multistability initially collapses to a bi-stability and finally to a single attraction point. For all networks, when noise levels are

raised su�ciently high, the multistability is abolished altogether. Within the multistable regions, there is further structure evidenced by the staircase-style

pattern which repeats at approximately every 0.5 of the resonance.

highlight one of the multistable regions) that the multistable states

exist for low levels of additive noise. In all cases, there is a critical

value of the noise intensity after which there is a transition to a

single broad region of attraction that tends to narrow down for higher

levels of noise. Moreover, within the multistability regions shown in

Figure 3, noise also affects P(w|z) and therefore the intrinsic structure

of the multistable synaptic states, albeit in a subtle manner, as we

detailed below.

There are two key aspects to explore further in relation to

the results in Figure 3. The first regards the overall behavior

of the trial averaged synaptic strength, 〈w〉, which is depicted

in Figure 4 (inset), and shows the overall tendency of noise to

be deleterious in the case of frequency-dependent plasticity. In

particular, for higher values of z, there is a decreasing trend

in synaptic strength. At lower values of z, where the discrete

multistable states are present, the behavior of 〈w〉 has a more

complex structure, which is a consequence of a nontrivial interplay

between the noise and the relative stability of the three possible

equilibrium states.

To characterize the role of noise on the relative probability of

the system choosing a particular synaptic strength state k, with

k = 1, 2, 3 (i.e. “low,” “mid,” and “high” states), we studied the

probability P(wk|z), for a range of values of z and for the same

four fr and fd combinations described previously. We observe

that for all cases, especially those cases with higher fr , which

include Figures 4C, D, when z is less than the critical point where

the multistable states collapse (zc), it is more probable that w

will be that of the “high” state. For z > zc, the three states

collapse into a single state which is close in value to the mid-

state w. The results also show that within the multistability region,

noise affects the balance of the relative probability of each of the

possible states.
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FIGURE 3

E�ect of noise on connection strength with fixed resonance and driving frequency. The e�ect of noise on multistable plasticity in the WC model. P(w|z) is

given as a function of increasing noise for 4 separate networks with fixed resonances and a fixed driving frequency chosen to highlight the multistable

behavior of the connection strengths. Resonance and driving frequency combinations are: top left fr = 4 Hz, fd = 20 Hz; top right fr = 8 Hz, fd = 32 Hz;

lower left fr = 12 Hz, fd = 48 Hz; lower right fr = 23 Hz, fd = 86 Hz.

FIGURE 4

E�ect of noise on the probability of connection strength with fixed resonance and driving frequency. P(w|z) is given for each of the 3 connection strength

states “low,” “mid,” and “high,” main figure, and the mean connection strength over all trials as a function of the noise, z for the fr/fd combinations of (A) fr
= 4 Hz, fd = 20 Hz, (B) fr = 8 Hz, fd = 32 Hz, (C) fr = 12 Hz, fd = 48 Hz, and (D) fr = 23 Hz, fd = 86 Hz. It is apparent that for all cases, lower levels of noise

result in higher mean connection strength and also the highest probability of attaining the high w.
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3.3. Synaptic strength and correlation of
activity across units

In what follows, a generic excitatory synaptic weight wij will be

represented as w to simplify notation. The equation modeling the

plasticity in our two-unit model is:

τh
dw

dt
= −w+ γEiEj2

(

EiEj − h
)

(9)

Let us take a time-average of the above differential equation over

a coarse-grained time interval1 >> τh. Thus, we have:

τh
dw

dt
= −w+ γEiEj2

(

EiEj − h
)

(10)

Where we used the fact that time averaging and differentiation

commute, as shown below. For simplicity, we also assumed that

during the time 1 the product of the activities was above the

threshold. Let’s notice that EiEj2
(

EiEj − h
)

is also a function of time,

so in principle, we cannot solve the equation without solving the

whole model. However, If we also assume that 1 is shorter than

the typical time scales of changes in the correlation between the

activities, we can replace the average EiEj2
(

EiEj − h
)

with a constant

C1 indicating the threshold correlation within the time-window

1. Therefore,

τh
dw

dt
= −w+ γC1 (11)

We can now solve the equation within the time-window 1. The

solution is:

w = w0e
− t
τh + γC1

(

1− e
− t
τh

)

(12)

Where w0 is the value of the synaptic strength at the start of the

interval 1. Since we assumed that 1 ≫ τh we can study the above

solution for times of order1 that satisfy1 > t >> τh. Thus, in that

regime the exponentials are very small and can be neglected, leading

to the final approximation,

w = γC1 (13)

Therefore, we conclude that the coarse-grained average of

the synaptic strength is proportional to the correlation C1, with

proportionality constant equal to γ . This result is consistent with

Hebbian-like synaptic dynamics stating explicitly that synaptic

strength between two units is directly proportional to the correlation

between the activity of such units.

We now show that the time averaging and differentiation

commute. Without any loss of generality, we assume that the time

average can be written as a convolution with an appropriate kernel.

That is,

w =

∫ ∞

−∞

w(s)G(t − s)ds (14)

Then, we take the derivative with respect to t of the expression

above and then integrate by parts, obtaining

dw

dt
=

∫ ∞

−∞

w(s)G′(t − s)ds (15)

=
[

w(s)G(t − s)
]∞

−∞
+

∫ ∞

−∞

dw

ds
G(t − s)ds (16)

=
dw

dt
, (17)

Where the first term in Equation (16) is zero due to the kernel finite

support and we used the prime as a short-hand notation of the time

derivative of the kernel G(t).

3.4. E�ect of connection strength
correlation, synchrony, and phase-space
dynamics

As shown in Section 3.3, within the synaptic dynamics

incorporated in our model a direct proportionality is expected on

average between the correlation of activity between the sub-units’

excitatory populations and synaptic strength. This is supported by

the results shown in Figure 5A. Here we have fixed fr = 12 Hz,

fd = 48 Hz, and z = 0.0015 to investigate a specific example of the

effect of connection strength on synchrony between the units. This

result directly links the multistability in synaptic strengths to overall

multistability in the correlation dynamics between the WC units.

Moreover, the correlation traces shown in Figure 5A clearly show

the presence of the three possible states of the dynamics in temporal

succession, which in turn correspond to the synaptic states as related

by the discussion in Section 3.3. We find that correlation between

the units is temporally associated with the synaptic state in that high

correlation coincides with “high” w, low correlation coincides with

low w, with “mid” w being somewhere in between (see Figure 5A).

Also in panel (a), the PLV between the two units is shown as a

function of time for a realization of the dynamics. The PLV stabilizes

at a value of 1 at each of the stable states, with a value less than 1 only

at the transition between states. This indicates that for all stable states,

units are phase-locked. Below, we show that the modulation in signal

correlation across states is due to state-dependent phase shifts.

To better understand these relationships, in Figure 5B, we plotted

the phase difference between the 2 units,1φ, in gray as well as8, the

phase of the cPLV , in green.

The relationship between the three stable states with both

the correlation and synchrony suggests a nontrivial relationship

in the phase-space dynamics of the excitatory populations. In

Figure 5B we show the relation between the main dynamics variables

characterizing the state of the excitatory populations, E1 and E2,

in the “low” (left), “mid” (middle), and “high” (right), synaptic

strength states respectively marked in blue in Figure 5A. Consistently

with the previous results, Figure 5 when the synaptic strength is

“low” we observe weak correlations between the values of E1 and

E2. In particular, for most of the trajectory either variable remains

almost fixed, while the other changes over a range of values. In

the “mid” synaptic state, the trajectory in the phase space of both

E1 and E2 detaches further from the axes leading to slightly higher

correlations. Finally, on the right, we observe behavior consistent
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FIGURE 5

The e�ect of connection strength on correlation, synchrony, and phase-space dynamics. (A) Shows the time evolution of γC1, where

C1 = E1E22(E1E2 − h) in blue (solid line, left axis), w in blue (dashed line, left axis), and the phase locking value, PLV(t) between the two excitatory

populations in red (right axis). These were all calculated over a sliding window of 10,000 time-steps. The time-averaged synaptic strength w can be seen

to switch between three states (“low,” “mid,” and “high,” three examples highlighted in yellow) and its temporal evolution is closely matched by the

truncated correlation between the time series—see Methods. The PLV is generally close to 1, reducing momentarily at the points where the states

“switch.” (B) The temporal evolution of the phase di�erence (1φ) for the 2 units is given in gray, and the phase of the cPLV(8) in green. (C) E1 plotted

against E2, and the time series for the fractional firing rates E1 and E2 (E1 is blue, E2 is red) for the three w regimes “low” (C), “mid” (D), and “high” (E)

relating to 1,000 ms of model activity highlighted in light blue in (A). (D) The time series for the fractional firing rates E1 (blue) and E2 (red) for the same

sections of the simulation as in (C). We see low synchronization between the units for low w moving to high synchronization for the high w regime.

Finally, the probability density histograms for the phase di�erence between the two units (1φ), and the phase of the cPLV(8), for each of the weight states

“low” (left), “mid” (middle), and “high” (right), calculated across the entire simulation are given in (E, F).
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FIGURE 6

Multi-unit simulation. Results for the 10-unit network are shown. (A) The e�ect of driving frequency and noise on the synaptic strength w for a network

tuned to 12 Hz resonance frequency (fr) with a range of inputs (fd) between 20 and 80 Hz for the noise values z=0 (left), z = 0.0001, z = 0.001, z = 0.1

(right). For additive noise values shown here of z = 0.01, and z = 0.001, there are regions of the plot that show meta/ multistability (highlighted in pink). (B)

The e�ect of noise on multistable plasticity with fr = 12 Hz and fd = 48 Hz, chosen so as to highlight the multistable behavior for a range of additive noise

(z). (C) The mean connection strength over all trials as a function of the noise with fr = 12 Hz and fd = 48 Hz, fixed as above. (D) P(w|z) is given for each

of the 3 connection strength states “low,” “mid,” and “high,” again for the case fr = 12 Hz and fd = 48 Hz as above.

with the high correlation and phase locking values associated with

the higher synaptic state: both E1 and E2 follow a cycle of high

eccentricity aligned close to the diagonal in the E1, E2 plane. In

Figure 5D we show examples of the temporal traces for both units

for each of the corresponding states (related to the portion of the

time series highlighted in blue in Figure 5A). The phase relationships

are consistent with the phase-space trajectories discussed above, with

increasing similarity in the phase from left to right.

In Figure 5E, we give the probability density histograms for the

phase difference between the two units (1φ), and in Figure 5F the

phase of the cPLV (8), for each of the weight states “low” (left), “mid”

(middle), and “high” (right), calculated across the entire simulation.

We observe that when the synaptic strength is in the “low” state, the

phase differences are ±π , indicating that the signals are anti-phase,

as observed in Figure 5D. In the “mid” state, the phase differences

are distributed between ±π/2, and for the “high” state, the phase

differences are centered around zero, indicating synchrony.

3.5. Multi-unit network model

Thus far, we have characterized synaptic multistability in a two-

unit WC system. To explore how the results apply to larger systems

we extended the model to include ten fully-connected units. The

network was tuned to exhibit resonance at 12 Hz. Initially, we tested

the effect of driving frequency on the final connection strength

between each pair of units, Figure 6A for noise values of z = 0 (left),

z = 0.0001, z = 0.001, and z = 0.1 (right) for values of fd between 20

and 80 Hz, chosen to highlight the region of multistable behavior. It

can be seen that as was observed in the two-unit system, in the two

central plots there are regions of multistability (highlighted in pink),

although the behavior of the network is noisier. Next, we fixed fd =

48Hz, as in the 2-unit example described earlier and systematically

tested the effect of additive noise on the connection strength shown

in Figure 6B. We observed a similar pitchfork pattern as in the 2-unit

network, with the main difference that for the 10-unit network the

mid level is split into multiple sub-levels of the connection strength.

In Figure 6C, we show the ensemble average connection strength as a

function of additive noise and recognize the same pattern in the large

network as we saw previously; lower levels of noise facilitate higher

connection strengths. Finally, we give P(w|z) for each of the three

states “low,” “mid,” or “high”—noting that all branches of the “mid”

level are included together—and again conclude that for lower levels

of noise; the probability of reaching the highest weight is maximized

(see Figure 6D).

Finally, we fixed the ten-unit network with parameters fr = 12

Hz, fd = 48 Hz, z = 0.015 and initially plotted the time evolution

of w between unit 1 and the other 9 units (units are connected to

everyone apart from themselves) as a function of time in Figure 7A.

It can be seen that the connectivity strengths organize themselves

into the same three stable states as was observed in the smaller
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FIGURE 7

Multi-unit simulation. The parameters for the 10-unit network were fixed as fr = 12 Hz, fd = 48 Hz, and z = 0.015. The top trace (A) illustrates the

temporal evolution for a selection of w; here we show the connections between unit 1 and the other 9 units (units are connected to everyone apart from

themselves) as a function of time. The connectivity matrices containing the final values for w between the 10 units related to the 1,000 ms of the

simulation starting at each of the dashed lines in (A) is given in the matrices (B, C) within each bubble (left and right). Sets of units connected via “high” w

during the selected time frame are color-coded and indicated on the star diagrams (D, E) for a visual representation of the transient highly-connected

sub-networks. Finally, the global coherence (r(t), top panel) and the time series (lower panel) for each of the 10 units within the selected time-frame color

coded to match the star diagram to illustrate the high coherence of activity within each sub-network are shown in (F, G). The sub-networks switch and

reorganize many times during the simulation and it can be seen that they have been rearranged between these two-time points.

network. Switching between the states occurs spontaneously for all

connections at the same time which is followed by a reorganization

of the connection strengths. To illustrate this point we analyzed the

connectivity matrices and time series for two distinct time points

of the simulation indicated by the two dashed lines in Figure 7A

(see bubbles).

Each self-contained bubble (left and right) relates to a 1,000 ms

time period indicated by the dashed lines. The connectivity matrices

contain the final value for w between all 10 units within the selected

time frame. Sets of units connected via “high” w are color-coded

as indicated on the star diagrams for a visual representation of the

transient nature of the highly-connected sub-networks mimicking

transient functional networks observed in the brain during task

performance or at rest.

The time-series for each of the 10 units within the selected time-

frame are plotted color-coded to match the star diagram to illustrate

the high coherence between units within each sub-network. Traces

from the same sets appear so highly correlated that they completely

overlap. The sub-networks switch and reorganize many times during

the simulation and it can be seen that the connectivity architecture

has been completely rearranged between these two time points. For

instance, during the first period (left bubble), Units 1, 5, 6, and 10

(pink) are connected via “high” strength connections. Their temporal

traces are completely overlapping in the lower trace. In the second

period (right bubble), Unit 1 is now connected to Units 2, and 8 via

a “high” strength connection and the temporal correlation between

Unit 1 and its previous sub-network has been lost. The difference

in the overall level of connectivity in the network between the state

at the left and right bubbles is also reflected the global coherence as

quantified by r(t) in the lower panels.

4. Discussion

Neural ensembles residing within disparate brain regions oscillate

across a wide range of frequencies. To orchestrate complex brain

functions, these sub-networks may transiently connect with each

other across multiple spatial and temporal scales dependent on the
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task at hand (Fries, 2005). Multistability has been proposed as a

potential mechanism underlying this process (Kelso, 2012; Tognoli

and Kelso, 2014; Alderson et al., 2020), and is thought to play

a crucial role in the brain in the context of numerous cognitive

processes, including perception, binocular rivalry, and auditory

stream segregation (Atteneave, 1971; Leopold and Logothetis, 1999;

Winkler et al., 2012; Feudel et al., 2018; Hramov et al., 2018). The

existence of multistable regimes has also been observed in resting-

state data which switches between different transient network states.

In this paper, we tested how different multistable regimes affect

frequency-dependent plasticity, and what the role of noise is in

this process.

Initially, we tested the effects of driving frequency and additive

noise on the connection strength in a two-unit model. We found

that for low levels of additive noise (z < 0.01), and for driving

frequencies within a specific range, a region of multistability existed

where the final connection strength could take one of three values

(referred to as “low,” “mid,” or “high”). We tested this effect on

variations of the tuning of the model to exhibit resonance at 4, 8,

12, and 23 Hz, loosely corresponding to the delta, theta, alpha, and

beta oscillatory regimes in the brain. The regions of multistability

span a range of driving frequencies between approximately twice

the resonance frequency of the system and ten times this amount

(Figure 2). When the level of noise passed a certain threshold, the

multistability was abolished. The greatest connection strengths were

found to be at driving frequencies close to the resonance frequency

of the system [confirming the results previously found in Lea-Carnall

et al. (2017) in the case when both units received periodic stimulation

as was the case here] which is increasingly apparent at higher levels of

additive noise.

We next explored in more detail the effect of adding noise

to models with a specific combination of resonance and driving

frequencies chosen to highlight the multistable regions (Figure 3).

The resonance frequencies were fixed as before and the driving

frequency was chosen to be a multiple of this by either 4 or 5 times

to focus on a multistable region of the space. We varied the additive

noise between z = 0 and z = 0.02 and found that for low noise, z <

0.003, there was a clear multistable region for which the connection

strength took one of the three values described previously. As the

additive noise approached a critical value (approximately z = 0.005),

the regions of multistability become less well-defined until finally,

the multistable states collapse, leading to a final value of the ECS

within a range of values centered around the “mid” strength for

the weight.

There has been significant computational work recently aiming

to elucidate how multistable brain-states aid cognition. For example,

Golos et al. used a whole-brain model to determine that the

presence of multistable attractors in the model determined its ability

to generate transient patterns of activity which were related to

resting state MRI dynamics (Golos et al., 2015). Computational

modeling studies have also found that neural systems operating

close to criticality maximize their processing potential (see Cocchi

et al., 2017 for a review). Orio et al. showed that a conductance-

based model with chaotic dynamics exhibited multistable dynamics

within a specific range of connectivity strengths (Orio et al.,

2018). Furthermore, the authors showed, in agreement with our

results, that in networks of non-chaotic nodes, low levels of noise-

induced multistable behavior while higher noise levels abolished the

multistable regime. Litwin-Kumar and Doiron used a network model

which included synaptic plasticity and homeostasis, and were able

to replicate the stable and transient formation of neural assemblies

that reflected previously experienced stimuli (Litwin-Kumar and

Doiron, 2014). Finally, Pisarchik et al. found the co-existence of three

different oscillatory states in a network of 2 interconnected units

which were related to the value of the (fixed) coupling strengths

(Pisarchik et al., 2018). In a recent study focused on multistability

in a neural network with STPD, Madadi Asl et al. (2018a) found that

the initial distribution of the synaptic weights gave rise to different

connectivity patterns. We did not find any difference in the outcome

when the initial values for the weights were varied (results not

shown). However, one important difference from our study is that

Madadi Asl et al. included axonal propagation delays which were

omitted from the current model. Furthermore, when the length of

axonal pathways cannot be neglected, propagation delays can have

an important role on neural coherence, as has been explored int the

context of whole-brain dynamics (Ton et al., 2014; Petkoski and Jirsa,

2019). Additionally, synaptic delays together with synaptic scaling

have been shown to modulate synchrony in the aging brain, where

alpha-band phase locking is maintained over the lifespan presenting

an age-related shift in peak alpha frequency (Pathak et al., 2022).

This is an area for further study in which synaptic dynamics are

incorporated into larger networks.

A major aim of this work was to provide predictions that

could be tested in plasticity experiments. In particular, a direct

interpretation of our results indicate that it may be possible

to optimize synaptic strength from the interplay between noise

and driving frequency. With this in mind, we calculated the

mean connection strength between the units as a function of

noise for the same four combinations of resonance and driving

frequency described previously and we found that for low values

of noise (z < 0.005), the mean connection strength across

all trials was maximized. We also found that the probability

of the connection strength obtaining the “high” value was

maximized for a non-zero, low-level intensity of the additive noise

(see Figure 4).

To characterize the dynamics of the model for the different

stable states of the connection strength, we compared the scaled

truncated correlation γC1 (see Methods), to the coarse-grained

connection strength, w. We found that the connection strength

regularly switched between the three states (“low,” “mid,” and “high”)

and that the temporal evolution of w closely matched the truncated

correlation, indicating that the latter provided an excellent estimation

of connection strength. We also reported the PLV , a measure of

coherence between the phases of two signals and note that this is

generally close to 1, indicating phase locking of the signals, apart from

at the points where “switching” occurs where the PLV is momentarily

reduced. Therefore, the three stable states, “high,” “mid,” and “low”

corresponded to a decreasing level of phase coherence between the

two units. This is further evidenced in the phase-space trajectories

of the excitatory activity of one unit against the other within each

of the three regimes. We found that when the weight is in the “low”

state, the activity of the two units is anti-correlated (see Figure 5C).

Whereas, when the connection strength is “high” the behavior of E1
vs. E2 shows a high degree of correlation (see Figure 5D).

Finally, it is important to understand whether the behavior

described so far for a small two-unit model extends to larger

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2023.1017075
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lea-Carnall et al. 10.3389/fncom.2023.1017075

networks. For this, we implemented an all-all connected ten-unit

network with fixed resonance of 12 Hz. We first repeated the

investigation into the effect of driving frequency on connection

strengths between the units and found that multistable regions of

the connection strength did exist for specific ranges of driving

frequency and additive noise, as was the case for the two-unit

model (see Figure 7). Next, we fixed the driving frequency to 48

Hz (as in the smaller network) and tested the effects of increasing

additive noise on the model output. We found that the same

multistability emerged as for the smaller network, but in this case,

instead of the original 3 branches to the pitchfork for z < 0.005,

the “mid” branch splits into further sub-levels. Interestingly, in the

larger network, we also found that the lowest intensities of the

additive noise resulted in the largest mean connection strength.

Additionally, the probability of obtaining the “high” connection

strength was maximized for low levels of noise, as in the smaller

two-unit network. We also observed the same switching between

states in the large network as the simulation evolved through

time. The connection strengths reorganized themselves multiple

times allowing smaller highly connected subnetworks to form

transiently, providing a mechanism of functional connectivity in

the model.

The findings presented here suggest that plasticity outcomes can

be enhanced by specific levels of additive noise as a consequence

of an interaction between noise and multistability. This prediction

could be tested in multiple ways experimentally; the effect of extrinsic

noise on plasticity and learning could be tested by controlling the

intensity of noise added to a stimulus designed to elicit plasticity

in a targeted brain region. As an example of this, Xie et al. (2018)

added moderate levels of noise to a visual stimulus presented at

a range of frequencies and found that synaptic potentiation was

increased for some stimulation frequencies with the addition of noise

compared to the same stimulus without noise. In the somatosensory

system, a similar protocol to that followed by Lea-Carnall et al.

(2017) could be implemented in which mechanical noise is added

to the stimulus. Probing different sensory areas would provide

a framework to understand how plasticity can be modulated by

the interplay between stimulus and resonant frequencies under

different levels of noise intensity. We suggest that, given the growing

body of evidence indicating that noise plays a non-trivial role in

biasing multi-state synapses, noise should be accounted for in future

plasticity studies.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

CL-C and MM: conceptualization, data curation, formal analysis,

investigation, methodology, visualization, writing—original draft,

and writing—review and editing. LT: investigation, methodology,

writing—original draft, and writing—review and editing. All authors

contributed to the article and approved the submitted version.

Funding

CL-C was funded by the Medical Research Council (MRC) Grant

MR/PO14445/1.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fncom.2023.

1017075/full#supplementary-material

References

Alderson, T., Bokde, A., Kelso, J., Maguire, L., and Coyle, D. (2020). Metastable neural
dynamics underlies cognitive performance across multiple behavioural paradigms. Hum.
Brain Mapp. 41, 3212–3234. doi: 10.1002/hbm.25009

Atteneave, F. (1971). Multistability in perception. Sci. Am. 225, 62–71.
doi: 10.1038/scientificamerican1271-62

Braun, J., and Mattia, M. (2010). Attractors and noise: twin drivers of decisions and
multistability. Neuroimage 52, 740–751. doi: 10.1016/j.neuroimage.2009.12.126

Bressler, S., and Kelso, J. (2001). Cortical coordination dynamics and cognition. Trends
Cogn. Sci. 5, 26–36. doi: 10.1016/S1364-6613(00)01564-3

Bressler, S., and Kelso, J. (2016). Coordination dynamics in cognitive neuroscience.
Front. Neurosci. 10, 397. doi: 10.3389/fnins.2016.00397

Cocchi, L., Gollo, L., Zalesky, A., and Breakspear, M. (2017). Criticality in the
brain: a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158, 132–152.
doi: 10.1016/j.pneurobio.2017.07.002

Courtiol, J., Guye, M., Bartolomei, F., Petkoski, S., and Jirsa, V. K. (2020). Dynamical
mechanisms of interictal resting-state functional connectivity in epilepsy. J. Neurosci. 40,
5572–5588. doi: 10.1523/JNEUROSCI.0905-19.2020

Crabb, R., Mackey, M., and Rey, A. (1996). Propagating fronts, chaos and multistability
in a cell replication model. Chaos 6, 477–492. doi: 10.1063/1.166195

Daffertshofer, A., Ton, R., Pietras, B., Kringelbach, M. L., and Deco, G. (2018). Scale-
freeness or partial synchronization in neural mass phase oscillator networks: Pick one of
two? Neuroimage 180, 428–441. doi: 10.1016/j.neuroimage.2018.03.070

David, M., Dinse, H., Mainka, T., Tegenthoff,M., andMaier, C. (2015). High-frequency
repetitive sensory stimulation as intervention to improve sensory loss in patients with
complex regional pain syndrome I. Front. Neurol. 6, 242. doi: 10.3389/fneur.2015.00242

Deco, G., Jirsa, V., and McIntosh, A. (2013). Resting brains never rest:
computational insights into potential cognitive architectures. Trends Neurosci. 36,
268–274. doi: 10.1016/j.tins.2013.03.001

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2023.1017075
https://www.frontiersin.org/articles/10.3389/fncom.2023.1017075/full#supplementary-material
https://doi.org/10.1002/hbm.25009
https://doi.org/10.1038/scientificamerican1271-62
https://doi.org/10.1016/j.neuroimage.2009.12.126
https://doi.org/10.1016/S1364-6613(00)01564-3
https://doi.org/10.3389/fnins.2016.00397
https://doi.org/10.1016/j.pneurobio.2017.07.002
https://doi.org/10.1523/JNEUROSCI.0905-19.2020
https://doi.org/10.1063/1.166195
https://doi.org/10.1016/j.neuroimage.2018.03.070
https://doi.org/10.3389/fneur.2015.00242
https://doi.org/10.1016/j.tins.2013.03.001
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lea-Carnall et al. 10.3389/fncom.2023.1017075

Deco, G., Kringelbach, M., Jirsa, V., and Ritter, P. (2017). The dynamics of resting
fluctuations in the brain: metastability and its dynamical cortical core. Sci. Rep. 7, 3095.
doi: 10.1038/s41598-017-03073-5

Deco, G., and Rolls, E. (2006). Decision-making and weber’s law: a neurophysiological
model. Eur. J. Neurosci. 24, 901–916. doi: 10.1111/j.1460-9568.2006.04940.x

Ditzinger, T., and Haken, H. (1989). Oscillations in the perception of
ambiguous patterns: a model based on synergetics. Biol. Cybern. 61, 279–287.
doi: 10.1007/BF00203175

Feudel, U., Pisarchik, A., and Showalter, K. (2018). Multistability and tipping: from
mathematics and physics to climate and brain–minireview and preface to the focus issue.
Chaos 28, 033501. doi: 10.1063/1.5027718

Freyer, F., Roberts, J., Becker, R., Robinson, P., Ritter, P., and Breakspear, M. (2011).
Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci.
31, 6355–6361. doi: 10.1523/JNEUROSCI.6693-10.2011

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication
through neuronal coherence. Trends Cogn. Sci. 9, 474–480. doi: 10.1016/j.tics.2005.08.011

Galambos, R., Makeig, S., and Talmachoff, P. (1981). A 40-hz auditory potential
recorded from the human scalp. Proc. Natl. Acad. Sci. U.S.A. 108, 2643–2647.
doi: 10.1073/pnas.78.4.2643

Golos, M., Jirsa, V., and Dauc,é, E. (2015). Multistability in large scale models of brain
activity. PLoS Comput. Biol. 11, e1004644. doi: 10.1371/journal.pcbi.1004644

Haynes, J., Deichmann, R., and Rees, G. (2005). Eye-specific effects of binocular rivalry
in the human lateral geniculate nucleus. Nature 438, 496–499. doi: 10.1038/nature04169

Herrmann, C. (2001). Human EEG responses to 1-100 hz flicker: resonance
phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp.
Brain Res. 137, 346–353. doi: 10.1007/s002210100682

Higham, D. (2001). An algorithmic introduction to numerical simulation of stochastic
differential equations. SIAM Rev. 43, 525–546. doi: 10.1137/S0036144500378302

Hramov, A., Frolov, N., Maksimenko, V., Makarov, V., Koronovskii, A., Garcia-Pietro,
J., et al. (2018). Artificial neural network detects human uncertainty. Chaos 28, 033607.
doi: 10.1063/1.5002892

Jantzen, K., Steinberg, F., and Kelso, J. (2009). Coordination dynamics of large-scale
neural circuitry underlying sensorimotor behavior. J. Cogn. Neurosci. 21, 2420–2433.
doi: 10.1162/jocn.2008.21182

Jirsa, V., and McIntosh, A. (2007).Handbook of Brain Connectivity. Berlin; Heidelberg:
Springer.

Jirsa, V. K., Proix, T., Perdikis, D., Woodman, M. M., Wang, H., Gonzalez-Martinez, J.,
et al. (2017). The virtual epileptic patient: individualized whole-brain models of epilepsy
spread. Neuroimage 145, 377–388. doi: 10.1016/j.neuroimage.2016.04.049

Kelso, J. (1995). Dynamic Patterns: The Self-Organization of Brain and Behavior.
Cambridge, MA: MIT Press.

Kelso, J. (2012). Multistability and metastability: understanding dynamic
coordination in the brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 906–918.
doi: 10.1098/rstb.2011.0351

Kondo, H., Farkasv, D., Denham, S., Asai, T., and Winkler, I. (2017). Auditory
multistability and neurotransmitter concentrations in the human brain. Philos. Trans. R.
Soc. B 372, B37220160110. doi: 10.1098/rstb.2016.0110

Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence. Berlin;
Heidelberg: Springer-Verlag.

Lachaux, J., Rodriguez, E., Martinerie, E., and Varela, F. (1999).
Measuring phase synchrony in brain signals. Hum. Brain Mapp. 4, 194–208.
doi: 10.1002/(SICI)1097-0193(1999)8:4andlt;194::AID-HBM4andgt;3.0.CO;2-C

Lea-Carnall, C., Montemurro, M., Trujillo-Barreto, N., Parkes, L., and El-Deredy, W.
(2016). Cortical resonance frequencies emerge from network size and connectivity. PLoS
Comput. Biol. 12, e1004740. doi: 10.1371/journal.pcbi.1004740

Lea-Carnall, C., Trujillo-Barreto, N., Montemurro, M., El-Deredy, W., and Parkes, L.
(2017). Evidence for frequency-dependent cortical plasticity in the human brain. Proc.
Natl. Acad. Sci. U.S.A. 114, 8871–8876. doi: 10.1073/pnas.1620988114

Lea-Carnall, C., Williams, S., Sanaei-Nezhad, F., Trujillo-Barreto, N., Montemurro, M.,
El-Deredy, W., et al. (2020). GABAmodulates frequency-dependent plasticity in humans.
iScience 23, 101657. doi: 10.1016/j.isci.2020.101657

Leopold, D., and Logothetis, N. (1999). Multistable phenomena: changing views in
perception. Trends Cognit. Sci. 3, 254–264. doi: 10.1016/S1364-6613(99)01332-7

Litwin-Kumar, A., and Doiron, B. (2014). Formation and maintenance of neuronal
assemblies through synaptic plasticity. Nat. Commun. 5, 5319. doi: 10.1038/ncomms6319

Lumer, E., Friston, K., and Rees, G. (1998). Neural correlates of perceptual rivalry in
the human brain. Science 280, 1930–1934. doi: 10.1126/science.280.5371.1930

Madadi Asl, M., Valizadeh, A., and Tass, P. (2018a). Delay-induced multistability and
loop formation in neuronal networks with spike-timing-dependent plasticity. Sci. Rep. 8,
12068. doi: 10.1038/s41598-018-30565-9

Madadi Asl, M., Valizadeh, A., and Tass, P. (2018b). Propagation delays determine
neuronal activity and synaptic connectivity patterns emerging in plastic neuronal
networks. Chaos 10, 106308. doi: 10.1063/1.5037309

Orio, P., Gatica, M., Herzog, R., Maidana, J., Castro, S., and Xu, K. (2018).
Chaos versus noise as drivers of multistability in neural networks. Chaos 28, 106321.
doi: 10.1063/1.5043447

Pathak, A., Sharma, V., Roy, D., and Banerjee, A. (2022). Biophysical mechanism
underlying compensatory preservation of neural synchrony over the adult lifespan.
Commun. Biol. 5, 567. doi: 10.1038/s42003-022-03489-4

Petkoski, S., and Jirsa, V. K. (2019). Transmission time delays organize
the brain network synchronization. Philos. Trans. R. Soc. A 377, 20180132.
doi: 10.1098/rsta.2018.0132

Petkoski, S., Palva, J., and Jirsa, V. (2018). Phase-lags in large scale brain
synchronization: Methodological considerations and in-silico analysis. PLoS Comput.
Biol. 14, e1006160. doi: 10.1371/journal.pcbi.1006160

Pisarchik, A., Jaimes-Reátegui, R., and García-Vellisca, M. (2018). Asymmetry in
electrical coupling between neurons alters multistable firing behavior. Chaos 28, 033605.
doi: 10.1063/1.5003091

Ragert, R., Kalisch, T., Bliem, B., Franzkowiak, S., and Dinse, H. (2008). Differential
effects of tactile high- and low-frequency stimulation on tactile discrimination in human
subjects. BMC Neurosci. 9, 9. doi: 10.1186/1471-2202-9-9

Remme, M., and Wadman, W. (2012). Homeostatic scaling of excitability in recurrent
neural networks. PLoS Comput. Biol. 8, e1002494. doi: 10.1371/journal.pcbi.1002494

Rietkerk, M., Dekker, S., de Ruiter, P., and Koppel, J. (2004). Self-organized
patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929.
doi: 10.1126/science.1101867

Schöner, G., and Kelso, J. (1988). Dynamic pattern generation in behavioral and neural
systems. Science 239, 1513–1520. doi: 10.1126/science.3281253

Snyder, A. (1992). Steady-state vibration evoked potentials: description of technique
and characterization of responses. Electroencephalogr. Clin. Neurophysiol. 84, 257–268.
doi: 10.1016/0168-5597(92)90007-X

Sterzer, P., Kleinschmidt, A., and Rees, G. (2009). The neural bases of multistable
perception. Trends Cogn. Sci. 13, 310–318. doi: 10.1016/j.tics.2009.04.006

Tognoli, E., and Kelso, J. (2014). The metastable brain. Neuron 81, 35–48.
doi: 10.1016/j.neuron.2013.12.022

Ton, R., Deco, G., and Daffertshofer, A. (2014). Structure-function discrepancy:
inhomogeneity and delays in synchronized neural networks. PLoS Comput. Biol. 10,
e1003736. doi: 10.1371/journal.pcbi.1003736

Wang, Y., Goodfellow, M., Taylor, P., and Baier, G. (2014). Dynamic
mechanisms of neocortical focal seizure onset. PLoS Comput. Biol. 10, e1003787.
doi: 10.1371/journal.pcbi.1003787

Wilson, H., and Cowan, J. (1972). Excitatory and inhibitory interactions in localized
populations of model neurons. Biophys. J. 12, 1–24. doi: 10.1016/S0006-3495(72)86068-5

Wilson, H., and Cowan, J. (1973). A mathematical theory of the functional dynamics
of cortical and thalamic nervous tissue. Kybernetik 13, 55–80. doi: 10.1007/BF00288786

Winkler, I., Denham, S., Mill, R., Bõhm, T., and Bendixen, A. (2012). Multistability in
auditory stream segregation: a predictive coding view. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 367, 1001–1012. doi: 10.1098/rstb.2011.0359

Xie, J., Xu, G., Zhao, X., Li, M., Wang, J., Han, C., et al. (2018). Enhanced
plasticity of human evoked potentials by visual noise during the intervention of
steady-state stimulation based brain-computer interface. Front. Neurobotics. 12, 82.
doi: 10.3389/fnbot.2018.00082

Zenke, F., andGerstner,W. (2017). Hebbian plasticity requires compensatory processes
on multiple timescales. Trans R. Soc. B 372, 259. doi: 10.1098/rstb.2016.0259

Zenke, F., Gerstner, W., and Ganguli, S. (2017). The temporal paradox of
hebbian learning and homeostatic plasticity. Curr. Opin. Neurobiol. 43, 166–176.
doi: 10.1016/j.conb.2017.03.015

Zhang, M., Sun, Y., and Saggar, M. (2022). Cross-attractor repertoire provides new
perspective on structure-function relationship in the brain. Neuroimage 259, 119401.
doi: 10.1016/j.neuroimage.2022.119401

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2023.1017075
https://doi.org/10.1038/s41598-017-03073-5
https://doi.org/10.1111/j.1460-9568.2006.04940.x
https://doi.org/10.1007/BF00203175
https://doi.org/10.1063/1.5027718
https://doi.org/10.1523/JNEUROSCI.6693-10.2011
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1073/pnas.78.4.2643
https://doi.org/10.1371/journal.pcbi.1004644
https://doi.org/10.1038/nature04169
https://doi.org/10.1007/s002210100682
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1063/1.5002892
https://doi.org/10.1162/jocn.2008.21182
https://doi.org/10.1016/j.neuroimage.2016.04.049
https://doi.org/10.1098/rstb.2011.0351
https://doi.org/10.1098/rstb.2016.0110
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4andlt;194::AID-HBM4andgt;3.0.CO;2-C
https://doi.org/10.1371/journal.pcbi.1004740
https://doi.org/10.1073/pnas.1620988114
https://doi.org/10.1016/j.isci.2020.101657
https://doi.org/10.1016/S1364-6613(99)01332-7
https://doi.org/10.1038/ncomms6319
https://doi.org/10.1126/science.280.5371.1930
https://doi.org/10.1038/s41598-018-30565-9
https://doi.org/10.1063/1.5037309
https://doi.org/10.1063/1.5043447
https://doi.org/10.1038/s42003-022-03489-4
https://doi.org/10.1098/rsta.2018.0132
https://doi.org/10.1371/journal.pcbi.1006160
https://doi.org/10.1063/1.5003091
https://doi.org/10.1186/1471-2202-9-9
https://doi.org/10.1371/journal.pcbi.1002494
https://doi.org/10.1126/science.1101867
https://doi.org/10.1126/science.3281253
https://doi.org/10.1016/0168-5597(92)90007-X
https://doi.org/10.1016/j.tics.2009.04.006
https://doi.org/10.1016/j.neuron.2013.12.022
https://doi.org/10.1371/journal.pcbi.1003736
https://doi.org/10.1371/journal.pcbi.1003787
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1007/BF00288786
https://doi.org/10.1098/rstb.2011.0359
https://doi.org/10.3389/fnbot.2018.00082
https://doi.org/10.1098/rstb.2016.0259
https://doi.org/10.1016/j.conb.2017.03.015
https://doi.org/10.1016/j.neuroimage.2022.119401
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	Noise-modulated multistable synapses in a Wilson-Cowan-based model of plasticity
	1. Introduction
	2. Methods
	2.1. Wilson-Cowan units
	2.2. Synaptic dynamics and homeostatic scaling within the model
	2.3. Model input and integration
	2.4. Other methods

	3. Results
	3.1. Effect of stimulation frequency on connection strength
	3.2. Effect of additive noise on connection strength
	3.3. Synaptic strength and correlation of activity across units
	3.4. Effect of connection strength correlation, synchrony, and phase-space dynamics
	3.5. Multi-unit network model

	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


