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Recent experimental observations have shown that the reactivation of hippocampal

place cells (PC) during sleep or wakeful immobility depicts trajectories that can go

around barriers and can flexibly adapt to a changing maze layout. However, existing

computational models of replay fall short of generating such layout-conforming

replay, restricting their usage to simple environments, like linear tracks or open fields.

In this paper, we propose a computational model that generates layout-conforming

replay and explains how such replay drives the learning of flexible navigation in a

maze. First, we propose a Hebbian-like rule to learn the inter-PC synaptic strength

during exploration. Then we use a continuous attractor network (CAN) with feedback

inhibition to model the interaction among place cells and hippocampal interneurons.

The activity bump of place cells drifts along paths in the maze, which models layout-

conforming replay. During replay in sleep, the synaptic strengths from place cells to

striatal medium spiny neurons (MSN) are learned by a novel dopamine-modulated

three-factor rule to store place-reward associations. During goal-directed navigation,

the CAN periodically generates replay trajectories from the animal’s location for

path planning, and the trajectory leading to a maximal MSN activity is followed by

the animal. We have implemented our model into a high-fidelity virtual rat in the

MuJoCo physics simulator. Extensive experiments have demonstrated that its superior

flexibility during navigation in a maze is due to a continuous re-learning of inter-PC

and PC-MSN synaptic strength.

KEYWORDS

flexible navigation, place cells, hippocampal replay, medium spiny neurons, three-factor

learning, path planning

1. Introduction

It has been observed that, during sleep or wakeful immobility, hippocampal place cells (PC)

spontaneously and sequentially fire, similar to the pattern of activity during movement periods

(Lee and Wilson, 2002; Foster and Wilson, 2006; Pfeiffer and Foster, 2013; Stella et al., 2019).

Conventionally, studies of such hippocampal replay were restricted to animals moving in simple

environments like linear tracks or open fields. Recently, an interesting study (Widloski and

Foster, 2022) observed that, for a rat moving in a reconfigurable maze, the replay trajectories

conform to the spatial layout and can flexibly adapt to a new layout. Such layout-conforming

replay is the key to understanding how the activity of place cells supports the learning of flexible

navigation in a maze, a long-standing open question in computational neuroscience.

Existing models (Hopfield, 2009; Itskov et al., 2011; Azizi et al., 2013; Romani and Tsodyks,

2015) of hippocampal replay use a continuous attractor network (CAN) with spike-frequency

adaptation or short-term synaptic depression (Romani and Tsodyks, 2015) to generate replay of

place cells. In these models, the synaptic strength between a pair of place cells is pre-configured

by a decaying function of the Euclidean distance between their place field centers. In a maze,
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such Euclidean synaptic strength introduces a strong synaptic

coupling between a pair of place cells with firing field centers

located at two sides of a thin wall. Accordingly, the activity bump

of place cells will pass through the wall without conforming to the

layout. Besides, these models lack the modeling of how the replay

activity drives downstream circuits, such as striatum, to perform

high-level functional roles, such as reward-based learning, planning

and navigation. Although reinforcement learning (RL) algorithms

(Sutton and Barto, 1998) can serve as candidate models of these

functional roles (Brown and Sharp, 1995; Foster et al., 2000; Johnson

and Redish, 2005; Gustafson and Daw, 2011; Russek et al., 2017),

these algorithms are designed to solve much more general and

abstract control problems in engineering domains, falling short of

biological plausibility.

In this paper, we propose a computational model for generating

layout-conforming replay and explaining how such replay supports

the learning of flexible navigation in a maze. First, we model the

firing field of a place cell by a function decaying with the shortest

path distance from its field center, which conforms to experimental

observations (Skaggs and McNaughton, 1998; Gustafson and Daw,

2011; Widloski and Foster, 2022). Then we propose a Hebbian-

like rule to learn the inter-PC synaptic strength during exploration.

We find that the synaptic strength between a pair of place

cells encodes the spatial correlation of their place fields and

decays with the shortest path distance between their field centers.

With learned inter-PC synaptic strength, the interactions among

place cells are modeled by a continuous attractor network with

feedback inhibition from hippocampal GABAergic interneurons

(Schlingloff et al., 2014; Stark et al., 2014). The drift of the activity

bump of place cells under vanishing or non-zero visual inputs

models layout-conforming replay during rest and goal-directed

navigation, respectively.

During replay in rest, the synaptic strength from place cells to

medium spiny neurons (MSN) in striatum is learned by a novel

three-factor learning rule based on a replacing trace rule (Singh and

Sutton, 1996; Seijen and Sutton, 2014), rather than the conventional

accumulating trace rule (Izhikevich, 2007; Gerstner et al., 2018;

Sutton and Barto, 2018). This learning rule strengthens a PC-MSN

synapse proportional to the co-firing trace of this pair of PC andMSN

multiplied by the dopamine release at the synapse (Yagishita et al.,

2014; Kasai et al., 2021). After replay, the PC-MSN synaptic strength

encodes the geodesic proximity between the firing field center of

each place cell and the goal location. As a result, the activity of

the MSN population will ramp up when an animal approaches the

goal location, which conforms to a line of experimental observations

(van derMeer and Redish, 2011; Howe et al., 2013; Atallah et al., 2014;

London et al., 2018; Sjulson et al., 2018; O’Neal et al., 2022). During

goal-directed navigation, the attractor network periodically generates

a series of replay trajectories from the rat’s location to lookahead

along each explorable path (Johnson and Redish, 2007; Pfeiffer and

Foster, 2013), and the trajectory leading to a maximal MSN activity is

followed by the rat with a maximal probability.

We have implemented our model into a high-fidelity virtual

rat that reproduces the average anatomical features of seven Long-

Evans rats in the MuJoCo physics simulator (Todorov et al., 2012;

Merel et al., 2020). Extensive experiments have demonstrated that

the virtual rat shows behavioral flexibility during navigation in a

dynamically changing maze. We have observed that, after the layout

changes, the inter-PC synaptic strength is updated to re-encode the

adjacency relation between locations in the new layout. As a result,

the replay trajectories adapt to the new layout so that after replay

the MSN activity ramps up along new paths to the goal location.

Periodical planning with respect to the updatedMSN activity explains

the navigational flexibility of the virtual rat.

2. Model

2.1. Learning inter-PC synaptic strength

For a population of M place cells, the firing rate of the i-th

place cell is denoted by ri. Each place cell has a preferential location,

denoted by x(i), where its firing rate is maximal among all locations.

The preferential location of each place cell is uniformly arranged on

a regular grid of a square maze without considering grid points that

fall into areas under walls. Let Jij denote the strength of the synapse

from cell j to cell i. Before learning Jij, the firing rate of each place cell

is modeled by a function of the rat’s location x given by,

ri(x) = exp(−D(x(i), x)/σ ), ∀i, (1)

Where σ is a scale parameter and D(x(i), x) is the shortest path

distance between x(i) and x. The firing field in Equation (1) is a

geodesic place field (Gustafson and Daw, 2011), which conforms

to the constraints imposed by walls and is a more accurate model

of firing fields observed in a maze (Skaggs and McNaughton, 1998;

Gustafson and Daw, 2011; Widloski and Foster, 2022) compared to

Gaussian place fields observed in open fields (O’Keefe and Burgess,

1996; Foster et al., 2000).

For a rat randomly exploring a maze with many walls, a pair

of place cells with a small shortest path distance between their

preferential locations often fire in close temporal order. According

to symmetric spike-timing dependent plasticity (STDP) (Isaac et al.,

2009; Mishra et al., 2016), the pair of recurrent synapses between

this pair of place cells becomes stronger than pairs of place cells

with larger shortest path distance between their preferential locations.

Accordingly, for a sequence of positionsX = {x0, x1, ..., xN} visited by

a virtual rat during random exploration, the synaptic strength matrix

is symmetrically updated by the following Hebbian-like rule,

J(n+1) = J(n) + α1(r(xn)
Tr(xn)− J(n)), (2)

Where r(xt) = {ri(xt), i = 1, ...,M} is the row vector of place cell

firing rates at position xt , α1 is the learning rate, n is the number of

locomotion period during exploration trials, and J(0) is initialized as

a zero matrix. The conventional Hebbian learning rule (Muller et al.,

1996; Haykin, 1998; Stringer et al., 2002) increases inter-PC synaptic

strength proportional to the product of firing rates of a pair of place

cells hence inter-PC synaptic strength increases without bound and

fails to converge. The proposed Hebbian-like rule is free from such

convergence issues.

The learning rule in Equation (2) is a stochastic approximation

process (Nevelson and Hasminskii, 1976) that solves the following

equation as n → ∞,

J∗ij = E[ri(x)rj(x)], ∀i, j, (3)

Where the expectation is taken over possible locations during

exploration. As shown by Equation (3), the synaptic strength between

a pair of place cells encodes the correlation of their firing fields, which

characterizes the geodesic proximity of their field centers.

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2023.1053097
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gao 10.3389/fncom.2023.1053097

2.2. Hippocampal replay by a continuous
attractor network

After learning the synaptic strength matrix, the activity of place

cells can change independently with respect to the rat’s current

location x, due to synaptic interactions among place cells. Thus, ri
is also a function of time, denoted by ri(x, t). Since x is fixed during

replay, ri(x, t) is written as ri(t) for simplicity. ri(t) obeys following

differential equations,



















τr ṙi = −ri +

[

∑

j6=i

Jijrj + Ei − Ii − h0

]+

,

τI İi = −Ii + cIri,

(4)

Where τr and τI are time constants, h0 is a threshold, Ei is

the external input to cell i, Ii is the feedback inhibition due to the

reciprocal connection between cell i and hippocampal GABAergic

interneurons (Pelkey et al., 2017), cI is the strength of feedback

inhibition, and [x]+ = max{x, 0} is the neural transfer function

given by a threshold-linear function. The feedback inhibition in

Equation (4) is supported by observations that hippocampal sharp

wave ripples (SWRs) containing replay events are generated by

feedback inhibition from parvalbumin-containing (PV+) basket

neurons (Schlingloff et al., 2014; Stark et al., 2014; Buzsaki,

2015).

In Equation (4), the external input Ei characterizes the association

of place cell i with visual cues at the rat’s location. Ei is typically a

decaying function of the distance between the rat’s location and the

firing field center of place cell i (Stringer et al., 2002, 2004; Hopfield,

2009). Accordingly, Ei is given by,

Ei(x) = A · exp(−D(x(i), x)/σ ), ∀i, (5)

Where A is the amplitude of the external input. Under

Euclidean synaptic strength without feedback inhibition (e.g., cI =

0, Ii ≡ 0), the steady state solution of r, mapped to each

preferential location, is a localized Gaussian-like bump centered at

the rat’s location in an open field (Wu et al., 2008; Fung et al.,

2010), due to locally strong excitatory coupling among place cells

with firing fields nearby the rat’s location. The learned synaptic

strength in Equation (4) has similar locally strong coupling so

that its steady state solution without feedback inhibition is also

a localized Gaussian-like bump centered at the rat’s location in

the maze.

With both external input and feedback inhibition, the activity

bump may move away from the rat’s location and its mobility

modes are determined by both factors in a competitive way.

The external input tends to stabilize the bump at x and the

feedback inhibition tends to deviate the bump from its current

location. Under a fixed strength of feedback inhibition, if the

external input is strong enough, the feedback inhibition fails

to deviate the stable activity bump. In contrast, if the external

input vanishes, the activity bump freely drifts along paths in the

maze, resembling replay during sleep or rest without sensory drive

(Stella et al., 2019). Most interestingly, for an external input with

intermediate amplitude, the drift of the activity bump periodically

jumps back to the rat’s location to regenerate a drift trajectory

along other paths, resembling replay during goal-directed navigation

(Johnson and Redish, 2007; Pfeiffer and Foster, 2013; Widloski and

Foster, 2022).

2.3. Learning PC-MSN synaptic strength

During replay in sleep or brief rest, the synaptic strengths

from place cells to a population of medium spiny neurons (MSN)

in the striatum are selectively strengthened to store place-reward

associations (Lansink et al., 2009; Sjulson et al., 2018; Trouche et al.,

2019; Sosa et al., 2020). The learning of PC-MSN synaptic strength

is achieved by dopamine-modulated synaptic plasticity of PC-MSN

synapses (Floresco et al., 2001; Jay, 2003; Brzosko et al., 2019).

Precisely, the co-firing of a place cell and MSN leaves a chemical

trace (i.e., Ca2+ influx) at the synapse (connection) from the place

cell to the population of MSN (Yagishita et al., 2014; Kasai et al.,

2021). After co-firing, the Ca2+ is gradually taken up by organelles

hence the chemical trace decays exponentially at the synapse (Abrams

and Kandel, 1988; Yagishita et al., 2014). Before the Ca2+ is fully

absorbed, if the dopamine concentration increases/decreases from a

base level at the synapse, the synapse will be strengthened/depressed

proportionally to both the chemical trace and the increase/decrease

of the dopamine concentration (Yagishita et al., 2014; Gerstner

et al., 2018; Kasai et al., 2021). These experimental observations are

modeled as follows.

Let Wi(t) denote the synaptic strength from place cell i to the

MSN population at time t. The activity of theMSN population at time

t is modeled by Sjulson et al. (2018),

V(t) =
∑

i

Wi(t)ri(t). (6)

One recent study (Gauthier and Tank, 2018) has found a

population of goal cells in hippocampus with their place field centers

always tracking the goal location xg . Let G(t) denote the activity of

the population of goal cells, andUi denote the synaptic strength from

place cell i to the goal cell population. Accordingly, the activity of the

goal cell population is modeled by,

G(t) =
∑

i

Uiri(t), (7)

Where Ui = exp(−D(x(i), xg)/ξ ), characterizing the stronger

connection between place cells with firing fields nearby the goal

location and the goal cell population. Let zi(t) denote the chemical

trace at the synapse from place cell i to the MSN population at time t.

Let δ(t) denote the deviation of dopamine concentration upon a base

level at PC-MSN synapses at time t.

During replay in sleep or rest, the PC-MSN synaptic strengths are

updated by the following three-factor rule,











































Ẇi(t) = α2zi(t)δ(t),

zi(t) = ri(t)V(t)I[ri(t)V(t)>q],

żi(t) = − zi(t)
τz

I[ri(t)V(t)≤q],

δ(t) = G(t)+ V̇(t),

(8)

Where α2 is the learning rate, Wi(0) is initialized to be zero, q is

a small threshold for judging whether PC i and MSN are co-firing,
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and I[·] is the indicator function that equals 1 if the condition holds

and 0 otherwise. τz is a time constant. In Equation (8), the dynamic

of zi(t) characterizes that the concentration of Ca2+ at a PC-MSN

synapse encodes the instantaneous joint firing rate of PC i and MSN

when PC i and MSN are co-firing or decays exponentially otherwise

(Helmchen et al., 1996; Wang, 1998). Computationally, this novel

trace update rule is a continuous-time generalization of the replacing

trace rule (Singh and Sutton, 1996; Seijen and Sutton, 2014) (with

q = 0 without postsynaptic factors), which has better learning

efficiency than the conventional accumulating trace rule (Izhikevich,

2007; Gerstner et al., 2018; Sutton and Barto, 2018). In Equation (8),

δ(t) characterizes the activity of VTA dopamine neurons, which is a

summation of the signal on a disinhibitory pathway from the goal

cell population (Luo et al., 2011) and the time derivative signal of

MSN activity (Kim et al., 2020). The time derivative signal of MSN

activity is the summation of the signal on a disinhibitory direct

pathway and the signal on an inhibitory indirect pathway from

the MSN population (Morita et al., 2012; Keiflin and Janak, 2015;

Kim et al., 2020). δ(t) is a continuous-time generalization of the

temporal-difference signal (Schultz et al., 1997; Watabe-Uchida et al.,

2017).

2.4. Goal-directed navigation by path
planning

During replay in goal-directed navigation, the population vector

of place cells p(t) =
∑

i ri(t)x
(i) approximately tracks the center

of the activity bump hence p(t) depicts a discontinuous trajectory

in the maze. Let t
(i)
0 denote the instant of the i-th time such that

p(t) leaves the circular region with radius d from the rat’s location

x, and t
(i)
1 denote the instant of the i-th time such that p(t) jumps

back into the same circular region. {p(t), t
(i)
0 < t < t

(i)
1 }

defines the i-th sub-trajectory with the initial direction given by

n(i) = p(t
(i)
0 )− x.

A line of studies (van der Meer and Redish, 2011; Howe et al.,

2013; Atallah et al., 2014; London et al., 2018; Sjulson et al., 2018;

O’Neal et al., 2022) has shown that the activity of MSN ramps up

when a rat is approaching the goal location. Previous studies (Pfeiffer

and Foster, 2013; Xu et al., 2019; Widloski and Foster, 2022) have also

observed that rats show tendencies to follow replay trajectories that

are approaching the goal location. Accordingly, the maximal MSN

activity during the generation of the i-th sub-trajectory serves as the

motivation for actually moving along n(i), which is consistent with

observations that the activity of MSN facilitates locomotion (Kravitz

et al., 2010; Freeze et al., 2013).

Formally, if K sub-trajectories are generated, the probability of

choosing the k-th direction n(k) to move is given by,

Px(n
(k)) =

exp(β max
t∈[t(k)0 , t

(k)
1 ]

V(t))

K
∑

i=1
exp(β max

t∈[t(i)0 , t
(i)
1 ]

V(t))

, (9)

Where β characterizes the greediness level of behavior. The

locomotion of the virtual rat is divided into periods of movements.

During each movement period, the virtual rat first performs a

period of replay to evaluate explorable paths, and then samples

a direction from Equation (9) to move until the end of this

movement period.

3. Experiments

3.1. Experimental setup

3.1.1. Subject
The subject is a virtual rat that reproduces the anatomical features

of Long-Evans rats in the MuJoCo physics simulator (Todorov

et al., 2012; Merel et al., 2020), as shown in Figure 1A. There are

in total 67 bones modeled following average measurements from

seven Long-Evans rats. At each simulation step, the proprioceptive

input to the virtual rat is an 148-dimension vector that includes

the position, velocity and angular velocity of each joint. The motor

output from the virtual rat is a 38-dimension vector that contains

the torque applied to each joint. Compared to numerical simulations

typically used in rodent-navigation modeling literature, the behavior

of the MuJoCo rat is much closer to the behavior of an actual rat.

Therefore, a computational model that works on the MuJoCo rat

might provide a deeper understanding about how neuronal activity

relates to external behavior.

3.1.2. Control scheme
Controlling the rat to run is a challenging high-dimensional

continuous control task (Schulman et al., 2016), so we use the TD3

deep RL algorithm (Fujimoto et al., 2018) to pretrain the rat in

an open field to master several basic locomotion policies, including

running forward along the current body direction, turning the body

by a certain angle then running forward. The trained turning angles

are 45, 90, 135, 180, –45, –90, and –135◦. Each basic locomotion

policy is represented by a deep neural network (DNN) that maps

the proprioceptive input into the correct motor output to generate

the desired locomotion. The pretraining details and hyperparameters

used for the TD3 algorithm see Appendix, respectively. For moving

along a direction sampled from Equation (9), the rat compares its

current body direction with the sampled direction and invokes the

closest locomotion policy to approximately run along the sampled

direction for a period. Such control scheme constitutes a hierarchical

controller (Merel et al., 2019) where the deep neural networks are

low-level controllers and the CAN and MSN serve as the high-level

controller. Figure 2A shows the interaction pattern of the controller

with the environment.

For testing the proposed computational model, we build a large

scale 10×10 m maze in MuJoCo as shown in Figure 1B. We conduct

following four experiments in the maze environment.

3.1.3. Goal-fixed experiment
In the goal-fixed experiment, a location in the maze is set as

the goal location, as shown by the green point in Figure 1B. The

rat first randomly explores the maze for 50 trials starting from

random initial positions to learn the inter-PC synaptic strength by

Equation (2). Every exploration trial contains 6,000 simulation steps,

corresponding to 120 s simulated time. Before every 150 simulation

steps (i.e., 3 s), the rat randomly chooses a turning angle and runs

along this direction in next 150 simulation steps. The place cell

firing rates collected during exploration are used to update inter-

PC synaptic strength as shown in Figure 2B. After exploration trials,

the rat enters a brief rest period to learn the PC-MSN synaptic

strength with Equation (8) by performing 60 s replay. The schematic

diagram to illustrate the learning of the PC-MSN synapses is shown
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FIGURE 1

The virtual rat and maze environments. (A) The virtual rat used in experiments. (B) The maze environment used in the goal-fixed experiment. (C) The

maze environment used in the goal-changing experiment. (D) The maze environment used in the detour experiment. (E) The maze environment used in

the shortcut experiment.

FIGURE 2

The diagram of key components in our model. The schematic figure for (A) planning and decision making during goal-directed navigation. (B) Learning

inter-PC synapses during exploration. (C) Learning PC-MSN synapses during replay (ENV means environment and DNN means deep neural network).

in Figure 2C. After replay during rest, the rat performs 100 test trials

starting from each integer grid point in the maze (i.e., (1,1), (1,2),...).

Every test trial contains at most 6,000 simulation steps. Before every

150 simulation steps (i.e., 3 s), the rat performs 1 s awake replay to

evaluate the MSN activity along possible paths. Then, it samples a

new direction from Equation (9) and runs along this direction for

next 100 simulation steps (i.e., 2 s). Once the rat enters a 1×1 m circle

enclosing the goal location, this test trial is completed and treated as

a successful trial.

3.1.4. Goal-changing experiment
In the goal-changing experiment, the rat first completes the

time course of the goal-fixed experiment. After test trials, the goal

location is suddenly changed as shown in Figure 1C. We define a

dopaminergic reward function h(x), which equals one if the rat is

located within a 1×1 m circle enclosing the goal location and equals

zero otherwise. After goal changing, the rat randomly explore the

maze and the synaptic strength from place cells to the goal cell

population is updated by a reward-modulated learning ruleU(n+1) =

U(n) + α3(r(x)
T · 1 − U(n)) · h(x). After that, the rat re-enters a brief

rest period to update the PC-MSN synaptic strength by replay with

the updated goal cell population. Then the rat performs another 100

test trials.

3.1.5. Detour experiment
In the detour experiment, the rat first completes the time course

of the goal-fixed experiment. After test trials, two critical passages

in the maze are closed as shown in Figure 1D. After spatial layout

changing, the rat reperforms 50 exploration trials to update the inter-

PC synaptic strength. After that, the rat reperforms 120 s replay to

update the PC-MSN synaptic strength. Then the rat performs another

100 test trials.

3.1.6. Shortcut experiment
In the shortcut experiment, the rat first completes the time course

of the detour experiment. After test trials, three walls in the right

side of the detour maze are removed as shown in Figure 1E. After

the removement of walls, the rat once again randomly re-explores

the maze for 50 trials and then reperforms 120 s replay to update the

PC-MSN synaptic strength. After that, the rat performs another 100

test trials.

3.1.7. Experimental details
In above experiments, the preferential locations of 2,500 place

cells are arranged on a regular grid of the maze without considering

grid points that fall into areas under walls. The shortest path distance

between pairs of preferential locations is computed by the Lee

algorithm (Lee, 1961), based on breadth-first search (BFS) (Cormen

et al., 2009). For Hebbian-like learning during exploration, σ is 0.3

and α1 is 0.001. To simulate the dynamic of the CAN, 1t is 1 ms,

h0 is 0, τr is 2 ms, τI is 0.5 s, cI is 10, and the global inhibitory

strength added on the inter-PC synaptic strength is –0.3. For replay

during the rest period, α2 is 0.01, q is 0.1, τz is 0.5 s, ξ is 0.3 and

the duration is 60 s. The initial condition of the CAN during the rest
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FIGURE 3

Results for the goal-fixed experiment. (A) Inter-PC synaptic strength after exploration. (B) A stationary activity bump of the CAN under a strong external

input. (C) The replay trajectory during the rest period. (D) The activity of the MSN population. (E) The replay sub-trajectories during planning (the red

trajectory is the rat’s movement trajectory, and blue trajectories are replay sub-trajectories starting from the rat’s location). (F) Exemplary movement

trajectories during test trials (Markers are locations at which planning is performed).

period is a transient external input with amplitude 10 centered at the

goal location for 10 ms. For replay during goal-directed navigation,

the external input is persistent with amplitude 50, the radius d is 0.5

m, β is 10, and the duration is 1 s.

3.2. Experimental results

3.2.1. Goal-fixed experiment
Figure 3A shows the strength of synapses projected from the

place cell with preferential location (7, 6.4) to other place cells after

exploration. The synaptic strength decays from the location (7, 6.4)

along shortest paths to other locations, so the geodesic proximity

between preferential locations of place cells is encoded by inter-

PC synaptic strength. Figure 3B shows a stationary activity bump

centered at the rat’s location under a strong external input with

amplitude 100. After removing the external input during the rest

period, the activity bump starts to deviate from its current position,

and Figure 3C shows the trajectory of the population vector of place

cells. Interestingly, the trajectory can go around walls and well cover

the whole maze. After replay during rest, the activity of the MSN, as

a function of the location of the rat with a stationary activity bump,

is shown in Figure 3D. Interestingly, the activity of MSN ramps up

when the rat approaches the goal location from any initial locations,

which conforms to a series of observations about MSN (van der Meer

and Redish, 2011; Howe et al., 2013; Atallah et al., 2014; London

et al., 2018; Sjulson et al., 2018; O’Neal et al., 2022). Accordingly,

the MSN activity encodes the geodesic proximity between each

location and the goal location. Figure 3E shows the sub-trajectories

generated during a planning period in test trials. Strikingly, without

any randomization mechanisms involved in the dynamic, the sub-

trajectories can nearly uniformly explore each possible path to a

considerable depth. This is especially beneficial if the MSN activity

at a local area is either flat (uninformative) or with a wrong shape

(misguiding). The success rate of test trials is 100% and Figure 3F

shows several exemplary locomotion trajectories.

To measure the performance of the virtual rat during test trials,

we define the normalized latency of a successful trial as the time

taken to reach the goal location divided by the shortest path distance

between the initial position and the goal location. The normalized

latency eliminates the influence of different initial positions on the

time required to reach the goal. It measures the average time taken

to approach the goal location per meter hence it characterizes the

intrinsic efficiency of the navigation independent of initial positions.

To show the influence of parameters on performance, the goal-

fixed experiment is repeated under varying values of a considered

parameter while keeping other parameters as default values. As

Figure 4A shows, the success rate of test trials improves when the

number of trials for exploration increases but the success rate nearly

keeps at 1 as long as at least 50 exploration trials are performed.

As shown in Figure 4B, the normalized latency reduces with an

increasing number of exploration trials and fluctuates around 5 s/m

after 50 exploration trials. With an inadequate number of exploration

trials, the spatial experiences of the virtual rat can’t fully cover the

maze. As a result, the synaptic strength between place cells with

preferential locations at those under-explored areas are weak, which

prevents the replay during rest to fully explore the maze and impairs

the learning of PC-MSN synaptic strength consequently.

As Figure 4C shows, the success rate increases with longer

duration for replay during rest and saturates at nearly 1 as long as

at least 7 s are allowed. Although the MSN activity after only 7 s

of replay has only a rough and unsmooth trend to ramp up (not

shown), the planning trajectories lookahead over a long distance,

enough to overcome the local unsmoothness and utilize the long-

range trend to find the correct direction to the goal location. Such

rapid learning is also observed in rodent experiments (Rosenberg

et al., 2021) and it might be very important for the survival of

rodents in a changing environment. In contrast, the three-factor

rule using the accumulating trace update żi(t) = −zi(t)/τz +

ri(t)V(t) (Izhikevich, 2007; Gerstner et al., 2018) fails to improve

the success rate with an increasing duration for replay. The reason

for the inferior performance is that the accumulating trace overly

strengthens the PC-MSN synapses of frequently activated place cells

even if their firing field centers are far away from the goal location.

Such frequency-dependence leads to local peaks of the MSN activity

that might attract the rat at places without rewards. As shown

in Figure 4D, the normalized latency of successful trials fluctuates

around 5 s/m and shows little dependence on the duration for replay

during rest.

As shown by Figures 4E, F, the success rate generally decreases

and the normalized latency generally increases when the period

between decision making is prolonged, because infrequent decision

making fails to timely re-adjust the movement direction that has

became suboptimal over a distance of locomotion. In contrast, too

frequent decision making (e.g., 2 s) also harms the performance
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FIGURE 4

The influence of parameters on performance. (A, B) are the influence of the number of exploration epochs. (C, D) are the influence of duration for replay

during rest. (E, F) are the influence of the period between decision making. (G, H) are the influence of duration for planning. (I, J) are the influence of the

external input.

FIGURE 5

The influence of learning rates on performance in goal-fixed experiment. (A) The PC-MSN synaptic learning rate. (B) The inter-PC synaptic learning rate.

(C) The PC to goal cell synaptic learning rate. (D) The MSN activity with the same transfer function and threshold for place cells and inhibitory neurons.

because the overhead of planning (e.g., 1 s/2 s = 50%) increases so

that the time used for locomotion is reduced, which slowdowns the

progress toward the goal location.

As Figures 4G, H show, when the duration for planning is shorter

than 1 s, the performance improves with a longer duration for

planning due to the ability to evaluate more directions. In contrast,

when the duration for planning is longer than 1 s, the performance

deteriorates due to the increasing overhead of planning and the

shortened time for locomotion. As Figures 4I, J show, when the

amplitude of the external input is smaller than 50, the performance

improves with a larger external input, due to a reduced length of

sub-trajectories leading to an increasing number of sub-trajectories

during planning. However, when the amplitude of the external input

is larger than 50, the performance collapses because it becomes

more difficult to deviate the activity bump so that the number of

sub-trajectories reduces rapidly.

As shown in Figure 5A, the success rate keeps at 1 even for

a very small PC-MSN synaptic learning rate but the performance

collapses for a learning rate larger than 10−2 due to divergence.

Differently, as Figure 5B shows, either too large or too small inter-PC

synaptic learning rate can significantly impair the performance due

to divergence or slow learning, respectively. Similar trend is observed

for PC to goal cell synaptic learning rate, as shown in Figure 5C. We

have re-performed the goal-fixed experiment using the same transfer

function and threshold for both place cells and inhibitory neurons. As

shown in Figure 5D, the learnedMSN activity under such settings still

shows the desired ramping pattern as for inhibitory neurons without

using a transfer function and threshold.

Figure 6 shows the time trace of place cell firing rates, the

chemical trace and PC-MSN synaptic strengths at 4, 8, 12, 16,

20, and 24 s during replay period. At each time point, the firing

rate vector r(t) is a localized activity bump in the maze, possibly

truncated by the barriers of the maze (Figure 6A). The chemical

trace at each time point decays along the most recent trajectory

of the current activity bump, so that a dopamine signal can

effectively strengthen those recently activated PC-MSN synapses

(Figure 6B). At an early stage of replay, the PC-MSN synaptic

strength is quite unsmooth and does not show trend to ramp up

(Figure 6C, 4 s). With more replay, the PC-MSN synaptic strength

becomes more and more smooth and finally converges to the desired

ramping shape (Figure 6C, 24 s). As Figure 7A shows, the goal cell

is activated at time points when the activity bump visits the goal

location. Despite the goal cell firing events are sparse, the temporal

difference signal fluctuates frequently to create more learning signals
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FIGURE 6

Time traces of variables during the replay period. (A) The firing rates r(t). (B) The chemical trace z(t). (C) The PC-MSN synaptic strength W(t).

FIGURE 7

Time traces of variables. (A) The goal cell activity G(t). (B) The temporal di�erence δ(t). (C) The MSN activity V(t).

FIGURE 8

Results for the goal-changing experiment. The place field of the goal cell population before (A) and after (B) goal changing. The PC-MSN synaptic

strength before (C) and after (D) reperforming replay during rest. (E) The activity of the MSN population. (F) Exemplary movement trajectories during test

trials (Markers are locations at which planning is performed).

(Figure 7B). As a result, the MSN activity pattern is gradually

built up through the learning of the PC-MSN synaptic strengths

(Figure 7C).

3.2.2. Goal-changing experiment
Figures 8A, B show the place fields of the goal cell population

before and after goal changing, respectively. The place fields are
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FIGURE 9

Results for the detour experiment. (A) Inter-PC synaptic strength after re-exploration. (B) The replay trajectory after introducing new walls. (C) The

PC-MSN synaptic strength after replay during rest. (D) The activity of the MSN population. (E) Replay sub-trajectories during planning. (F) Exemplary

movement trajectories during test trials (Markers are locations at which planning is performed).

FIGURE 10

The influence of parameters on performance in the goal-changing or detour experiment. (A, B) are the influence of the duration for replay during rest

after goal change in the goal-changing experiment. (C, D) are the influence of the number of re-exploration trials after walls are introduced in the detour

experiment. (E, F) are the influence of the duration for replay during rest after walls are introduced in the detour experiment.

constrained by walls and decay along paths away from the center.

Before goal changing, the PC-MSN synaptic strength encodes

the geodesic proximity between each location and the old goal

location (Figure 8C). After reperforming replay during rest, the

PC-MSN synaptic strength now re-encodes the geodesic proximity

between each location and the new goal location (Figure 8D). As

a result, the MSN activity ramps up along paths to the new

goal location (Figure 8E). The success rate of test trials after goal

changing is still 100% and Figure 8F shows several exemplary

locomotion trajectories.

3.2.3. Detour experiment
After re-exploration of the detour maze, the inter-PC synaptic

strengths are updated and the strength of synapses projected from

the place cell with preferential location (3, 4) to other place cells is

shown in Figure 9A. The inter-PC synaptic strength re-encodes the

updated adjacency relation between locations in the detour maze.

Under updated inter-PC synaptic strength, the replay trajectory

during rest is blocked by new walls (Figure 9B), signifying an

adaptation to the new layout. After replay, both the PC-MSN synaptic

strength and the MSN activity ramps up along detours to the goal

location (Figures 9C, D). Interestingly, the replay sub-trajectories

during planning explore the area behind the new wall and evaluate

theMSN activity there (Figure 9E). As a result, the virtual rat achieves

a 100% success rate during test trials in the detourmaze and Figure 9F

shows several exemplary movement trajectories. Starting from initial

positions far away from the goal location, the rat can find a detour

to the goal location. Such detour behavior resembles that observed

in rodents (Tolman and Honzik, 1930; Alvernhe et al., 2011), which

has been considered a hallmark of cognition (Tolman, 1948;Widloski

and Foster, 2022).

As Figure 10A shows, the success rate increases with a longer

duration for replay after goal changing. It takes a significantly

longer time to achieve 100% success rate than learning from scratch

(Figures 10A vs. 4C), due to the time taken to overwrite the PC-MSN

synaptic strengths built in the goal-fixed experiment. As shown by

Figure 10B, the normalized latency of successful trials is insensitive

to the duration for replay during rest after goal changing. After

new walls are introduced in the detour experiment, it requires more
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FIGURE 11

Results for the shortcut experiment. (A) Inter-PC synaptic strength after re-exploring the shortcut maze. (B) The replay trajectory after removing walls. (C)

The PC-MSN synaptic strength after replay during rest. (D) The activity of the MSN population. (E) Replay sub-trajectories during planning. (F) Exemplary

movement trajectories during test trials (Markers are locations at which planning is performed).

FIGURE 12

Results with simultaneously updated inter-PC and PC-MSN synapses. (A, B) The PC-MSN synaptic strength and MSN activity in the goal-fixed experiment.

(C, D) The PC-MSN synaptic strength and MSN activity in the detour experiment. (E, F) The PC-MSN synaptic strength and MSN activity in the shortcut

experiment.

re-exploration trials to achieve 100% success rate (Figures 10C vs.

4A), due to the need to update the inter-PC synaptic strength built

in the goal-fixed experiment. Similarly, the normalized latency of

successful trials is insensitive to the number of re-exploration trials

(Figure 10D). As Figure 10E shows, even a short duration for replay

(e.g., 10 s) is adequate to achieve a success rate close to 80%, because

theMSN activity pattern in the goal-fixed experiment is similar to the

desiredMSN activity pattern in the detour experiment (Figures 9D vs.

3D). However, a longer duration for replay is still required to achieve

a 100% success rate. Still, the normalized latency of successful trials is

insensitive to the duration for replay (Figure 10F).

3.2.4. Shortcut experiment
After re-exploring the shortcut maze, the strength of synapses

projected from the place cell with preferential location (9, 9) to other

place cells decays along newly available shortcuts (Figure 11A). As a

result, the replay trajectory during rest freely traverses these shortcuts

(Figure 11B). After replay, both the PC-MSN synaptic strength

and the MSN activity ramp up along newly available shortcuts

(Figures 11C, D). The replay sub-trajectories during planning can

lookahead along newly available shortcuts (Figure 11E). The success

rate during test trials in the shortcut maze is 100% and Figure 11F

shows several exemplary locomotion trajectories, all following the

shortcut to the goal location.

3.2.5. Updating inter-PC and PC-MSN synapses
simultaneously

In this set of experiments, we relax the requirement of

learning inter-PC synaptic strength only during exploration

phase and learning PC-MSN synaptic strength only during

replay phase. We re-perform the goal-fixed, detour and shortcut

experiment with inter-PC and PC-MSN synapses simultaneously

updated during both exploration and replay periods. Specifically,

during exploration phase, we also use Equation (8) to update

PC-MSN synaptic strength. During replay phase, we further

use Equation (2) to update inter-PC synaptic strength in

Equation (4). As shown in Figures 12A–F, the PC-MSN synaptic

strength and the MSN activity can be successfully learned in

all experiments. Guided by the learned MSN activity, the

virtual rat can successfully navigate to the goal location in

all experiments.

3.2.6. Using the same governing equation during
exploration and replay phases

In this set of experiments, we use Equations (4), (5) to replace

Equation (1) during the exploration phase. The amplitude of

the external input is set as 80 and other parameters are set as

default values given above. Figures 13A–D show the strength of

synapses projected to other place cells from the place cells with

preferential locations (7, 6.4), (9, 9), (3, 2), (2, 8), respectively, after

exploration phase. Using Equation (4) with Equation (2) during

exploration can still learn the desired synaptic strength patterns,

despite less regular than using Equation (1) with Equation (2)

(Figures 13A vs. 3A). After the exploration phase, the same governing

(Equation 4) with vanishing external input is used to learn the

PC-MSN synaptic strength during replay (Figure 13E). After replay,

the MSN activity ramps up correctly so that the virtual rat

can navigate to the goal location from arbitrary initial locations

(Figure 13F).
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FIGURE 13

Results using the same governing equation during exploration and replay phases. (A–D) The inter-PC synaptic strength projected from several place cells

after exploration. (E, F) The PC-MSN synaptic strength and MSN activity after replay.

4. Discussion

This paper proposed a computational model that uses a

continuous attractor network with feedback inhibition to generate

layout-conforming replay for achieving reward-based learning and

planning, two key functions that support flexible navigation in a

dynamically changing maze. We have shown that these functions

are achieved by a single CAN under a different strength of

external inputs. Reward-based learning is implemented by three-

factor learning of PC-MSN synaptic strength during replay under

vanishing external inputs. Planning is achieved by evaluating the

MSN activity along lookahead trajectories during replay under non-

zero external inputs. Combining these two functions, this paper sheds

a light on how the learning of flexible navigation in a maze is achieved

by the activity of an ensemble of interacting place cells. Besides,

our model is beneficial to the design of neuroscience-inspired

artificial intelligence (Hassabis et al., 2017). We have shown that

incorporating state-of-the-art neuroscientific insights about learning,

memory and motivation into the design loop of an artificial agent is

important toward developing artificial intelligence that matches the

performance of animals.

Many works use attractor states of a CAN to model the

population activity of head-direction cells (Skaggs et al., 1995; Blair,

1996; Zhang, 1996) or place cells (Samsonovich and McNaughton,

1997; Battaglia and Treves, 1998; Tsodyks, 1999; Stringer et al., 2002;

McNaughton et al., 2006). In these models, the synaptic strength

is assumed to be a negative exponential function of the Euclidean

distance between preferential angles or locations of two cells, possibly

with periodic boundary conditions. This assumption is valid for

head-direction cells in a ring attractor space or place cells in a barrier-

free plane attractor space but it ignores the influence of barriers in

non-Euclidean spaces, such as a maze.

Next, we discuss previous computational models for the

generation of replay with a CAN. Two computational models

(Hopfield, 2009; Azizi et al., 2013) use integrate-and-fire cells with

spike-frequency adaptation (SFA) to simulate drifts of the activity

bump. In these models, the SFA is modeled by an adaptive inhibitory

current fed into each place cell, which is increased after every

spike of a place cell. Despite functionally similar to the feedback

inhibition in our model, the adaptive inhibitory current is used

to model the dynamic blockage of Ca2+-dependent K+ channels

(Shao et al., 1999; Faber and Sah, 2003; Hopfield, 2009) rather

than interactions between place cells and hippocampal GABAergic

interneurons. One model (Itskov et al., 2011) and another model

(Romani and Tsodyks, 2015) use adaptive thresholds and short-term

depression, respectively, to generate drifts of the activity bump.

However, the generation of hippocampal replay requires interactions

between place cells and inhibitory interneurons (Schlingloff et al.,

2014; Stark et al., 2014; Buzsaki, 2015), which is not captured by

these two models. Other models (Zhang, 1996; Spalla et al., 2021)

generate bump drifts by introducing an asymmetric component into

the inter-PC synaptic strength. However, it remains unclear how

such a systematic perturbation of inter-PC synaptic strength can be

implemented in the hippocampus. Besides, the above models pre-

configure the inter-PC synaptic strength as a function decaying with

the Euclidean distance between preferential locations, so the bump

drifts generated by these models violate the constraints imposed by

walls of a maze. Among the aforementioned models, some of them

(Hopfield, 2009; Azizi et al., 2013; Romani and Tsodyks, 2015; Spalla

et al., 2021) consider multiple possible mapping from place cells to

place field centers, called multi-chart, to model a global remapping

of place cells across different environments (Alme et al., 2014).

However, it’s observed that the place field centers are largely stable

under different layout of a maze (Alvernhe et al., 2011; Widloski

and Foster, 2022). Accordingly, we keep the mapping of place cells

consistent across different layout.

The early works (Muller et al., 1991, 1996) first proposed that the

inter-PC synaptic strength should decay with the Euclidean distance

between their firing field centers due to the long-term potentiation

(Isaac et al., 2009). In these works (Muller et al., 1991, 1996), the

hippocampus is modeled as a weighted graph where place cells are

nodes and synapses are edges with synaptic resistance (reciprocal

synaptic strength) as edge weights. To navigate to the goal location,

this model uses the Dijkstra’s algorithm (Cormen et al., 2009) to

search a shortest path in the graph from the currently activated

place cell to the place cell activated at the goal location. However,

it remains unclear how such complex path search computations

are implemented in rodent brains. Our model has shown that the

learning of PC-MSN synaptic strength by replay during rest encodes

the geodesic proximity between each place field center and the goal

location, which is read out subsequently during awake replay to plan

a path toward the goal location.

If the firing rate vector of place cells is interpreted as a feature

vector of the rat’s location, then the activity of MSN can be

interpreted as a linear value function approximation (Sutton and

Barto, 2018) of the rat’s location. Such an interpretation relates our

model to a line of spatial navigation models based on reinforcement

learning (RL). In one model (Brown and Sharp, 1995), the synaptic

strengths from PC to motor neurons are learned using policy

gradient like reinforcement learning (Williams, 1992; Sutton et al.,
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1999) to build correct place-response associations by trial-and-

errors. Another line of models (Foster et al., 2000; Gustafson and

Daw, 2011; Banino et al., 2018) use the firing rates of place cells

as the set of basis functions for representing the policy and the

value function, which are trained by the actor-critic algorithm

(Sutton and Barto, 1998) during interactions with the environment.

Unfortunately, navigation behavior learned with such model-free

RL algorithms is inflexible to changes of the goal location or the

spatial layout.

Next, we discuss computational models of spatial navigation

based on model-based RL. Inspired from the Dyna-Q algorithm

(Sutton, 1990), a computational model (Johnson and Redish, 2005)

learns a Q-value function during offline replay of a network of place

cells. This model interprets the inter-PC synaptic strength matrix as

a state transition matrix that sequentially activates a place cell with

a maximal synaptic strength with the currently activated place cell.

Such one-by-one replay of place cells with binary activity can hardly

capture the bump-like activity during hippocampal replay (Pfeiffer

and Foster, 2013; Stella et al., 2019; Widloski and Foster, 2022).

Besides, the Q-value function is learned by the biologically unrealistic

one-step TD(0) algorithm (i.e., Q-learning) without using a chemical

trace. The SR-Dyna model (Russek et al., 2017; Momennejad, 2020)

learns a successor representation (SR) matrix by TD(0) during one-

by-one replay of binary place cells. After replay, the Q-value function

is computed simply by a dot product of the SR matrix and the reward

function. However, the neural substrate of the SR remains unclear

and controversial (Russek et al., 2017; Stachenfeld et al., 2017).

Next, we discuss computational models of spatial navigation

without using a value representation. Two studies (Blum and Abbott,

1996; Gerstner and Abbott, 1997) proposed that the long-term

potentiation (LTP) of inter-PC synapses during exploration slightly

shifts the location encoded by the population vector away from the

rat’s actual location. Such shifts are used as a vector field tending

toward the goal location to navigate the rat to the goal. Our model

similarly uses a shift of the population vector during awake replay to

define the directional vector of each replay sub-trajectory. However,

our model does not construct a static vector field toward the goal

but relies on online planning with respect to the MSN activity to

choose a direction to follow. Another model (Burgess and O’Keefe,

1996) directly uses the place field of a putative goal cell to navigate

to the goal by moving along the gradient direction of the place field.

However, the gradient of the place field vanishes at locations far away

from the goal location due to the limited range of the goal cell’s place

field. In our model, the activity of MSN ramps up even at locations

far away from the goal location. Furthermore, planning with respect

to the MSN activity can avoid wrong gradient directions due to local

unsmoothness of the MSN activity.

The work (Ponulak and Hopfield, 2013) uses a similar CAN as

in Hopfield (2009) to generate a wavefront propagation of activity on

the sheet of place cells after visiting the goal location.With anti-STDP,

the inter-PC synaptic strength will be biased toward the goal location

after wavefront propagation, which can be interpreted as a synaptic

vector field to guide the navigation toward the goal. However, the

activity propagation during hippocampal replay is sequential and

follows particular directions (Pfeiffer, 2017) rather than propagating

over all directions as in the above model. Another model (Gonner

et al., 2017) uses a learned goal location representation of place

cells in dentate gyrus (DG) as the input of place cells in CA3 to

move the activity bump toward the goal location. The end point of

the moving bump is used for vector-based navigation. However, the

bump trajectories generated by this model always converge to the goal

location, falling short of explaining the diversity of directions and end

points of replay trajectories.

Our model suggests that the hippocampal goal cells, but

not hippocampal place cells, contribute to a dopamine temporal

difference signal through the disinhibitory hippocampus-lateral

septum-VTA pathway. Anatomically, it’s possible that other place

cells might project to the lateral septum (LS). However, some

experiments (Wirtshafter and et al., 2019) have shown that most

LS cells show ramping activity when a rat is approaching the goal

location, quite similar to the firing pattern of a goal cell. The reason

for such observations might be that the synaptic efficacy is stronger

for projections from goal cells to the LS than projections from other

place cells to the LS, possibly because the goal cell to LS projections

have received more dopamine release at the goal location.

Next, we discuss limitations of our model. Our model assumes

place cells fire independently following Equation (1) without

interacting with each other during the exploration phase. This

assumption holds at the beginning of the exploring phase because the

inter-PC connections are too weak to induce synaptic transmissions

among place cells. However, as learning proceeds, some connections

become stronger so that interactions among place cells can not be

neglected. Our experiments have shown that adopting the more

realistic Equation (4) instead of Equation (1) is able to learn inter-

PC synaptic strengths without disabling interactions among place

cells during the exploration phase. We leave a formal analysis of

the unified governing Equation (4) during different phases for our

future work. Our model defines the dynamic of the chemical trace

z(t) in Equation (8) separately for two cases according to whether

the joint firing rate of place cells and MSN exceeding a threshold.

It’s possible to unify these two cases using the dynamic equation

żi(t) = −zi(t)/τz + f [ri(t)V(t)], where the transfer function f [x]

equals zero if x ≤ q and equals x otherwise. However, such dynamic

requires an amount of time to relax to the joint firing rate, possibly

leading to performance issues. We leave the derivation of a unified

dynamic equation of the chemical trace for our future study.

In our model, awake replay serves the planning and evaluation

purpose. However, there is evidence that awake replay also

contributes to reward learning (Jadhav et al., 2012), possibly through

(reverse) replay at reward sites. Since the replay dynamic is driven by

the same CAN, it’s direct to use the Equation (8) during awake replay

to learn PC-MSN synaptic strength without needing for an extended

sleep period. However, learning PC-MSN synaptic strength during

awake replay requires the behavioral policy of the rat to be explorative

initially so that regions near the goal location can be visited by

chance. Since our model encodes the goal location information by

the MSN activity, our modeling of place fields does not capture

some weak off-center goal-related activity observed in Hok et al.

(2007). Besides, the ubiquitous existence of such goal-related activity

of place cells remains controversial and it might introduce ambiguity

to the coding of place cells (Poucet and Hok, 2007). Strictly speaking,

the most detailed model of symmetric STDP (Mishra et al., 2016)

should consider spike trains of pre- and post-synaptic neurons.

Since the pre- and post-synaptic spike trains of a pair of place cells

can be modeled as independent Poisson processes before learning

the inter-PC synaptic strength, the synaptic update under the rate-

based Hebbian-like rule equals the average synaptic updates under

symmetric STDP using spike trains (Kempter et al., 1999). Our model
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requires the exploration performed by the virtual rat fully covers

the whole maze. However, animals can navigate in unexplored areas

based on landmarks. Our model of the feedback inhibition in the

CAN is a simplified abstraction of the interaction between place

cells and interneurons without modeling mutual interactions among

interneurons (Schlingloff et al., 2014; Stark et al., 2014; Buzsaki,

2015). Our model of the MSNs does not capture observations

that the activity of some MSN assemblies encodes other behavioral

information, such as locomotion initialization (Kravitz et al., 2010;

Freeze et al., 2013) or speed (Kim et al., 2014; Fobbs et al., 2020).
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Appendix

Pretraining details

In order to train the policy that turns θ◦ then runs forward, we

use the following reward function,

r = velg + 0.1Ehg · Ehr + 0.1Enz · Enr . (A1)

Here velg is the velocity of the rat along the targeted direction. Ehg
is the unit vector along the targeted direction. Ehr is the unit vector

along the body direction of the rat. Enz is the unit vector along the

z-axis in the global coordinate frame. Enr is the unit vector along the

z-axis in the local coordinate frame of the rat. To obtain high rewards,

the rat requires to turn into the targeted direction and run as fast as

possible while keeping Enr upward to avoid falling down. The TD3

algorithm trains each policy network from scratch to maximize the

accumulated rewards collected from a behavior trajectory. Training

each policy takes several hours on a GPU server.

Hyperparameters of the TD3 algorithm

TABLE A1 Hyperparameters and their values.

Hyperparameter Value

Replay buffer size 100000

Learning rate 0.0001

Exploration coefficient 0.2

Discount factor 0.98

Mini-batch size 256

Number of layers 5

Target net update rate 0.01

Noise standard deviation 0.2

Noise clip coefficient 0.5
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