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Various interpretations of the literature detailing the neural basis of learning

have in part led to disagreements concerning how consciousness arises. Further,

artificial learning model design has su�ered in replicating intelligence as it

occurs in the human brain. Here, we present a novel learning model, which

we term the “Recommendation Architecture (RA) Model” from prior theoretical

works proposed by Coward, using a dual-learning approach featuring both

consequence feedback and non-consequence feedback. The RA model is tested

on a categorical learning task where no two inputs are the same throughout

training and/or testing. We compare this to three consequence feedback only

models based on backpropagation and reinforcement learning. Results indicate

that the RA model learns novelty more e�ciently and can accurately return to

prior learning after new learning with less computational resources expenditure.

The final results of the study show that consequence feedback as interpretation,

not creation, of cortical activity creates a learning style more similar to human

learning in terms of resource e�ciency. Stable information meanings underlie

conscious experiences. Thework provided here attempts to link the neural basis of

nonconscious and conscious learning while providing early results for a learning

protocol more similar to human brains than is currently available.

KEYWORDS

the recommendation architecture, deep learning, consciousness, novelty, feedback,

resource constraints, artificial intelligence

1. Introduction

Philosophy and neuroscience have long sought to understand the basis of consciousness

(Velmans and Schneider, 2007; Seth and Bayne, 2022). There are several leading theories,

none of which has been sufficiently to become the standard working theory of the subject.

As a result, several interpretations of the neuroscience behind cognitive phenomena, such as

learning, have deliberately not presupposed a particular theory of consciousness (Godfrey-

Smith, 2021).

In this paper, we explore how the type of information termed “consequence feedback”

could be used by the brain and how different uses of consequence feedback change the type

of information that can be activated in consciousness. In consequence feedback, an action

taken by the brain affects the environment, which in turn affects the brain. Consequence

feedback can contain different amounts of information. In the lowest information case, the

environment only provides an indication of whether the behavior was correct or incorrect,

with no additional information about the nature of the correct behavior. In a higher

information case, the correct behavior is specifically indicated by the environment, via some

kind of teacher. An even higher information case is when the difference between the actual
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behavior and target behavior (an error signal) is provided.

Consequence feedback can be conscious or nonconscious.

In conscious consequence feedback, the brain can use multiple

mechanisms like working memory, attention, agency, sentience,

etc. to interpret the signal more or less strongly. One type of

conscious consequence feedback is a teacher signal. In this type

of feedback there is a direct awareness of the relationship between

the agent’s actions and the resulting reaction of the environment

back onto the agent; an obvious corrective signal is received

following behavior. Teacher signals can be either of the two types of

consequence feedback (low or high information). As it is often the

case in child development, teachers can provide the correct answer

by example and by corrections to mistakes, or can provide rewards

(positive or negative) for responses and behavior.

In nonconscious consequence feedback, the brain may also

use multiple mechanisms like working memory, attention, agency,

sentience, etc.. However, the distinction here is that the agent

may not be able to report the awareness of the external signal.

Blindsight and visual masking are both examples of nonconscious

consequence feedback, although there are many such examples

Lewicki et al. (1992), Phaf and Wolters (1997), Olcese et al. (2018),

and Birch et al. (2020).

Alternatively, non-consequence-feedback information

mechanisms do not rely on external environment feedback and

are far more likely to be nonconscious events. In this type of

learning, reward or error signals may still be occurring in the

form of associated consequence feedback neurochemicals (e.g.,

dopamine) (Papalini et al., 2020). The important difference is that

these alternatives do not entirely rely on a feedback signal, but

can instead rely on other learning mechanisms, such as plasticity

with BDNF neurochemicals, Hebbian learning and spike-timing-

dependent-plasticity in cortical pyramidal neurons in Kowiański

et al. (2018) and Coward (2021).

There are several interpretations of the role consequence

feedback plays in learning and consciousness. In GlobalWorkspace

Theory, proposed by Baars, et al., consciousness arises from a

shared latent space in the brain composed of signals broadcast from

specialized modules, which relies on a type of error termed cycle-

consistency (VanRullen and Kanai, 2021). In Predictive Processing

proposed by Karl Friston et al., the error between an expected

event and actual event is predicted and these predictions are basic

computations throughout the brain that drive learning, which in

part create access consciousness (Friston and Kiebel, 2009; Marvan

and Havlík, 2021). Integrated Information Theory, proposed by

Tononi et al. does not provide a clear relationship between

learning mechanisms, or consequence feedback information, and

consciousness (Tononi et al., 2016).

According to the Recommendation Architecture (RA)

proposed by Coward, consequence feedback is a brain mechanism

used to learn how to interpret cortical patterns of activation

(Coward, 1999a). The interpretations take place in subcortical

structures, and the patterns of cortical activation themselves have

alternative learning protocols based on temporal correlations and

are not dependent on consequence feedback. These mechanisms

(along with others) work together to promote different degrees

of consciousness.

In the RA, consciousness arises as a result of indirect activation

of cortical neurons in the absence of the sensory inputs that

would activate them directly (St. Clair, 2020). Such indirect

activations are the result of interpretation by subcortical structures

of the preceding pattern of cortical activation. The subcortical

interpretations are driven by consequence feedback. Because the

circumstances in which cortical neurons are activated are not

directly changed by consequence feedback, indirect activations

can be very similar to direct activations in response to sensory

inputs. As a result, there are significant similarities between sensory

experiences and imagined experiences (Coward and Gedeon, 2009;

Coward, 2013). We do not implement indirect activation in this

work, but our contributions serve to lay the groundwork for future

instantiations and for better understanding the RA framework.

Thus, it’s important to better understand how consequence

feedback affects learning and specifically, to what extent it drives

new learning. Further, identifying how environmental signals

influence learning informs our understanding of how cognitive

phenomena like attention, working memory, agency, etc. are

utilized in conscious activity.

In the field of artificial intelligence (AI), state-of-the-art

artificial learning models fail to embody the intricacies of the

brain’s learning process. Most approaches employ teacher signal

consequence feedback as the driving and often sole learning force.

The main algorithm dominating the AI field is

backpropagation, which is used in nearly all popular deep

learning approaches (a subfield of AI). In backpropagation, an

error signal is mathematically propagated from the final output

layers of the network to the first layers, such that each neuron

model receives direction on how useful its representation was in

completing a task correctly (Chauvin and Rumelhart, 2013). The

plausibility of backpropagation as an actual neural mechanism

continues to be debated (Whittington and Bogacz, 2019; Lillicrap

et al., 2020).

Alternatively, in another subfield of AI, reinforcement learning

(RL), a reward (positive or negative) is given to each state-action

pair (behavior given an input stimuli) and the learning algorithm

is primarily based on maximizing expected reward (Sutton and

Barto, 2018). The amount of reward is either pre-determined from

a teacher signal or a function of the teacher signal.

These methods have shown to be very effective for narrow

domain learning in which one specific task is learned in a repetitive

process with the goal to extend this learning to unseen examples

within the same task and data domain. With few exceptions, there

are two glaring departures between how the human brain learns

and how AI models learn. First, learning a task without excessive

repetitive memorization of the input stimuli, i.e., learning novelty

efficiently. Secondly, the ability to learn something new and return

to previous learning without exponentially increasing resources

required to learn or catastrophically diminishing performance, i.e.,

retaining prior learning. Both of which the brain can do, but AI has

not been entirely successful at.

For example, the popular AI model, Long Short-TermMemory

(LSTM) as introduced in Hochreiter and Schmidhuber (1997) is

capable of learning to trade financial stocks and is also the backbone

of speech recognition in Apple’s Siri (Levy, 2016; Roondiwala et al.,

2017). However, each instance of the model is limited to the task

it was trained to perform. For example, if an LSTM model has

been trained to understand speech, it cannot then be used to trade

stocks. If you retrain that samemodel to trade stocks, it cannot then
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understand speech. Current AI models struggle in returning to a

previously learned task without re-learning that task.

Furthermore, to learn any task, AI models must iterate over the

same dataset hundreds and sometimes thousands of times. While

there is much structure in the natural world, no two sensory inputs

are ever identical. The way photons hit your retina is never quite

the same as the moment before. In the natural world, it is difficult

to experience the same input condition more than once.

The overall issue with these approaches is that they lack

the ability to scale efficiently. More computational resources are

needed continuously as the model learns. The human brain is

able to learn within resource constraints. Some work in the RA

describes how learning within resource constraints is an important

feature of generalizing (Coward and Gedeon, 2009). Specifically,

that consequence feedback cannot be used as the sole learning

mechanism because it would require constant addition of new

resources (i.e., neurons).

Thus, current state-of-the-art AI suffers from an inability

to learn novelty while retaining prior learning within resource

constraints, known as narrow learning.

While consequence feedback driven models have been

successful at some form of learning, the lack of learning novelty

efficiently while retaining prior learning, suggests that these current

models learn quite differently than their biological counterparts.

This discrepancy, amongst others, make them poor models for

studying cognition and consciousness as it occurs in humans.

From the perspective of cognitive science, we can formulate the

problem as whether learning only occurs through external signals.

Here, we argue consequence feedback is an externally driven

activity and is only one of the several mechanisms driving learning.

An agent makes a decision which impacts its environment.

The environment or another agent then provides feedback on

how that decision affects the agent. Consequence feedback may be

conscious (e.g., teacher signals) or nonconscious (i.e., blindsight).

As an alternative to consequence feedback, a large body of literature

suggests there are forms of learning that do not directly involve

a teacher signal or sensory feedback (Blakemore and Mitchell,

1973; Perruchet, 1994; Aarts et al., 2009; Coward, 2010; Reber,

2013). These formsmay involve nonconscious states, such as dream

sleep (Coward, 2009). Thus, the question then becomes what does

non-consequence-feedback have to offer general learning?

From the perspective of AI, the question is whether restricting

consequence feedback to portions of learning models and allowing

for non-consequence-feedback learning algorithms in other

portions affords more efficient novelty learning than completely

consequence feedback driven learning models.

Here, novelty learning can be measured in part by the totality

of processes involved in learning new stimuli more accurately or

with fewer parameters and memory even in the event of returning

to prior tasks after learning new tasks.

1.1. The recommendation architecture

Since its initial proposal in Coward (1990), the

recommendation architecture has been used to understand

the roles of different brain anatomical structures in considerable

detail (Coward and Coward, 2013), and has been electronically

simulated to some degree (Gedeon et al., 1999; Coward, 2001,

2004b). The fundamental property of the RA is that there is a

sharp separation between a subsystem (called clustering) that

defines and detects conditions in the information available to

the brain and a subsystem (called competition) that interprets

a condition detection as a range of recommendations in favor

of different behaviors and selects and implements the most

strongly recommended behavior. Consequence feedback changes

the recommendation weights in the competition subsystem that

resulted in recently selected behaviors, but cannot directly affect

the condition definitions themselves. Condition definitions can

only be changed on the basis of temporal correlations, and the

circumstances in which changes can occur are severely restricted.

The reason for such restrictions is that any such changes can

affect the integrity of all the other behaviors recommended by the

changed condition. In particular, using consequence feedback to

change a condition definition might improve the definition for a

recently selected behavior, but would generally make the definition

less applicable for all the other behaviors it also recommends. Even

on the basis of temporal correlation, condition changes are most

often limited to slight expansions in the range of circumstances

in which the condition is detected. The simplest conditions are

initially defined by combinations of sensory inputs that often

occur at the same time. Higher level conditions are defined by

combinations of simpler conditions that often occur at the same

time. Different modules in the clustering subsystem define and

detect conditions on different levels of complexity that are effective

for recommending different types of behavior. If every sensory

input and detected condition needed to be processed, the resources

required would be excessive. Subsets of inputs and detected

conditions are therefore selected for processing. Such selections are

behaviors that are recommended by condition detections.

In the brain (Coward and Coward, 2013), the cortex

corresponds with the clustering subsystem, and different cortical

areas correspond with modules detecting conditions on different

levels of complexity. The hippocampus determines when condition

definition changes are appropriate in the cortex and implements

the changes. The basal ganglia correspond with the competition

subsystem. The thalamus implements any behaviors of releasing

information into or between cortical areas once those behaviors

have been selected by the basal ganglia on the basis of its cortical

inputs. The amygdala and hypothalamus detect conditions that

influence the selection of different general types of behavior.

Selection of behavior by the basal ganglia takes a certain amount of

time. Some behaviors are often used in exactly the same sequence.

Examples include the sequences of muscle movements used fro

walking, climbing stairs, or generating frequently used words and

phrases. Implementation of such sequences can be speeded up by

recording the sequence and limiting the basal ganglia to selection

the sequence once as a whole rather than selecting all the individual

muscle movements. The cerebellum records and implements such

behavior sequences.

Conditions can be directly activated by a re-occurence of the

sensory circumstances in which they were defined. A condition

can also be indirectly activated on the basis of the activity of
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other conditions that were active at the same time as its past

activity. These indirect activations are also behaviors which must

be recommended by current condition detections and accepted by

the basal ganglia. Indirect activations are the basis for declarative

memory, speech and consciousness (Coward, 2010). Because of the

severe restrictions on the type of changes to condition definitions,

such indirect activations have significant subjective similarities to

direct sensory experiences.

There is a fundamental difference between the

recommendation architecture and cognitive architectures like

SOAR or ACT-R. In all types of architecture, the system is

separated into components (which may be called subsystems or

modules). In SOAR (Laird, 2022) or ACT-R (Ritter et al., 2019),

these components correspond with major cognitive processes

like visual perception, procedural memory, semantic memory,

episodic memory etc. In the recommendation architecture, the

driving force defining the separation into components is the need

to minimize the total information processing resources required.

Each component is a chunk of information processing resources

optimized to perform one type of information process very

efficiently. A cognitive process is carried out using information

processes performed by many if not all components. In a sense,

models like SOAR and ACT-R are analogous with a user manual

for a computer, in which the major components are applications

performing different user functions. The recommendation

architecture is analogous with the system architecture of a

computer, in which the major components are CPU, memory,

WI-FI interface, monitor driver etc. and any application requires

information processes performed by most or all of the components.

It would be possible to implement a computer in which different

physical modules corresponding with different applications, but

such an implementation would be very costly in terms of total

resources needed. In an architecture in which resources are a

significant constraint, there will be no direct correspondences

between components and user features.

1.2. Novel contributions

We consider a categorical learning task where the objective

of the model is to correctly identify an unseen stimuli’s category.

No two stimuli are ever the same throughout training and testing.

Three models are evaluated. First a novel model, which we

refer to as the RA model, simulates a very basic cortex, basal

ganglia, thalamus, and hippocampus. The cortex uses an alternative

learning mechanism where conditions are defined by identifying

combinations of information that often occur simultaneously

during experience. In this model, consequence feedback is only

used on the basal ganglia. We then compared two state-of-the-

art (SOTA) AI models: DQN and ResNet (Van Seijen et al., 2009;

Mnih et al., 2015; He et al., 2016). More on each model is given

in the background and approach sections. The results on the task

are collected in terms of accuracy, number of nodes, number of

learning interactions, and random-access-memory – RAM (as an

indication of computational steps).

We expect the RA model to outperform the SOTA AI models

on the categorical task because it’s quicker to learn novel stimuli. If

the RA model uses consequence feedback to inform the accuracy

of behavioral interpretations of condition definitions created in

the cortex, the ability of the model to combine representations

of information is extended without having to extensively update

values of nodes representing such information.

The key insight here is that entirely consequence feedback

driven learning interferes with the system’s ability to learn novel

conditions because such models must rewrite each node (i.e.,

neuron) to define only the current input condition. Nodes cannot

easily be used in the instance of a new stimuli since they define a

specific condition in the last set of inputs. This problem is known

as catastrophic forgetting, in which prior learning is rewritten for

the sake of current learning (Goodfellow et al., 2013).

In contrast, a condition definition driven learning system,

as described in the RA, may be more akin to human learning.

RA literature suggests consequence feedback is used to interpret

cortical activity rather than create the activity itself (Coward,

1999a). Thus, error or reward from external stimuli cannot be

used to directly change cortical activations. Instead consequence

feedback is used to learn to interpret cortical activity.

Ultimately, the benefit of such an approach is faster learning

of novel conditions without excessive resources. In our model,

this manifests as the ability to combine cortical representations

in a more expressive manner, which defines novel stimuli

conditions quickly without degrading their use for other stimuli

condition definitions.

We further explore this claim by investigating each models’

performance on returning to prior learning after new learning.

The final results of the study show that consequence feedback as

interpretation, not creation, of cortical activity creates a learning

stylemore similar to human learning in terms of resource efficiency.

2. Background

2.1. Consequence feedback in artificial
intelligence

In AI, the most widely known and arguably best performing

models (such as GPT-3, Gato, AlphaGo, DALL-E, etc.) are those

which use some form of backpropagation or reinforcement learning

as the driving learning algorithm (Silver et al., 2016; Gundersen and

Kjensmo, 2018; Brown et al., 2020; Zhang and Lu, 2021; Reed et al.,

2022; Tewel et al., 2022). Backpropagation is a type of consequence

feedback since an error signal derived between the current behavior

and desired behavior is propagated mathematically to each node

in the network. Using a partial derivative equation, the error

signal provides a measure for how much to change the value

of each node to elicit a more accurate response during the next

round of stimulus (Chauvin and Rumelhart, 2013). Reinforcement

learning (RL) uses an adaptation from Markov decision modeling

to predict the reward expected when performing a behavioral

output, given a particular input (Sutton and Barto, 2018). From

many previously performed and saved input-behavior (i.e., state-

action) pairs, the goal in RL is to learn or use a function which

maximizes reward of a new state, thereby learning the correct

action. Both backpropagation and reinforcement learning can be

thought of as consequence feedback mechanisms.

ResNet is a deep neural network that excels at learning

categorical data (He et al., 2016). Resnet uses backpropagation
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as the sole learning algorithm. Deep-Q Network (DQN) is a

deep reinforcement learning neural network that shows promising

results in reward-driven learning tasks (Mnih et al., 2013). DQN

model is a mixture of backpropagation and reinforcement learning.

A common problem in backpropagation neural networks is

catastrophic forgetting (Goodfellow et al., 2013; Clair, 2022).

Usually, during the backpropagation algorithm, the signal that

informs how to change each node is given only by an error

signal from the most recent set of inputs. The nodes are updated

according to the assumption that future inputs are similar to

current inputs. Thus, when a task changes, from one domain of

data to another, the nodes have to begin the updating process again,

in repetition until the nodes have changed significantly to define

the new set of inputs; the model has forgotten (catastrophically)

previous knowledge.

To our knowledge, there is no known solution for completely

overcoming catastrophic forgetting. There have been some

attempts to assuage the problem of catastrophic forgetting

with delayed backpropagation, entropy based backpropagation,

tokenization of networks, etc. (Kirkpatrick et al., 2017; Shmelkov

et al., 2017; Serra et al., 2018). Promising efforts recently introduced

in SEER show an alternative self-supervised learning style that

can process orders of magnitude more data than traditional

neural networks (Goyal et al., 2021). In SEER, prediction errors

between unseen or masked data and the reveal of what the

masked data contains, drives learning through a process termed

contrastive learning.

Although all of these approaches are helpful, they do not

actually reduce the fundamental problem of needing to increase

computations to increase learning capacity; eventually the capacity

of the system is reached without fundamentally re-designing the

learning algorithm itself. This approach is quite antithetical to the

way the brain learns. To give perspective on how critical resource

efficiency is, one recent SOTA natural language model, GPT-3, cost

$4.6M to train (Li, 2022).

Likewise, in RL a similar resource expenditure problem is

observed. By design, RL models store a record of state-action-

reward tuples. As learning occurs over time, more states, actions,

and resulting rewards are recorded. This leads to excessive

computational memory as the model scales and limits the lifetime

of the model within reasonable costs of computation. A single

training regimen for one of the most prominent RL deep neural

networks, Gato, costs roughly $50k to learn to navigate a few

simulated control environments (Effective, 2022).

Some approaches have been proposed to assuage the scaling

issues within RL. One such work, exploits multiple processing

units that compute locally before pushing computations to a

shared repository in such a way that convergence to a solution

scales linearly (when compared to previous methods) (Zhan et al.,

2017). Similarly SeedRL achieves some efficiency improvements

by leveraging a distributed cluster of software and hardware

components which are then connected to a central inference area

via a fast streaming technique (Espeholt et al., 2019).

Thus, the general approach to being able to increase the

knowledge repertoire in AI seems to be to increase the number

of nodes or disperse the computations, rather than actually reduce

the number of computations and memory requirements needed to

learn more information. This trend results in a failure of resource

efficiency and is one of the reasons neural networks are so expensive

to train.

Yet, there remains the problem of being able to learn

novelty efficiently as is seen in the human brain. In AI a

technique known as few-shot learning has shown some ability

to learn novelty quickly (Wang et al., 2020). Traditionally in

few-shot learning, a limited number of training inputs and

corresponding labels are given, the model learns on this subset

before performing on a much larger subset. This method is the

inverse of traditional AI where the training inputs are much larger

than the performing inputs (i.e., test inputs). Techniques proposed

in these works rely on consequence feedback since the error signal

or reward is still given in the smaller training subset in the form

of labels.

There are variations to this technique, namely one-shot

learning, zero-shot learning, andmeta-learning (Wang et al., 2020).

In one-shot learning, the training subset is reduced to only one

example of each category in the task. In zero-shot, no examples

from the task are given, but instead a large amount of other

data is provided. Meta-learning augments a traditional learning

approach with a secondary learning mechanism as a function of

the first learning mechanism. This second learning mechanism is

typically a variation of zero-shot learning. With the exception of

zero-shot learning, these approaches utilize consequence feedback

to drive learning. Zero-shot learning typically doesn’t use any

consequence feedback.

The RA model proposed can be thought of as a type of

few-shot learning, but does not only augment existing learning

protocols, it is itself a new learning protocol. The model uses

a combination of non-consequence-feedback and consequence

feedback to drive learning. The focus of this work is on the effects of

consequence feedback in learning novelty and retaining knowledge

under resource constraints rather than the ability to learn from as

few examples as possible (i.e., few-shot learning).

2.2. Consequence feedback in the brain

Traditionally, consequence feedback and the role of explicit

reward has been the primary target for understanding learning

mechanisms in the brain. However, there is an alternative

understanding of anatomy and physiology that describes the

process of learning and role of consequence feedback. In the theory

proposed by Andrew Coward, the Recommendation Architecture

(RA), consequence feedback is described as a tool to learn how

to interpret cortical patterns of activation, while the patterns of

activation have an alternative learning protocol not dependent on

consequence feedback (Coward, 2001).

In RA, the cortex defines conditions by identifying

combinations of information that often occur together in

experience (Coward, 2021). The basal ganglia associates the final

output of the cortex with a range of recommendations in favor of

different behaviors, and implements the behavior with the largest

total recommendation strength across current cortical outputs.

Initially, recommendation strengths are assigned on the basis

of guidance, the correct behavior is indicated by a teacher.

Subsequently, simple correct/incorrect consequence feedback

reward is provided following the selection of a behavior.
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Incorrect feedback decreases the recommendation weights that

were active in recommending recent behaviors. Conditions

detected within the circumstances following the behavior may

have recommendation strengths in favor of decreasing the

recommendation weights that were active in recommending

slightly earlier behaviors. Correct feedback is used less often to

increase such recommendation weights.

In order to create an adequate range of recommendations, at

least a minimum number of conditions must be detected in every

situation. If fewer than this minimum number of conditions are

detected (i.e., if there is some degree of novelty in the current

situation), some undetected conditions expand so that they also are

detected and add their recommendation strengths. Furthermore,

signals indicating strong emotion can increase the number of

expansions. However, condition expansions performed to achieve

the minimum number can decay over time, and need to be

confirmed by signals indicating that the expansions are worth

keeping. Consequence feedback cannot guide the selection of what

condition changes take place, but can confirm that changes driven

by novelty should be retained in the long term. Positive and

negative consequences have essentially the same effect on retaining

condition changes.

The cortex identifies conditions that tend to occur relatively

often in experience, in such a way that two conditions tend

to be different (i.e., do not always occur at the same time).

If a new behavior needs to be learned and if past experience

has included circumstances in which the new behavior is

appropriate, conditions appropriate for recommending the new

behavior may already exist, just requiring the assignment of

recommendation weights. Thus, learning a new behavior may

be somewhat easier. Figure 1 depicts the difference in use of

consequence feedback (red arrows) between the RA model and

backpropagation/reinforcement learning models.

Learning new behavior more efficiently can be measured in

part by accuracy. It’s also important to take into account the

total scope of learning, which includes the total training size, the

number of nodes needed, the hardware memory utilized, number

of operations performed, etc..

FIGURE 1

Recommendation architecture vs. backpropagation. A simplified diagram of the di�erence between RA (bottom) and backpropagation/reinforcement

learning (top) is presented. In RA, consequence feedback does not modify cortical neurons, whereas it does in error and reward models.
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Thus, we aim to determine how the accuracy of learning

categories relates to the amount of nodes in the network learned

and random access memory (RAM) used by the network. Number

of nodes and number of learning iterations were chosen as basic

computational resources being utilized since it’s readily available

and comparable between models. Since the RA model is written

in the programming language Smalltalk and the SOTA AI models

are written in Python, it is difficult to extract the number of

operations, memory, and speed in a comparable fashion. However,

RAM is reported as an approximate performance metric although

a direct comparison should be taken lightly since models are not

run on the same hardware and language frameworks. Benefits

in learning with fewer resources have shown to be promising

tools in emerging technologies and to alleviate the drawbacks of

costly neural networks (Hernandez, 2020). Furthermore, learning

novelty efficiently may provide a more realistic model of human

intelligence than is currently available.

3. Approach

Traditional SOTA techniques in AI utilize consequence

feedback as the driving learning mechanism, either in the form

of error, reward, or both. These methods are unlike human

learning because they fail to learn novelty efficiently and retain

prior learning after new learning within a constrained resource

environment. These methods require many iterations and copious

amounts of computation. Learning is impeded by the need to

constantly re-learn the nodes’ representation of the current task,

slowing the learning process. We present a model of RA that

accurately learns novelty efficiently, per number of nodes, learning

iterations, and memory. The model is constructed according to

prior instantiations of RA in Gedeon et al. (1999) and Coward

(2004a,b). In the RA model, there are four components: cortex,

basal ganglia, hippocampus, and thalamus. Figure 2 depicts the flow

of information through each module in the RA model.

3.1. The RA model

3.1.1. Cortical component
The simulated cortex has three layers of neurons, organized into

columns. In each column there are 10 layer one neurons, 10 layer

two neurons, and one layer three neuron. Each neuron has multiple

dendritic branches (approximately 1,200 synaptic connections)

and each branch has multiple inputs from the preceding layer

or from external inputs in the case of the first layer. Interlayer

connectivity is within columns. Neurons produce spike inputs if

an integration process within each of its branches followed by

an integration process across branches exceeds a threshold. For

simulation purposes a time slot is defined as a (conceptual) third

of a millisecond, and the neurons are updated once every timeslot.

3.1.2. Basal ganglia component
There is only one layer three neuron in each column, and each

such neuron targets the basal ganglia. The simulation of the basal

ganglia is very simple. There is one basal ganglia conceptual neuron

corresponding with each of the 30 categories, and each layer three

cortical neuron has a recommendation weight in favor of each

behavior. These weights all start at the same low value, and increase

or decrease in response to reward feedback. There are two types

of reward: teacher signal, where the correct category is identified,

and consequence where the feedback is just correct/incorrect.

Rewards are not used in the cortex. As a result, after one cortex

run is completed it is possible to experiment with different basal

ganglia parameters.

There is one basal ganglia neuron for every category. Layer

three outputs go to these basal ganglia neurons. Each such layer

three output has a range of different recommendation weights

in the basal ganglia in favor of different categories (i.e., of

identifying the current input as a member of a category). The basal

ganglia identifies the category of the current input by adding the

recommendation weights of all the layer three outputs over the 200

ms period in favor of each category, and selecting the category with

the largest total. This means that 2nd, 3rd, etc. choices can also

be identified.

During training, the basal ganglia is told the correct

identification, and uses this to adjust the recommendation weights.

The system is then tested by exposure to a new set of input

states, and the results calculated. The result is the category

with the highest total recommendation weight, but 2nd and 3rd

etc. choices are also calculated. In addition, the basal ganglia

can be given just the information that its selection is correct

or incorrect. When a new set of categories are learned, the

new learning can partially interfere with prior learning. The

FIGURE 2

RA model overview. A block diagram depicting components of the RA model and the direction in which information flows.
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existence of information on 2nd and 3rd etc. choices means that

the prior learning can be largely restored using just incorrect

feedback without information on the actual identity of the

correct category.

3.1.3. Thalamic component
The function of the thalamus is modeled by 40 Hz frequency

modulation of the spikes, which also makes it possible to present

three different categories in each 200 ms period (modeling

attention/working memory to a degree). This modulation occurs

on the input categories before the model begins learning. A

behavior decision is made for each category in the working

memory separately, because modulation separates the categories

in time.

3.1.4. Hippocampal component
The Hippocampal component drives learning in the cortical

component, without consequence feedback.

Cortical neurons have branches and each branch has a number

of synapses made by different inputs. Inputs to branches are

integrated separately, and then the branch outputs are integrated

to determine if the neuron fires. Neuron connectivity is initially

defined randomly in the cortical component, but for each column

there is a bias in favor of a different group of inputs that have tended

to occur at the same time across presentations of all categories.

This bias corresponds with dream sleep and is the only role of

the hippocampus that is simulated. All inputs start with the same

synaptic weight. From then on, a synaptic weight increases if there

is an input to the neuron on that synapse just before the neuron

fires. However, unless this sequence occurs at least three times

within 200 ms, the increase is reversed. Furthermore, if a branch

fires a number of times but each time some synapse does not

contribute, the weight of that synapse is decreased. If a neuron fires

very often, all the synaptic weights on the neuron are reduced by

the same proportion.

3.2. SOTA AI models

To compare the novel model to traditional AI approaches, we

test ResNet and DQN on the same learning task. The DQN was

chosen as it represents both error and reward driven consequence

feedback and has shown promising results in learning novelty

amongst tasks. However, the RA model can also learn without

receiving error or reward, only information that the category

identification was incorrect. To compare, a reward only learning

model is needed, which only gives a zero or one value indicating

correct or incorrect, for which the model E-SARSA (Van Seijen

et al., 2009) was chosen. However, we could not get the E-

SARSA model to train without error based reward. Future results

will attempt to reconcile only reward based learning with the

results proposed here. To further understand the role of error and

reward in consequence feedback, ResNet was chosen as a only

error driven learning model which has shown SOTA success at

category learning.

A hyperparameter tuning technique from Biewald (2020)

was used for each SOTA AI model to assess the best model

configurations for the task. Details of hyperparameter tuning and

resulting hyperparameters for each model are provided in the

Supplementary Sections 1–4. The important note is that during

this tuning process, the ResNet and DQN were provided with

the ability for more or less parameters and learning iterations.

Both models required more than the lowest number of parameters

and learning iterations to perform the task accurately. Thus, these

models do require the number of computations listed above to

achieve comparable accuracy to the RA model.

3.3. Experiments

In a series of experiments, we examined how consequence

feedback can affect learning. A category classification task is used

across all experiments. There are two general types of overall

simulation runs. The first kind is to learn all 30 categories at once.

This type is used to assess how efficiently and accurately novelty is

learned. The second type is to learn only 15 categories, then another

15 categories and then accuracy of identifying all 30 categories is

accessed. This type of experiment is used to understand how new

learning interferes with prior learning.

In the RA model, each run type models about 5 min of cortex

time, but actually takes many hours of simulation time. Multiple

different instances of each category are presented, each presentation

for 200 ms neuron time.

3.3.1. Categorical task
Across experiments, the same categorical learning task is used.

The task simulates a situation in which the cortex never experiences

exactly the same input twice. An input vector of 400 components

is presented. The components can either be zero or one. What

determines if there is a zero or one in each component is a

combination of the category, modulation, and chance. We can

understand a one as indicating an input spike, a zero indicating

no spike.

Each category is defined by a unique probability distribution

which is determined at random at the start of each model

instantiation. One category probability distribution is 400

components which are a number chosen at random from a list of

numbers 0 to 200. Smaller numbers are repeated up to five times in

the list and a decay occurs for the number of repetition as numbers

increase in value. The point of this is to make spiking less likely

since larger numbers increase spike likelihood.

The modulation factor is kept constant and pre-determined

according to a 40 Hz frequency modulation pattern. The

objective of this factor is to simulate the thalamus frequency

modulation which makes working-memory possible in the

RA model.

Chance (of a spike) is introduced by drawing a random number

from a list from one to 10,000. If the product of the category
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probability for a specific component location and the modulation

factor for a specific component location is greater than the random

number, a spike occurs. If the product is less than the random

number, a spike does not occur and instead a zero is placed as the

component value at that location.

Size 400 was chosen for the inputs because in the RA

simulation there are 400 input sources to the cortex (i.e.,

possible inputs to layer one neurons). The presentation of one

object (one instance of a category) is a sequence of action

potential spikes across the 400 component input. In the RA

model, the presentation lasts for a notional 200 ms divided up

into 1/3 ms time slots (for computational efficiency). One 400

component input stream is effectively one third of a millisecond,

such that for 200 ms of presentation 600 of the 400 inputs

are needed.

In the RAmodel, a type of working memory is utilized in which

across the 600 presentations, three categories are presented one

after the other. The thalamic module groups each category into

approximately 8 ms for eight cycles representing the period of the

40 Hz gamma modulation. This means that 75 periods are needed

to represent all three categories, each of 8ms. Effectively, this results

in a 200 ms presentation of synaptic inputs onto the first layer of

cortical neurons. In the visual cortex, attention to an object lasts

about 200 ms (Agam et al., 2010).

We’ve adopted the modulation approach in the SOTA AI

models as well since it directly affects the distribution of spikes in

the input. However, the SOTA AI models do not have the capacity

for working memory. Some results on trying to show inputs with

working memory (three categories at once) in the DQN model

are reported in the Supplementary Section 5. As such, only one

category is presented at a time. Eight cycles are still used but only

25 periods are needed to represent one category. The result is a

200 by 400 input presentation, which is approximately 67 ms of

presentation time.

No presentations of two instances of a category will be the

same, at least the probability that this occurs is extremely low

due to chance. The objective is to re-create the inputs in a

comparable way as they occur in the RA model. Effectively,

the RA model is evaluating one category at a time, making

it possible to compare SOTA AI models evaluating a different

input size, corresponding to one category at a time modulated by

thalamic frequency.

3.3.2. Experiment one
In the first type of run, instances of all 30 categories are

presented repeatedly in a sequence. The sequence of which the

categories are presented never changes. Each model attempts

to identify the corresponding category label (i.e., category one,

category two. . . and so forth).

In the RA model, initially the output from every cortical

column is given a connection on to the basal ganglia neuron

corresponding with every category. All of these connections are

given the same initial weight. These are the initial recommendation

weights of the columns in favor of recognizing the categories. The

cortex gets a sequence of 1,200 presentations of different category

instances (40 of each category), each lasting 200 ms of neuron

time. Cortical learning takes place, without consequence feedback,

on the basis of temporal correlations: each column defines a

group of conditions on the basis that conditions in the group

tend to occur at similar times. For the first 300 presentations

there is no use of the cortical outputs by the basal ganglia.

In the next 600 iterations, if sufficient conditions in a cortical

group are detected, the layer three cortical neuron output goes

to the basal ganglia. The identity of the correct category is also

communicated to the basal ganglia. In the basal ganglia, the total

of (input spikes x recommendation weight) is calculated for each

category. The category with the largest total recommendation

weight is determined. Then the weights in favor of the correct

category for each column are increased in proportion to the

number of spikes generated during the presentation by the column.

Finally, if the category with the largest total recommendation

weight was incorrect, the recommendation weights in favor of that

category for any columns that produced an output are reduced

by a standard proportion. For a final 300 presentations, the

predominant recommendation strengths are determined without

consequence feedback, analogous to a test set in AI with the

exception that the cortical nodes continuously update.

Here, the DQN and ResNet models are compared. Model

training (i.e., learning) occurs over various iterations needed to

reach similar accuracies of 77 and 90% accuracies. After the models

are trained, another 300 iterations are used for testing.

The goal is to determine if the RA model has an advantage in

learning novelty with less resource consumption. We expect the

results to show that more memory and parameters are needed for

the DQN and ResNetmodels with comparable accuracy on the task.

If we want to claim that condition definition (i.e., feature

detection) which is not determined by consequence feedback can

learn novelty with few resources, a similar accuracy has to be

achieved by the RA model whilst using less memory and learnable

parameters and/or learning iteration steps.

3.3.3. Experiment two
The second type of run tests the management of interference

between new and prior learning.

In the RAmodel, instances of categories 1-15 are presented first

and the basal ganglia gets correct category identifications to guide

acquisition of recommendation weights for those categories (i.e.,

consequence feedback). Then the other 15 categories are presented,

and the basal ganglia gets correct category identifications for those

categories. Then all 30 categories are presented and the effect of new

learning on prior learning is determined.

Once again, second and third choices are also determined.

Immediately after learning the second set of categories, first choice

identification accuracy for the first learned set drops to about 57%,

although the total for first, second and third identifications of this

first learned set is close to 76%. So although accuracy has gone

down, significant information has been retained.

After this, weights are adjusted in response to simple

correct/incorrect feedback without identifying the correct category

with another set of 10 instances of each category. Accuracy is then
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about 62% for first choices of both early and later categories, and

80% for combined first, second and third choices. In other words,

accuracy is about the same for both the early and later categories,

although somewhat lower than when all categories are introduced

at the same time.

Likewise in the SOTA AI models, the first 15 categories are

presented during training. Then, the next 15 are presented for

training. Testing then occurs on all 30 categories and accuracy

measures are recorded.

Since only correct/incorrect feedback can not be given in

backpropagation models (backpropagation relies on a measure

of error to update), an extension of this run type should

have been performed with the E-SARSA model, which can give

correct/incorrect feedback in the form reward. Although, the task

appears to be too hard for a sparse E-SARSA reward model.

We designed this experiment to show how new learning

degrades prior learning. The second run in this experiment type is

used to show how only reward based consequence feedback affects

learning. A third run is conducted as a control that uses a single

pass of 30 iterations with normal consequence feedback learning

to determine if the effects of correct/incorrect feedback are due to

more learning iterations. We would expect to see the RA retains

better accuracy on all 30 categories after split training if restricting

consequence feedback outside of condition definition is a successful

learning method with fewer resources. We then expect that this

result carries over to types of consequence feedback that are reward

based only, as in the case of the RA with a single correct/incorrect

learning pass method.

4. Results

4.1. Experiment one

In Table 1, we show the resources needed to get the RA

and AI models to 77% accuracy, which involves the training

computations needed to correctly identify 23 out of the 30

categories presented during testing. This table shows that the RA

model can learn with less resources. This is due to the ability of

the cortex in the RA to define new conditions quickly by slightly

modifying recommendation behavior of the condition definitions

throughout learning. Parameter computation over all iterations is

477 times less in the RA model when compared to DQN (the

most resource intensive protocol). Notably we see that the RA

model outperforms DQN and ResNet in the number of learning

parameters, training iterations needed, and the MB of RAM to

conduct learning.

These findings are consistent with the expectation that

consequence feedback, either error or reward, degrades the ability

to learn novelty efficiently because nodes have to be continuously

re-tuned, not learned “on-the-fly” (as in the case of the RA model).

Whereas, the RA model is trained to 77% accuracy by the 10th

iteration of the x-axis, the AI models are just beginning to learn.

With 15 columns, the RA model gets about 77% correct

category identifications. An additional point is that because

recommendation strengths are available for every category, it is

possible to calculate second and third choices etc. of cortical

outputs. Cognitively this would correspond with identifying

a category, getting immediate feedback that the choice was

wrong, and selecting the next highest recommendation strength.

The percent in which either the first or the second choice

is correct is about 90%, and about 95% for first, second

or third.

When the number of columns is increased to 20, correct first

choices are 84%, first or second 94%, and first or second or third

97%. For a cortex with 20 columns, increasing the number of

presentations to 1,500, with basal ganglia learning occurring in an

extra 300 results in an increase in correct choices for first, first or

second, and first second or third to 87, 95, and 98% respectively.

A run was also performed with 20 cortical columns and 1,500

presentations, and with changes to the connectivity of layer one

in each column. The number of layer one neurons was increased,

the number of dendritic branches on each layer one neuron was

increased, and the number of inputs to each branch. In this run,

correct first choices increased to 94%, first or second to 99% and

first or second or third to 100%.

The RA model was configured to increase accuracy on the

task to 90% (see Supplementary Section 4 for exact configuration).

Results are shown in comparison with the SOTA AI models

in Table 2.

These findings are consistent with previous findings that the

RA model is more efficient, but also establishes that overall

performance (i.e., maximum accuracy) is not diminished. All

models are capable of reaching at least 90% accuracy. It is likely

that the RA model could achieve increased accuracy, however

this work will be implemented in future experimentation on

accelerators. Yet, the orders of magnitude difference between

resource consumption indicates the RA model would likely still

out-perform the SOTA AI models in terms of resource efficiency

per accuracy performance.

TABLE 1 Seventy-seven percent accuracies.

77% Accuracy for category identification in test

Model RA DQN ResNet

Learnable parameters 195,450 4,665,660 11,191,902

Training iterations 900 18,000 1,500

Parameters X iterations 175,905,000 83,981,880,000 16,787,853,000

MB of RAM 200 3,663 2,116

Resource metrics used during training for achieving 77% accuracy on category identification

during testing.

TABLE 2 Ninety-four percent accuracies.

90% Accuracy for category identification in test

Model RA DQN ResNet

Learnable parameters 460,600 4,665,660 11,191,902

Training iterations 1,200 27,000 3,000

Parameters X iterations 552,000,000 125,972,820,000 33,575,706,000

MB of RAM 320 3,663 2,119

Resource metrics used during training for achieving 94% accuracy on category identification

during testing.
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TABLE 3 Accuracy percent during split training.

Accuracy for category identification in test split training
task

Model RA DQN ResNet

Normal training 57.6% 31.5% 44.3%

Correct/Incorrect 62.1% n/a n/a

Full training 78.6% 47% 27.7%

MB of RAM 320 3,663 2,119

Training accuracies on test phase across models and types of split task learning protocols.

4.2. Experiment two

Table 3 compares approaches of retaining learning in the

categorical task when models were trained to approximately

77% accuracy.

We see that learning is slightly diminished in the RA model

when returning to the task (77% accuracy to 57.6% accuracy). In

the SOTA models, an even larger decrease in accuracy is observed

after learning the second set of category tasks. This is likely

because knowledge retention is preserved better in the RA model,

which is expected since receptive fields in the cortical module are

not being re-written for the sake of the second set of categories

during learning.

Notably, the drop in knowledge retention in the RA model can

be largely recovered with one more pass through all 30 categories

with a simple correct or incorrect feedback, shown in Table 3

(62.1%).

To better understand the ability of the RA model to preserve

knowledge, we evaluate the ratio between the first and second

category learning sets during testing. The resulting Figure 3 shows

the direction of bias on preserved knowledge while comparing the

original split learning task, the correct/incorrect split learning tasks,

and a control of completely re-learning all 30 tasks after the split

learning procedure. First, second, and third choices correspond to

the output layer in the basal ganglia in which the first guess is

usually taken as the accuracy measure. The second and third are

provided as an indication if the model was initially incorrect, how

would it be close to identifying the correct category.

We then compare each learning method in the split task, we

see that returning to learning does have a bias on the second

set of categories. However, using another learning pass of only

correct/incorrect feedback not only recovers accuracy but also

establishes a ratio close to one. This indicates that there is a

balanced retention of knowledge between the first set of categories

and second set of categories. Interestingly, we see that completely

re-learning all categories has a slight bias toward the first set of

categories, this is likely because some of the weights are over-

reactive toward the first set of categories in an attempt to recover

the imbalance during split training.

5. Discussion

In this work, we show that by restricting consequence feedback

learning to interpretation of cortical patterns of activation to

FIGURE 3

The RA model performance on the split learning task. Usual

indicates no further learning was used after the split task,

correct/incorrect indicates feedback was given in a single pass extra

learning after split task, and re-learn indicates full re-learning of all

30 categories. A ratio close to one would mean a balanced learning

of both first and second sets of categories.

recommend behaviors, and while cortical patterns of activation

are managed by synaptic connectivity and weight changes

based on frequency of inputs often occurring together in

the past, learning steps and number of learnable parameters

can be reduced massively while still retaining performance in

learning continuously new inputs. We further show that new

learning does not completely degrade prior learning within this

framework.

Through manual hyperparameter tuning in the RA model,

we discover accuracy increases with the number of columns.

Accuracy is also considerably increased by the bias on initial

connectivity to columns in favor of different groups of inputs

that have often occurred at the same time in past (otherwise

unprocessed) category instances. Accuracy is also sensitive to the

general reduction in synaptic strengths of neurons that fire very

often. See Supplementary Section 6 for details.

From a consciousness approach, this work sheds light on the

discussion of the neural basis of learning in cortical and subcortical

brain areas. Results comment on the tendency to associate cortical

activation with consciousness, in which we show here can be based

on learning not entirely consequence feedback driven. Specifically,

error and reward are not the only viable interpretations of learning

in the brain and when they are treated as such, knowledge retention

is preserved.

Works from Torbert et al. (1972), Sun (1997), Coward (1999b),

Cleeremans and Jiménez (2002), and Cleeremans and Frith (2003)

have attempted to argue that experiential learning proliferates

consciousness (or vice versa), while others Lewicki et al. (1992),

Phaf and Wolters (1997), Hobson and Pace-Schott (2002), Olcese

et al. (2018), and Birch et al. (2020) have come from the angle of

studying learning in conscious and nonconscious forms. Results

here, constructed from biologically supportedmechanisms, provide

insight into learning that is conscious and nonconscious in an

integrated model.
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We provide a model to start testing underlying mechanisms

of consciousness as proposed in several prior works (Cleeremans,

2005; Seth, 2009). Promising directions involve modeling theories

of consciousness, such as the RA consciousness framework and

Global Workspace within the RA model framework. Appropriate

modifications to the model would allow a more biologically

plausible evaluation environment than that of deep learning

models, in regards to cognition and consciousness studies.

Furthermore, the basal ganglia and hippocampus modules

are severely underdeveloped. Future work would benefit from

extending these modules to more realistic instantiations based

on neuroscience literature for various sleep and behavior

learning studies.

This paper also contributes to the field of artificial intelligence

in the hopes that as AI models continue to dominate practical

applications and become state-of-the-art tools in brain modeling,

more biologically plausible and scalable (i.e., resource efficient)

architectures can be adopted. Further, some of the findings here

support that backpropagation and reinforcement learning are not

suitable for general learning as it occurs in humans because

consequence feedback degrades learning stored in condition

definitions. We believe this paper provides counter-evidence to

the emerging trend that more computations lead to greater

intelligence.

To more accurately describe the relationship between

consequence feedback and condition definition in learning models,

the RA model needs to be ported to accelerated frameworks (e.g.,

pytorch) such that it can be more rigorously compared to existing

models in AI. One limitation of the study is that since the RAmodel

is written in the Smalltalk programming language and AI models

are typically written in Python with GPU acceleration, collecting a

time analysis was not feasible. Future work will focus on creating

a model of RA that fits into the existing and predominant AI

development tools.

6. Conclusion

It is our aim that this discussion encourages future work

on the relationship between consequence feedback, learning,

and consciousness. We’ve shown that learning can occur within

resource constraints (i.e., several orders of magnitude fewer

resources) when condition definition (i.e., features defined by

cortical neurons) are learned through plasticity and Hebbian

principles, not reward or error.

Subsequent work could provide insight into how each brain

region (i.e., basal ganglia, hippocampus, etc.) affects learning and

to further explain how theories of consciousness relate to learning

within this framework. Other studies are needed to compare the

RAmodel to other cognitive architectures rather than deep learning

architectures alone.
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