
TYPE Review

PUBLISHED 28 June 2023

DOI 10.3389/fncom.2023.1092185

OPEN ACCESS

EDITED BY

Jiyoung Kang,

Pukyong National University, Republic of Korea

REVIEWED BY

Chang-Eop Kim,

Gachon University, Republic of Korea

Seok Jun Hong,

Sungkyunkwan University, Republic of Korea

*CORRESPONDENCE

Taegon Kim

taegon.kim@kist.re.kr

RECEIVED 07 November 2022

ACCEPTED 12 June 2023

PUBLISHED 28 June 2023

CITATION

Jeon I and Kim T (2023) Distinctive properties

of biological neural networks and recent

advances in bottom-up approaches toward a

better biologically plausible neural network.

Front. Comput. Neurosci. 17:1092185.

doi: 10.3389/fncom.2023.1092185

COPYRIGHT

© 2023 Jeon and Kim. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Distinctive properties of
biological neural networks and
recent advances in bottom-up
approaches toward a better
biologically plausible neural
network

Ikhwan Jeon and Taegon Kim*

Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea

Although it may appear infeasible and impractical, building artificial intelligence

(AI) using a bottom-up approach based on the understanding of neuroscience

is straightforward. The lack of a generalized governing principle for biological

neural networks (BNNs) forces us to address this problem by converting piecemeal

information on the diverse features of neurons, synapses, and neural circuits into

AI. In this review, we described recent attempts to build a biologically plausible

neural network by following neuroscientifically similar strategies of neural network

optimization or by implanting the outcome of the optimization, such as the

properties of single computational units and the characteristics of the network

architecture. In addition, we proposed a formalism of the relationship between

the set of objectives that neural networks attempt to achieve, and neural network

classes categorized by how closely their architectural features resemble those

of BNN. This formalism is expected to define the potential roles of top-down

and bottom-up approaches for building a biologically plausible neural network

and o�er a map helping the navigation of the gap between neuroscience and AI

engineering.

KEYWORDS

bottom-up approach, biologically plausible neural network, optimization of neural

network, biological neural network supremacy, neural network architecture, balanced
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1. Introduction

Turing’s idea of building a thinking machine by replacing an organism with artifacts,

part by part (Turing, 1948), has inspired scientists and engineers because it was the first

clear statement of a bottom-up approach toward building artificial intelligence (AI). In

general, the term “bottom-up” refers to the directionality of an approach that begins

with specifics or minutiae to arrive at a comprehensive solution. Thus, the bottom-up

approach to developing a brain-like intelligence system begins with spatiotemporal local

properties and their organized combinations. Local properties are presented in neurons

or synapses, namely, single computational units and their combinations directly depict the

connectivity and architecture of a neural circuit. Because these details and their effects are

covered by the discipline of neuroscience, developing AI from the ground up using an

understanding of neuroscience is straightforward. However, even the latest neuroscience
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field lacks comprehensive knowledge of neural circuits, their

functions, and the mapping between them, indicating that the

operating principle of neural networks is absent in practice

(Goodfellow et al., 2016; Jonas and Kording, 2017). Thus,

experimental attempts to translate up-to-date piecemeal

information on various characteristics of neurons, synapses,

and neural circuits into AI are the only viable options under these

circumstances. Given that replacing a component of an artificial

neural network (ANN) with the counterpart of a biological neural

network (BNN) generally does not outperform the original ANN

and is often not very influential, a bottom-up approach appears to

be infeasible and impractical although it does not imply inherent

impossibility, as Turing contested (Turing, 1948).

Nonetheless, we believe exploring the gap between

neuroscience and AI engineering using a bottom-up approach

should be encouraged. Although no unified principle governing

multiscale neural network features has been found, there are

several useful models describing phenomena at different scales.

Good examples include the Hebbian learning principle and its

modifications, encompassing various forms of long-term synaptic

plasticity (Dayan and Abbott, 2001). Considering the history of AI

development, it is unsurprising that an ANN incorporates specific

principles from neuroscience and computational neuroscience.

The birth of successful modern approaches, such as deep neural

networks and their learning algorithms, is partly attributable

to this type of strategy (Goodfellow et al., 2016). Furthermore,

given the massive amount of resources required to operate such

systems (Schuman et al., 2022), further information behind the

efficient computation by the BNN should be uncovered and

implanted into the ANN. To accelerate exploration using a

bottom-up approach, cooperation between neuroscientists and

AI engineers can be promoted through mutual benefits. One

of the goals of neuroscience is to reveal the neural network

mechanisms underlying a particular mental state or behavior

that the neural network principle can encapsulate. This process

requires confirmation by observations made in a controlled

setting or laboratory experiments; however, because of their

complexity, the brain and neural circuits are often inaccessible

in a properly controlled manner. Furthermore, confirming a

unified operating mechanism is challenging because of the low

practicality of long-term and large-scale manipulation of the

brain and neural system. AI engineering can serve as a valuable

analogical model spanning several spatiotemporal scales, from a

cellular level to behavioral consequences. Hence, an ANN based

on the BNN features provides a proof-of-concept for a particular

neural network principle, demonstrating how a neural circuit

produces a specific behavior. On the other hand, the neural

network principle contributes to a better understanding of how

ANNs work. Considering that currently successful ANNs require

improved explainability and interpretability (Gunning et al., 2019;

Vilone and Longo, 2021; Nussberger et al., 2022), bottom-up

approaches equipped with neural network principles can help AI

designers better understand the outcomes of their ANN models.

Thus, this review preferentially introduces studies that focused on

the conceptual similarity between the components of a given ANN

and its corresponding BNN, regardless of the model’s performance

on the tasks designed for ANNs.

On the other hand, because other types of approaches toward

well-functioning intelligence systems have been successful, such

as the recent advancement of large-scale language models (Devlin

et al., 2019; Brown et al., 2020) and text-to-image models (Ramesh

et al., 2022; Rombach et al., 2022), approaches under purely

engineering goals seem to dispense with the need for a bottom-up

approach. However, such approaches merely offer an explanation

of how the brain is capable of many cognitive functions with

BNN, contrary to the mutual benefit expected from the bottom-

up approach. Top-down approaches like “brain-inspired” AI (Chen

et al., 2019; Robertazzi et al., 2022; Zeng et al., 2022) partly enhance

our understanding of the brain, especially the cognitive process of

a certain task, and improve performances simultaneously, whereas

their goals do not reach the circuit-level mechanism of BNN. At

the other extreme, attempts to emulate BNN have been made to

copy a mesoscopic neural circuit and demonstrate that copied

BNN indeed show the same activity measured from experiments

(Markram et al., 2015). They are useful for replacing invasive

experiments in the future and for simulating virtually controlled

experiments. However, these detailed models are not directly

applicable to AI systems because of their low cost-effectiveness and

relatively simple output pattern, despite large-scale computation

with a large number of parameters to be optimized. Therefore,

this review focuses on studies that consider the mutual benefits

between scientific and engineering goals at the proper level of

BNN abstraction.

Considering the rudiments of deep neural networks, the first

step was to construct a neural network and select a training

algorithm after determining the task and training dataset. Unlike

ANN, nature handles the search for a BNN architecture and

builds a training strategy. Thus, we begin the review with ANN’s

architecture search and training algorithm, which was inspired

by the natural process of network structure optimization and its

updates. As the optimization process continues, the properties

of the single computational units and the architecture of the

neural circuit are updated, which can be viewed as the outcome

of successful optimization. This implies that understanding BNN

properties and their impact on computation can be advantageous

because such properties of BNN studied have already been refined

by nature. Hence, the following sections of this review focus on the

montage of useful BNN properties and the efforts related to the

direct utilization of BNN properties in ANN design (summarized

in Figure 1).

To develop a systematic manner as opposed to a random

search of proper links between neuroscience and AI engineering,

we defined the set of objectives that neural networks try

to achieve as “the problem space” and categorized neural

network models based on how closely their architectural features

resemble those of BNN. Such formalization may offer an

approximate map, including the limitations of ANN and

what we should aim for when constructing a biologically

plausible neural network. Using this map, we proposed the

potential roles of neuroscience and AI engineering and their

cooperative workflow pipeline. We believe that this pipeline

will encourage reciprocal advantages by demonstrating how top-

down and bottom-up approaches from neuroscience can offer

useful information for AI engineering and, conversely, how
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FIGURE 1

Summary figure of the review. (Left) The optimization processes of a neural network. Arrows represent the involvement of each process with time.

(Right) The outcome of the optimization.

AI engineering advances our understanding of the brain and

its function.

2. Optimization strategy: multiscale
credit assignment

All biologically intelligent agents interact with their

environments and attempt to survive and reproduce. A

combination of hereditary mutations and epigenetic adaptations

builds up a biological agent’s fitness, and the agents are

eventually evaluated for survival (or death) and reproduction

(or nonproliferation). One of the essential organs in an individual

agent is the brain, which is optimized using the same process

(Tosches, 2017). Although the entire optimization process can

be understood in parts by dividing it into different temporal

scales, each part still encounters the common conundrum of how

much each spatiotemporal local parameter should be updated to

improve fitness. Thus, this issue can be described as a multiscale

credit assignment problem (Valiant, 2013). Assuming that the

properties of the computational units, network architecture, and

overall performance of the network are the outcomes of BNN

optimization, it is worthwhile to imitate this strategy to achieve

superior biologically plausible neural networks. In this review,

we simply hypothesized that a longer time-scale optimization

relates to the architectural search process through evolution and

development, whereas a shorter-scale optimization corresponds to

the learning process in a neural circuit or brain.

2.1. Architecture search: evolution and
development

The process of evolution includes the development and

learning of a neural circuit; therefore, it is a credit assignment

process with the longest temporal scale. Genes that must be

evaluated for fitness are prepared by mutations, and the neural

circuit variants built from these genes are eventually tested

by natural selection (Tosches, 2017; Hasson et al., 2020). The

artificial counterpart of the mutation-selection process, namely,

the evolutionary algorithm (EA), has been applied in numerous

domains for decades, and “neuroevolution” refers to the application

of EA to neural networks (Yao and Liu, 1998; Stanley et al.,

2019; Galván and Mooney, 2021). Although the neuroevolution

scheme simplified or omitted numerous aspects of the biological

evolution process, it successfully captured the essentials and

performed well in rediscovering the BNN properties (Risi and

Stanley, 2014) and optimizing the ANN architecture (Liang et al.,

2018; Zoph et al., 2018). In addition to structural connectivity,

network architecture comprises the functional features of a

network, such as the activation function of each neuron and

its hyperparameters or initial synaptic weights. For example,

the hyperparameters of different neuronal activation functions

can be optimized using the EA (Cui et al., 2019). In deep

learning, EA and reinforcement learning have been widely

employed for the automated network model selection, termed

neural architecture search (NAS; Elsken et al., 2019; Liu Y. et al.,

2021).
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In a BNN, developmental processes add diversity or constraints

to neural networks through their stochastic nature or spatial

arrangement, respectively (Smith, 1999; Tosches, 2017; Luo,

2021), in addition to a genetic code-driven architecture search.

During development, neurons are ready to grow and connect to

others, controlled by internally produced proteins (genetic codes)

and external cues. Biological studies have revealed sequentially

proceeding developmental processes: neuralation, proliferation,

cell migration, differentiation, synaptogenesis, synapse pruning,

and myelination (Tierney and Nelson, 2009). The first three

steps indicate the orchestrated positioning of neuronal nodes

in space, and the consecutive processes drive the formation

of proper connections. Although genetic codes can drive the

overall coordination of neuronal nodes in a three-dimensional

space, chemical cues, such as morphogens, are constantly exposed

to stochastic fluctuations (van Ooyen, 2011; Goodhill, 2018;

Razetti et al., 2018; Llorca et al., 2019; Staii, 2022). Additionally,

considering that synaptogenesis induces the randomly generated

overproduction of synapses and connectivity is polished by pruning

and myelination processes (van Ooyen, 2011; Goodhill, 2018;

Razetti et al., 2018), the potential intervention of probabilistic

diversification to differentiate connectivity is highly likely. Such

stochasticity depends on the environment to which the brain is

exposed. Thus, the common skeleton of the BNN architecture

across individuals is an essential structure of a neural network

to perform naturalistic tasks stably, and the variability in each

individual agent is a sign of adaptation to different environments.

This implies that by introducing such variability, we may be

able to expand the range of searches in the parametric space of

a neural network compared with relying only on genetic codes

and mutations.

Although the evolution and development of BNN have

potential advantages during ANN construction, direct and

thorough imitation of these processes does not necessarily

guarantee better ANN performance. First, when nature searches

for answers through evolution and development, it utilizes an

extremely efficient parallel search by preparing variable groups of

individuals and combinations between groups (Foster and Baker,

2004; Traulsen and Nowak, 2006). To emulate such a process

on a conventional computer, each individual needs to be stored

in memory and evolved through a series of calculations, greatly

increasing the computational burden. Thus, some processes should

be simplified, and we need to capture the essential parts like the

neuroevolution approach although an ensemble neural network

strategy that shares the concept of group selection has been

applied to construct and optimize ANN (Krogh and Vedelsby,

1994; Zhou et al., 2002; Liu and Yao, 2008; Zhang S. et al., 2020).

The second aspect is platform dependency; as mentioned above,

the optimization processes occurring in the brain depend on the

spatial arrangement of computing units and chemicals as well as

genetic codes, which implies that the distance between neurons

can limit wiring (van Ooyen, 2011; Goodhill, 2018). Because the

spatial arrangement of neurons and wiring costs do not matter in

the simulation of an ANN, the direct translation of evolution and

developmental processes for the BNN is not an effective option.

Thus, only when we construct an ANN on a platform where the

wiring cost can be defined, the emulation of the BNN formation

through the direct imitation of evolution and development may

offer a better architecture search algorithm. Third, evolution and

development are primarily driven by the environment. In contrast

to the well-specified task and dataset in ANN, the environment to

which the BNN has to adapt is vast and carries an intensive amount

of information, which blurs the boundary of essential information

for training specific neural circuits. A notable recent study

circumvented these problems and demonstrated that simplified

developmental and evolutionary processes can select a biologically

plausible neural circuit (Hiratani and Latham, 2022). This study

utilized a rather simple feedforward neural network to approximate

olfactory information in an environment, which was considered

a teacher network to train a student network that corresponds to

a biological olfactory circuit consisting of expansion-contraction

coding architecture; eventually, such a simple approach successfully

met with the scaling laws in BNN. This study showed a model

case of how a mutually beneficial investigation can be designed to

enhance the understanding of both BNN and ANN.

2.2. Learning algorithm

Once the fundamental architecture is determined by genetic

codes and developmental processes, as described above, the BNN

begins to be rapidly trained by interacting with the environment.

Both structural and functional changes are involved in the

biological implementation of this training process, which we call

learning. Structural changes include neurogenesis, neuronal death,

synaptogenesis, and pruning, while functional changes indicate

the plasticity of neurons and synapses in the brain. Considering

that local chemical and physiological mechanisms mediate these

changes, achieving global adaptation through learning is a problem

that the BNN must resolve, which we refer to as the populational

credit assignment problem of computing units (Friedrich et al.,

2011; Zou et al., 2023). Additionally, when instruction information

for a proper change is provided by a circuit mechanism, such

as a feedback connection, it is accompanied by an unavoidable

delay that eventually causes a temporal credit assignment problem

(Friedrich et al., 2011; Zou et al., 2023).

2.2.1. Local attributes: structural changes
Structural changes in the brain occur throughout the lifespan

of an animal. However, considering that neurogenesis is a rare

event and is observed in confined brain regions in adults, if

any (Sorrells et al., 2018, 2021; Abdissa et al., 2020; Moreno-

Jiménez et al., 2021), and significant neuronal death is expected

to take place in old age or a pathological brain (Mattson and

Magnus, 2006), simply assuming that the number of nodes of

a neural network is determined by development is in the range

of biological plausibility. In brain regions where we can expect

significantly observable neurogenesis, such as the dentate gyrus

in the hippocampus, a notable study reported that newly added

neuronal nodes could contribute to neural network performance

by working as a neural regularizer to avoid overfitting (Tran

et al., 2022). In contrast to the addition of neuronal nodes,

neuronal death may be superficially interpreted as the negative
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regulation of neural networks as observed in the aging or

degenerative pathology of the brain (Mattson and Magnus, 2006).

However, considering that some cognitive features can improve

with age (Murman, 2015; Veríssimo et al., 2022), well-regulated

neuronal death may not directly indicate the total dysfunction of

a neural network. Two potential biological mechanisms account

for this paradoxical positive regulation by removing neuronal

nodes. First, as observed in biological studies (Kuhn et al., 2001;

Merlo et al., 2019) and implied by computational studies (Barrett

et al., 2016; Tan et al., 2020; Terziyan and Kaikova, 2022),

a biological system often prepares compensatory mechanisms

against sudden changes that can function as a temporary or

partial advantage in neural computation. Another possibility is

the intrinsic advantage achieved by removing neuronal nodes. In

ANN, similar negative structural regulations have already been

utilized as a form of “drop-out” or “sparsification” by intentionally

removing neuronal nodes (Goodfellow et al., 2016; Tan et al., 2020;

Hoefler et al., 2022). Because cognitive advantage with gradually

increased neuronal death and its circuit mechanisms are largely

unexplored, ANNs that include neuronal deaths and show partially

or temporarily improved performances can offer new insights for

both neuroscience and AI engineering.

Unlike the structural changes caused by neuronal addition

or removal, new synapse formation and synaptic elimination

by pruning, which are the addition and removal of edges in a

neural network, occur more generally in the brain. The axon of

a presynaptic neuron and the dendrite of a postsynaptic neuron

should be within a proper distance before making a new synapse,

and then a new synapse can be formed by the Hebbian type activity-

dependent synaptogenesis (Südhof, 2018). However, the local

mechanism of edge addition is insufficient for the optimization

of an entire network and can result in excessive connectivity

redundancy between activity-correlated neurons unless there is

a regulatory mechanism. To participate in the optimization of a

neural network, neurons must utilize information other than local

synaptic activity. Negative regulatory mechanisms, such as synaptic

elimination, are required to properly adjust the number of edges,

which is widely utilized as an algorithm for the sparsification of

a neural network to reduce the model (Luo, 2020; Hoefler et al.,

2022). Adaptive synaptogenesis (Miller, 1998; Thomas et al., 2015),

reinforcement signals from reward and punishment (Dos Santos

et al., 2017), or other types of neuromodulation (Garcia et al.,

2014; Speranza et al., 2017)may achieve such orchestration between

positive and negative regulation. The counterparts of edge number

regulation by synapse formation and elimination in ANN are the

additive update of a synaptic weight from zero-weight connection

and making a synaptic weight to zero, respectively, implying that

the structural changes in synapses can be interpreted as the on-

off switch type of functional changes. Interestingly, beyond the

dichotomy of synapses or no synapses, a contact point between

two neurons is ready to be switched on by the Hebbian-type

learning rule in the form of a silent synapse (Kerchner and Nicoll,

2008; Hanse et al., 2013), which is also found in filopodia lacking

AMPA receptors and containing NMDA receptors in the adult

neocortex (Vardalaki et al., 2022). Considering that the brain

should adapt to an increase in the amount of information to be

stored, such a substrate for readiness is a valuable mechanism

(Fusi et al., 2005; Vardalaki et al., 2022). Additionally, because a

stable consolidation of acquired information into already stored

information is accompanied by the rearrangement of the synaptic

weights and connectivity, on- and off-type regulation should be

appropriately utilized (Jedlicka et al., 2022). For ANN simulation

on the current computer form, zero-weight synapse costs roughly

the same as any other weight value in the allowed range; however,

in BNN, physical wiring and its maintenance require additional

resources. Hence, when constructing an ANN on a platform where

the cost can be reduced by eliminating connections, a NAS strategy

must be considered based on various types of structural changes in

the BNN.

Similar to our categorization, a recent review (Maile et al., 2022)

also regarded these structural changes after the developmental

period as “structural learning,” which implies that NAS across

a multi-temporal scale needs to continue for the whole life. In

summary, structural changes in a neural network achieved by

controlling the number of neurons or synapses are the key concepts

that optimize a neural network architecture during its lifespan, and

their implementation in an ANN can contribute to the construction

of a better-performing neural network with reduced resource

requirements under specific platforms.

2.2.2. Local attributes: functional changes
Although functional changes in a neural network are less

explicit than physically expressed structural changes, they occur

much more often in the brain and are essential for the fineness

of adaptation. Various types of plasticity occurring at synapses

or neurons are key components of the functional changes in a

neural network.

Considering that a neuron transmits information as a spiking

electrical signal, the so-called action potential, any change that

alters the probability of generating action potentials under the

same input indicates a change in neuronal excitability, which

is called intrinsic plasticity. Thus, the intrinsic plasticity of a

neuron can be interpreted as a transition from a certain state

of neuronal excitability to a different state (Titley et al., 2017;

Debanne et al., 2019). In a BNN, the concept of intrinsic plasticity is

suitable for implementing memory mechanisms. Input-dependent

stable changes in neuronal excitability can be directly paired

with the hypothesis of the cellular level memory engram (Titley

et al., 2017; Alejandre-García et al., 2022). Additionally, because

the parameters of synaptic plasticity are significantly affected by

the average activities of both pre- and post-synaptic neurons,

as indicated by the Bienenstock-Cooper-Munro (BCM) model

(Bienenstock et al., 1982; Dayan and Abbott, 2001), intrinsic

plasticity can also be interpreted as a means of metaplasticity

(Sehgal et al., 2013). Thus, implementing intrinsic plasticity in an

ANN can improve the representability of the given information.

In an ANN, the concept of neuronal excitability is expressed

as a bias before the activation function determines the neuron’s

output. In many ANN cases, bias is considered a common constant

within a layer or even set to zero. We can expect significantly

better performances by introducing intrinsic plasticity into ANN

or spiking neurons (Zhang and Li, 2019; Zhang et al., 2019). A

similarity between the simplified intrinsic plasticity introduced in
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ANN and batch normalization has also been reported (Shaw et al.,

2020).

The concept of synaptic plasticity involves changes in the

efficacy of synaptic transmission across multiple temporal scales.

Because a neuron propagates information through spikes, the

main mechanism of synaptic plasticity is expected to depend on

spike timing rather than amplitude by considering a uniform

voltage level of action potential firing. Although the extent to

which the synaptic weight should be adjusted depending on the

timing differences between the presynaptic spike and postsynaptic

spike varies with neuronal types, synaptic properties, or the

existence of neuromodulation, synaptic plasticity occurring timing

difference can be categorized as spike-timing-dependent-plasticity

(STDP; qiang Bi and ming Poo, 1998). Under an ultra-sparse

firing regime, STDP may be the sole mechanism to implement

synaptic plasticity, which features Hebbian plasticity, in which

neurons that fire together wire together (Song et al., 2000;

Caporale and Dan, 2008). However, because information encoding

is not always at the level of a single action potential firing,

the description of synaptic plasticity at the level of each spike

cannot explain the computational implications of the consequences

of such plasticity. Thus, it is necessary to build a description

of synaptic plasticity that depends on momentary information

transmitted through the synapse. Rate-dependent encoding occurs

at a longer timescale or under a denser spiking regime (Gerstner

et al., 1997). Classical computational neuroscience has already

depicted such plasticity by formalizing and improving Hebbian

plasticity using additional terms (Dayan and Abbott, 2001). In

fact, Hebbian plasticity and its variants could well describe

synaptic plasticities in BNN, and by introducing the concept

of sliding threshold, metaplasticity could be incorporated into

formalism (Abraham, 2008; Laborieux et al., 2021). However,

because these phenomenological models focus on simple but

accurate descriptions of various synaptic plasticities in BNN,

they require ad hoc terms or modifications if more diverse

dynamics in synaptic plasticity and metaplasticity are observed. In

contrast, mechanistic models can be more useful for generalizing

various types of synaptic plasticity by introducing the dynamics

of biological synaptic components. For example, considering that

short-term plasticity can be utilized to stably represent information

for a certain short period in a buffer-like neural network,

analogous cognitive mechanisms such as working memory can

be modeled (Masse et al., 2019), which may open up more

promising future applications to the artificial memory system

by introducing more detailed synaptic components. Indeed, a

mechanistic model for short-term plasticities, such as the Tsodyks-

Markram model (Tsodyks and Markram, 1997), could be utilized

to explain working memory modulation (Rodriguez et al., 2022)

and may help to build a better neuromorphic device (Zhang

et al., 2017; Li et al., 2023) or a better artificial working memory

system (Averbeck, 2022; Kozachkov et al., 2022; Rodriguez et al.,

2022). The mechanical description of long-term synaptic plasticity

is often composed of several processes responsible for multiple-

timescale mechanisms, as indicated in the cascade model of

binary switches constructed using positive feedback loops with

multiple time constants (Kawato et al., 2011; Helfer and Shultz,

2018; Smolen et al., 2020). Although the readout of biological

synaptic plasticity is the same as the weight adjustment in

ANN, such mechanistic models may largely help construct a

new type of metaplasticity algorithm in ANN. Considering the

recent spotlight on metaplasticity as one of the solutions to

catastrophic forgetting (Jedlicka et al., 2022), it has become more

important to understand how synapses in BNN can form their

metastable states and how synaptic plasticity can exploit the

transition between these states to enhance the representation of

information (Fusi et al., 2005; Benna and Fusi, 2016; Abraham et al.,

2019).

2.2.3. Global optimization
An orchestrated strategy is required for these local processes

of plasticity to result in the learning of a certain function.

Learning is the adaptation of a neural network to approximate

a function that maps from the input from the environment to

the target output, which is a global optimization process (Zhang

H. et al., 2020). The optimization target and the algorithm for

efficiently reaching the target by combining local processes should

be elucidated to define this optimization. Although how the

brain can optimize neural networks and what kind of target it

tries to minimize or maximize are generally unknown, there are

several phenomena observed in BNN that can be the hint or the

starting point toward building biologically plausible optimization

algorithms. For example, homeostatic control of neuronal activity

has been observed in various neural networks across multiple

spatiotemporal scales from locally occurring Hebbian plasticity

to global synaptic scaling or homeostatic intrinsic plasticity

(Turrigiano et al., 1998; Turrigiano and Nelson, 2004; Naudé

et al., 2013; Toyoizumi et al., 2014). The impact of locally

occurring homeostatic plasticity (Naudé et al., 2013) and how

global homeostatic plasticity regulates neural network dynamics

(Zierenberg et al., 2018) has been simulated in biological recurrent

networks. However, it has not been tested in ANN to improve

the performance, and no attempt has been made to find a similar

concept in the current ANN optimization algorithm. Recent

experimental confirmation also supports the idea that a neural

network utilizes a plasticity rule that maximizes information

(Toyoizumi et al., 2005) or minimizes free energy (Isomura

and Friston, 2018; Gottwald and Braun, 2020; Isomura et al.,

2022). Additionally, considering that the wiring between neurons

requires metabolic resources in the BNN, as mentioned in the

NAS and structural learning sections, we can also define the

cost function that includes the constraints introduced by limited

physical resources (Chen et al., 2006; Tomasi et al., 2013; Rubinov

et al., 2015; Goulas et al., 2019). Although the target functions

for a neural network to optimize are explicit in these examples,

how the optimization results in learning a cognitive task remain

elusive. However, they have inspired the ANNmethod to approach

the learning of relationships among data to approximate the

probability distribution of inputs or latent variables, which is

an example of an unsupervised learning paradigm (Goodfellow

et al., 2016; Pitkow and Angelaki, 2017). On the other hand,

supervised learning can be defined more easily by quantifying

the difference between the function to learn and the current

state of a neural network, which is generally called the loss
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function in an ANN (Goodfellow et al., 2016). The strategy for

minimizing the loss function and assigning the adjustment of each

weight is characterized by a backpropagation algorithm (Rumelhart

et al., 1986). While no explicit evidence has been found that

the brain uses error backpropagation for learning, a hypothetical

learning algorithm class, “neural gradient representation by activity

differences (NGRAD),” has been suggested, which states that

the information of activity difference is reflected as synaptic

change, driving the learning or behavioral change of the network

(Lillicrap et al., 2020). Considering that the backpropagation

algorithm in ANN and error-dependent learning are not directly

comparable because of the difference in encoding (scalar value vs.

spikes) and the questionable existence of mandatory symmetric

backward connections in BNN, organized feedback of error

or target information is necessary for the implementation of

NGRAD in a biologically plausible neural network (Guerguiev

et al., 2017; Sacramento et al., 2018; Whittington and Bogacz,

2019; Lillicrap et al., 2020; Fernández et al., 2021). In a large

neural network with physical constraints, relying only on the

global feedback information provided through the environment

is inefficient because of the long delay (Nijhawan, 2008; Foerde

and Shohamy, 2011; Cameron et al., 2014). For example, when

an animal tries to visually follow a fast-moving prey, moving

the eyeballs at the proper speed and forming a proper percept

without mental preparation by predicting sensory consequences is

difficult (Greve, 2015; Palmer et al., 2015; Sederberg et al., 2018).

Therefore, a neural system is known to utilize predictive coding,

and the prediction error may be an appropriate teaching signal for

optimizing each component in a hierarchical neural network (Rao

and Ballard, 1999; Millidge et al., 2022; Pezzulo et al., 2022). A

recent study theoretically suggested and experimentally validated

that even a single neuron can predict future activity and use

a predictive learning rule to minimize surprises; this is derived

from a contrastive Hebbian learning rule (Luczak et al., 2022).

Thus, this study has important implications for the bottom-up

principle of local learning rules to form a learning algorithm for

intelligent agents. The neuromodulatory system can participate

in slower feedback or more implicit teaching signals (Johansen

et al., 2014; Liu Y. H. et al., 2021; Mei et al., 2022). In fact,

the three-factor rule constructed by simply adding a factor, such

as neuromodulation, to pairwise synaptic plasticity can include

diverse information about reward or learning hyperparameters

(Gil et al., 1997; Nadim and Bucher, 2014; Łukasz Kuśmierz

et al., 2017; Brzosko et al., 2019). Given the experimentally

examined role of neurotransmitters in the neuromodulatory

system and the local physiological dynamics affected by such

neurotransmitters, the brain’s mechanism of dealing with vast

amounts of information from the natural environment can be

explained by a combination of diverse modulatory inputs and

the distinctive distribution of receptor subtypes (Noudoost and

Moore, 2011; Rogers, 2011; Fischer and Ullsperger, 2017; Doya

et al., 2021; Cools and Arnsten, 2022). Investigating global

optimization algorithm and understanding it across multiple scales

is important not only for neuroscience pursuing the answer

of mechanisms of neural processes in the brain but also for

constructing a better biologically plausible neural network capable

of “general intelligence.”

3. Outcome of optimization: single
computational unit properties

As Cajal’s (1888) confirmation of the neuron doctrine implied,

McCulloch and Pitts’s (1943) theory of artificial neurons shaped

the idea that a neuron is the single unit of computation, and

a synapse is the single communication channel between two

neurons. Although neurons and synapses have been intensively

studied, several fundamental questions remain to be answered,

including those regarding the computational roles of neuronal and

synaptic properties. In ANN, a representative precedent, such as

introducing a rectified linear unit (ReLU; Fukushima, 1975; Nair

and Hinton, 2010), helped dramatically advance the field. Because

single computational units in BNN are largely unexplored owing

to their diversity and nonlinear properties, carefully searching

computationally influential properties may enable us to build better

neural networks.

3.1. Representation of the activity and
coding scheme of a single neuron

The governing dynamics of the electrical properties of a

neuron have been well-described and integrated into Hodgkin

and Huxley’s (1952) monumental work. This set of nonlinear

differential equations can regenerate the dynamic excitability and

action potential firing. A simpler description of the dynamics using

the leaky integrate-and-fire model (Hill, 1936) can be utilized to

reduce the complexity and extend the applicability to various types

of firing patterns. In addition, direct reverse engineering of the

spike parameters was successfully implemented (Izhikevich, 2003).

In these neuronal models of the BNN, two distinctive aspects

were noticeable, when compared with the ANN. One is that a

set of continuous-time differential equations describes neuronal

activities, and the other is that there is no explicit activation

function except in the integrate-and-fire model and its variants.

Although the information encoded in the spiking dynamics along

continuous time in the BNN is not yet fully understood, several

strategies that the BNN may utilize have been investigated. The

well-known dichotomy of such strategies is the rate vs. temporal

code (Gerstner et al., 1997; Guo et al., 2021). The rate code

encodes target information using the firing rate, corresponding

to a neuron’s positive scalar value encoding in ANN. Temporal

coding refers to an encoding strategy that utilizes the timing of

spikes, and the specific coding scheme can vary depending on

the time a neuron uses to represent information. For example, a

period of silence is a candidate for inter-spike interval coding or

time-to-first-spike coding (Dayan and Abbott, 2001; Park et al.,

2020; Guo et al., 2021), or the absolute timing of multiple sparse

spikes can be used to convey information under a proper decoding

scheme (Comşa et al., 2021). The other aspect of the coding

strategy, which extends the capacity for encoding, is to deploy

a population of neurons to represent the information (Averbeck

et al., 2006; Panzeri et al., 2015; Pan et al., 2019). Because the

spiking patterns in a population of neurons can be statistically

interpreted by considering each spike in each neuron as a sample

of a specific random variable, an abundant representation form can
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be implemented. Different types of information can be conveyed

through multiplexing by alternating coding schemes or mixing

up heterogeneous neurons in a population (Harvey et al., 2013;

Akam and Kullmann, 2014; Lankarany et al., 2019; Jun et al.,

2022). For example, a sensor that waits for sparsely occurring

inputs of various intensities can encode the input by timely bursting

spikes upon an input arrival (Guo et al., 2021). Such a strategy is

advantageous for richer dynamics and encoding capacity as well

as lower power consumption by considering silence (off period) as

another piece of information (Cao et al., 2015; Pfeiffer and Pfeil,

2018). Therefore, spiking neural networks (SNN) has become an

essential type of ANN and are widely utilized in neuromorphic

engineering (Kornijcuk et al., 2019; Kabilan and Muthukumaran,

2021; Parker et al., 2022). Because various models can describe

a neuron’s spike activity and each spike can represent distinctive

information depending on the coding scheme, we can expect a

much larger diversity of neuronal activation processes compared

to ANN. Exploring various coding schemes with diverse temporal

and populational spike patterns (Comşa et al., 2021; Guo et al.,

2021) and heterogeneous distribution of diverse types of neurons

(Stöckl et al., 2022) is necessary to represent complex information

better and build more biologically plausible neural networks.

Diverse types of neurons and their computational impacts have

been tested and have demonstrated better performance in typical

ANN by varying the type of activation function (Lee et al.,

2018). Although groundbreaking improvements are rarely achieved

by changing the activation functions in the deep learning

field (Goodfellow et al., 2016), combinations of representations

of activities in a neuron (spike), consequential spike-based

synaptic plasticity (spike-timing-dependent-plasticity and spike-

driven synaptic plasticity), various coding schemes (temporal, rate,

population, and phase), and heterogeneous neuronal types have not

yet been fully examined.

3.2. Dale’s principle and input balance

Although the strongest interpretation of Dale’s principle, which

indicates one neurotransmitter type for one neuron, has become

outdated and proven incorrect through accumulated experimental

results (Osborne, 1979), it still offers an important framework

for analyzing neural networks: the distinction between excitatory

and inhibitory neurons (Eccles et al., 1976; Cornford et al., 2021).

If we compare the synaptic efficacy in the BNN with that in

the ANN, a direct correspondence can be found in the weights

of the connection from one neuron to another. In contrast,

the weight value in the ANN can vary between positive and

negative values, and an input(presynaptic) neuron can include

outward connections with both positive and negative weights

unlike BNN neurons. Introducing the implications of Dale’s

principle to an ANN involves fixing a given neuronal identity to

either an excitatory or inhibitory neuron, with the weights of its

outward connections having the same signs. This is quite a strong

constraint, but careful modification did not harm the network

performance (Cornford et al., 2021) and provided more diverse

computation (Tripp and Eliasmith, 2016) although there was no

dramatic improvement in performance. Practical computational

implications of the segregation of excitation and inhibition have

not yet been established; however, by mathematical treatment of

such a neural network, optimal dynamics of the neural network

(Catsigeras, 2013) and efficient learning (Haber and Schneidman,

2022) have been carefully suggested as benefits. In BNN, it has

long been suggested that a stable but sensitive representation of

information can be achieved by balancing excitatory and inhibitory

inputs, the so-called E-I balance (Denève and Machens, 2016;

Hennequin et al., 2017). The implications of the E-I balance can

be roughly explained by comparing it with other extremities. In

an excitatory-dominant regime, excessive firing interferes with the

expressibility of information by a neuron, whereas in an inhibitory-

dominant regime, the frequency of firing drops, and the neuron

cannot express the information that lies within a certain time scale.

However, tightly balanced inputs can modulate a neuron to fire

during a period of tiny temporal discrepancies between excitation

and inhibition. Consequently, with an optimal number of firings, a

neuron can efficiently represent multiple timescale inputs. The E-I

balance has been restated and utilized to explain the performance

and efficiency of biological neural circuit models (Denève et al.,

2017; Zhou and Yu, 2018; Bhatia et al., 2019; Sadeh and Clopath,

2021) and the malfunctions of an imbalance regime (Sohal and

Rubenstein, 2019). In ANN applications (Song et al., 2016; Ingrosso

and Abbott, 2019; Tian et al., 2020), balanced inputs are utilized

to optimize neural networks for better performance, with the

advantages shown in BNN models. Because the concept of E-I

balance covers a wide range of extents of balance (Hennequin et al.,

2017), defining an alternative type of balanced network (Khajeh

et al., 2022) is also possible. Considering that balancing is not

just an artificial constraint but also the outcome of optimization

(Trapp et al., 2018), applying excitatory-inhibitory segregation and

its balance seem to be another prominent way to build better

biologically plausible neural networks.

3.3. Morphological e�ect: dendritic
computation

The types of neurons in a BNN are extremely diverse;

one criterion is their heterogeneous morphology (Kepecs and

Fishell, 2014; Cembrowski and Spruston, 2019). Unlike in a

point neuron model, spatially separated input, processor, and

output units are implemented as dendrites, somas, and axons,

respectively, in a BNN. Thus, the morphological effect refers

to the emerging directionality of information flow and the

information contents affected by each unit. Notably, the input

part (dendrite) is spatially distributed over a larger space than

the output pathway (axon) that is often found as a minimally

branched fiber consisting of somewhat homogeneous segments

with small cross-sectional areas (Chklovskii, 2004). Hence, axonal

fibers are expected to be primarily employed to faithfully convey the

generated electrical signal (action potential) to distal postsynaptic

neurons (Scott, 1975). In contrast, dendrites have many branches

with thicker shafts capable of accommodating complex cellular

organelles, except the nucleus. The complex branching pattern and

spacious cytosol indicate that intracellular processes also occur

in dendrites and may be spatially heterogeneous (Shemer et al.,
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2008; Dittmer et al., 2019). Because synapses are distributed across

such heterogeneous substrates, information processed through

synapses can be highly heterogeneous even when exposed to

uniform presynaptic activity. Specifically, given that the change

in shaft thickness varies with the branching or distance from

the soma (Harris and Spacek, 2016), differentiating the electrical

processing of each input from another is expected to depend

on the location of the input (Guerguiev et al., 2017; Sezener

et al., 2022; Pagkalos et al., 2023). A simple but remarkable aspect

of such a structure and implication is the sequential processing

of inputs from the distal location toward the soma, as the

directionality of the information flow in a passive cable indicates.

As a single action potential from a presynaptic neuron can be

interpreted as a Boolean activation input, a recent study attempted

to simplify the dendritic processing of many inputs as a layered

neural network by adding active dendritic computation to the

directionality (Beniaguev et al., 2021). This study highlighted the

role of NMDA receptors capable of tuning the plasticity in each

excitatory synapse and generating dendritic calcium spikes, which

can be interpreted as the integration and firing of local inputs

converging to a dendritic segment. Thus, each dendritic segment

that generates spikes can be assumed to be a computing layer of

converging Boolean inputs through a dendritic arbor, simplifying

the complex information processing of a neuron and corresponding

to the ANN. In neuroscience, there have been many observations

of the active computation of dendrites via spike generation (Cook

and Johnston, 1997; Poirazi and Mel, 2001; London and Häusser,

2005; Johnston and Narayanan, 2008). These examples also imply

that various types of inputs are spatially and functionally segregated

on distinctive branches or dendritic segments (Wybo et al., 2019;

Francioni and Harnett, 2022); therefore, a neuron can work as

a functional unit capable of more diverse performance than a

point neuron. Because of the additional nonlinearity compared

to a model point neuron, better expressibility can be expected

(Wu et al., 2018), and electrical compartmentalization and active

dendritic properties can be applied to ANNs (Chavlis and Poirazi,

2021; Iyer et al., 2022; Sezener et al., 2022). The segregated

electrical properties also indicate that homeostatic control can

occur separately in distinct dendritic branches (Tripodi et al., 2008;

Bird et al., 2021; Shen et al., 2021). Such an adjustment of weights in

each dendritic branch toward a certain homeostatic level is similar

to the normalization step in ANN (Shen et al., 2021), which also

improves learning in sparsely connected neural networks, such

as BNN (Bird et al., 2021). The typical structure of a cortical

pyramidal neuron consists of two distinctive directions of dendritic

outgrowth from the soma: basal and apical dendrites (DeFelipe

and Farias, 1992). These differ from each other not only in the

direction of growth but also in the branching pattern. Additionally,

owing to the vertical alignment of the dendrites of a cortical

pyramidal neuron across the cortical laminar layer structure, basal

and apical dendrites are exposed to inputs at different layers (Park

et al., 2019; Pagkalos et al., 2023). Different branching patterns

indicate distinctive information processing in the dendrites, as

shown in the aforementioned study. Different input contents

combined with different processing methods imply that diverse

computations can occur at the microcircuit level, comprising

several neurons. One remarkable application of this property

is the assumption that a neuron processes both feedforward

and feedback inputs, simultaneously. By postulating that error-

conveying feedback and feedforward inputs containing external

information are separately processed in distinct dendritic branches,

the problem of credit assignment can also be explained (Guerguiev

et al., 2017; Sacramento et al., 2018), as discussed in Section 2.2.3.

Considering that in the biophysical model of a neuron, spontaneous

orchestration of the dendritic properties of a neuron to learn

a nonlinear function has been identified (Bicknell and Häusser,

2021), the computational implication of dendritic computation is

no longer an assumption from the observation of morphology

but becomes an essential governing principle of a single neuronal

information processing.

4. Outcome of optimization: network
architecture

Because single biological computing units exhibit numerous

unexplored properties, large-scale combinations of these properties

may enable neural networks to reveal complexities that can

significantly affect neural network functions (Hermundstad

et al., 2011; Braganza and Beck, 2018; Navlakha et al., 2018).

The complexity that underlies the BNN emerges from other

characteristics, such as high heterogeneity (Liu, 2020), overall

sparse connectivity (Eavani et al., 2015; Cayco-Gajic et al., 2017),

and hierarchical modularization (Meunier et al., 2010; Hilgetag and

Goulas, 2020; D’Souza et al., 2022).

4.1. General distinctive characteristics of
the network structure in BNN

The construction and maintenance of hard wiring from one

neuron to another involve metabolic and volumetric costs (Chen

et al., 2006; Tomasi et al., 2013; Rubinov et al., 2015; Goulas et al.,

2019); thus, in a BNN, it is difficult to imagine dense connections,

as in an ANN, where we often encounter fully connected layers.

The sparse connectivity in the BNN inspired the construction of a

lightweight deep learning architecture (Wang C. H. et al., 2022).

Model compression by the sparsification of connectivity has led

to a large reduction in power consumption, while minimizing

performance reduction (Han et al., 2015; Barlaud and Guyard,

2021; Hoefler et al., 2022) and improving performance (Luo,

2020). Identifying the sweet spot between optimized sparsity and

performance is the next challenge (Hoefler et al., 2022), and as

explored in Section 2, EA may be a suitable choice (Mocanu

et al., 2018). As the outcome of a properly chosen sparsification

algorithm, the connectivity map of an optimal sparse network

also directly improves neural network interpretability because the

putative essential connections to process the task are presumably

spared, while the unnecessary connections are pruned (Hoefler

et al., 2022).

Combining high heterogeneity with sparse connectivity results

in modular structures (Mukherjee and Hill, 2011; Miscouridou

et al., 2018), and the highly modular structure of the BNN shows

the same set of advantages as sparse connectivity. The modular
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structure can be interpreted as an aggregation of computational

units employed for the same function. These units (neurons)

are usually located near each other and activated at the same

developmental stage, which implies that the general wiring

principle in BNN, involving activity- and distance-dependent

wiring, may shape the modular structure (van Ooyen, 2011).

Contrary to the constructive algorithm by the developmental

process, learning-based decomposition into modules is also

possible (Kirsch et al., 2018; Pan and Rajan, 2020), enhancing the

interpretability and convenience of troubleshooting. In addition,

connecting modules that perform distinct functions enables the

task-specific design of a comprehensive neural network (Amer and

Maul, 2019; Michaels et al., 2020; Duan et al., 2022). Because each

module can be considered a building block of a neural network,

the evolutionary strategy may perform best in identifying the entire

architecture optimized for a certain task (Clune et al., 2013; Lin

et al., 2021). Such a strategy eventually maximizes the functional

performance of each building block and implies scalability without

interfering with the performance of other modules (Ellefsen

et al., 2015), while maintaining a minimal number of additional

connections. This example is directly related to the answer

regarding how the brain can acquire and store multiple memories

by not harming old ones and not interfering with new learning

with a finite number of hardware units. Such a problem can be

characterized by catastrophic forgetting and interference during

continual learning, and many candidate mechanisms that the brain

may utilize to solve these problems have been suggested (Hadsell

et al., 2020; Jedlicka et al., 2022). The modular structures combined

with the sparse representation are a more intuitive solution than

others because it assigns each piece of information to a separate

hardware, implying faster and more precise access to the memory

unit. Although the number of neurons and synapses is still not

enough to afford all the information which an intelligent agent

learns during their lifespan, the modular structure may play a key

role in efficient continual learning by harnessing other mechanisms

regarding common information.

4.2. Connectivity in a specific brain region

Considering that the largest scale of the module structure

is the functional modularization of the brain into each brain

region, the most straightforward way for AI to acquire a certain

function is to copy the connectivity of the specific brain region that

regulates that particular function. Although the current brain-wide

or regional wiring map is far from completion, several brain areas

are known to have relatively organized connectivity and regulate

well-defined functions.

One of these brain regions is the cerebellum. Because of its

relatively simple and organized structure, the cerebellum was the

first target for computational modeling as attempted by Marr

(1969); Albus (1971). Major streams of the cerebellar information

processing can be divided into a feedforward network through

granule cells and Purkinje cells, and a feedback connection from

inferior olive where a part of the cerebellar outputs projects.

Because the feedforward stream conveys the information from

the cortex and the olivary feedback sends the error between

sensory feedback and sensory prediction, the Purkinje cell where

these streams converge has been assumed to adapt to minimize

the error signal (Raymond and Medina, 2018). This conjecture

based on the structure was directly applied to a cerebellar

model articulation controller (CMAC; Albus, 1975), which is

based on the fact that the cerebellum is involved in smooth

motor control. CMAC is still utilized with modifications (Tsa

et al., 2018; Le et al., 2020). Because the cerebellum is not a

sole motor controller, the whole motor control process should

be analyzed by including the initial command generator and

motor plant. Considering that the cerebellum receives inputs

from the cerebral cortex through pontine nuclei and propagate

outputs to the cortex through deep cerebellar nuclei to thalamic

projection, the loop between the cortex and the cerebellum can

be interpreted as the continuous corrector of the ongoing motor

control. The importance of such a brain-wide loop structure

in which a cerebellum is involved has been recently raised

and integrated into ANN models (Iwadate et al., 2014; Tanaka

et al., 2020; Boven et al., 2023). Furthermore, in recent decades,

our understanding of the cerebellum and its functions has

deepened considerably, including the non-motor output from

the cerebellum (Kang et al., 2021; Hwang et al., 2023) and

multi-dimensional structural organization (Apps et al., 2018;

Beckinghausen and Sillitoe, 2019). Although, currently, we barely

understand the detailed network architecture underlying such

diverse functions and gross anatomy, further research will lead us

to implement the control of broad behavioral modality through

the cerebellum.

The hippocampus is also a brain area that deserves a brief

introduction here. The hippocampus has well-defined functional

roles in episodic memory and spatial cognition, and the overall

information flow across the sub-regions is also known (Bird and

Burgess, 2008; Kovács, 2020; Li et al., 2020). The improved artificial

memory system has drawn more attention regarding the memory

mechanisms and implementation of the memory circuit (Berger

et al., 2012; van de Ven et al., 2020). Traditionally, the auto-

associative connectivity in CA3 was characterized and inspired

the Hopfield-type memory network (Hopfield, 1982; Ishizuka

et al., 1990; Bennett et al., 1994). In addition, considering that

the well-known connections from CA3 to CA1 roughly form a

hetero-associative network, the stored information can migrate

along the feedforward organization within the hippocampus

(Graham et al., 2010; Miyata et al., 2013). However, because

such associative memory structures are known to have limited

capacity (McEliece et al., 1988; Kuo and Zhang, 1994; Bosch

and Kurfess, 1998), additional structure or functional extension

is necessary to reach the biological memory capacity level

which can store dense information during a whole lifespan.

Considering that the hippocampus receives inputs from the

cortex through the dentate gyrus and projects back to the cortex

through CA1 output, the interaction between the hippocampus

and the cortex has been suggested to have the role of the

memory buffer and consolidation (Rothschild et al., 2017). In

addition to the modular structure with sparse representation as

mentioned in a previous section, working mechanisms of this

interplay have been suggested, such as generative replay and
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metaplasticity (Hadsell et al., 2020; van de Ven et al., 2020;

Jedlicka et al., 2022), by resolving how to efficiently reorganize

the representation of the information with time across the

network. Considering that these mechanisms are inferred by the

observations of both functional data and the architecture, the

applications of these mechanisms to ANN (Hadsell et al., 2020;

van de Ven et al., 2020; Wang L. et al., 2022) propose more

intense collaboration between neuroscience and AI engineering

toward a neural network design containing both bioplausibility and

better performance.

Besides the cerebellum and hippocampus, other unexplored

brain areas can be used to build biologically plausible neural

networks. Since the recent advances in neuroscience have revealed

not only the map of structural and functional connections within

a region and across regions but also the relationship between the

structure and function, careful imitation of other brain areas with

proper simplification and interfacing will be demanding.

5. Discussion

5.1. The goal and limitation of a bottom-up
approach

Putting aside the hardware issue and the question of intrinsic

infeasibility, whether copying a BNN by artifacts can generate

the intelligence possessed by a human or animal directly requires

the goal and limitation of a bottom-up approach. While we have

partially reviewed recent advances in bottom-up approaches to

construct neural networks, it should be noted that replacing only

a certain part of the ANN with one from the BNN usually does

not improve the performance measured by the criteria for ANN.

In other words, if we introduce a new concept from a BNN, the

entire framework must be changed. For example, to utilize spike-

timing-dependent plasticity, a change from an ANN to an SNN is

necessary, and consequently, the task design needs to be modified.

For certain tasks, such as predicting the digit annotation from

the images drawn from the MNIST dataset (LeCun et al., 2010)

after supervised learning, the ANN can achieve the best precision,

while the SNN may not be able to outperform it. However,

when implemented in hardware, SNNs have a considerably

greater advantage in terms of power consumption, as observed

in modern neuromorphic hardware (Cao et al., 2015; Pfeiffer

and Pfeil, 2018; Cui et al., 2019; Kornijcuk et al., 2019; Kabilan

and Muthukumaran, 2021; Parker et al., 2022). In addition, as

mentioned in Section 3.1, SNNs may have the advantage of dealing

with intermittently activated inputs (Pfeiffer and Pfeil, 2018). Thus,

this example prompts us to build an alternative interpretation that

the advantages of a certain neural network can vary with the type of

problem that the neural network must solve.

To generalize these observations, first, we defined “the problem

space,” which is the set of problems that neural networks try to

solve. “A problem” (P) is defined by the task itself (T), including the

dataset and goal, and by the performance measure of the task (R),

including the efficiency measure like power consumption or the

number of required computations or platforms to perform the task.

By mapping P, these attributes represent a point in the problem

space P. For a certain problem, if we set the naturalistic task and

try to achieve the evaluation measure in the range of humans or

animals, the problem is a point in the “natural problem space” in

Figure 2. By simply assuming that there is a subset of P that consists

of points mapped from the biological range of T,R (Tbio,Rbio), the

set of natural problems (natural problem space) can be defined as

BP as follows:

BP = {y ∈ P|y = P(Tbio,Rbio)}, (1)

and all the non-natural problems belong to the “artificial problem

space” (AP). For example, tracking fast-moving prey without

intensive pretraining is a natural problem, but identifying a

fingerprint from a vast database is an artificial problem. In

fact, determining a problem type can be taken care of by

neuroscience, specifically, by a top-down approach, because it

ultimately determines whether this task is one of what can be done

with the brain, in Turing’s (1948) terms.

These problems in BP or AP can be solved using neural

networks; however, the coverage differs depending on the class of

a neural network. ANNs have shown powerful performance, at

least for problems in AP, and have also been employed to solve

natural problems by reducing power consumption and minimizing

training. Thus, as shown in the Venn diagram in Figure 2, the

ANN class covers some natural problems and a larger part of the

artificial problem space. On the other hand, the neural network

class SNN has been utilized to solve more natural problems

than artificial problems. For instance, by hardware implementation,

an SNN can greatly reduce the required resources with similar

precision to an ANN in image classification, but an ANN can

show better optimization for performance on a typical computer

after training with a large dataset. Therefore, as shown in Figure 1,

the SNN and ANN intersect in both problem spaces, and the

intersection in the natural problem space is a subset of the SNN .

By contrast, the BNN class is a subset of the natural problem

space that covers most of theBP region. Because we defined natural

problems as those that the brain can solve, it is reasonable to

assume that a BNN as a unit of the brain can be employed to

process most natural problems not covered by other classes of

neural networks. We would like to call the relative complement

in BNN the “BNN supremacy regime,” which is the actively

used phrase in quantum computing (Arute et al., 2019). Thus,

when building a biologically plausible neural network, the task, its

performance measure, and the neural network architecture need

to be changed to prove a better performance of a designed neural

network than an ANN. Given the assumption that the class of

biologically plausible neural networks, BPNN , is defined by the

similarity to BNN architecture, our practical short-term goal is not

only to construct a BNN-like architecture but also to demonstrate

the “BPNN supremacy” by finding a proper problem in BP. There

have been attempts at formalization with similar motivations on

SNN (Maass, 1996; Kwisthout and Donselaar, 2020) or ANN

(Balcazar et al., 1997), and solving the shortest path problem is a

problem in the relative complement of ANN in SNN that has

been discovered (Aimone et al., 2021). Eventually, formalization

and a mathematical approach are necessary to better define the

problem spaces and investigate the spectrum in a set.
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FIGURE 2

Problem spaces and cover sets by neural network designs. (Left top) In the entire problem space (P), natural problems can be defined as the green

region where both the task (T which includes the dataset and the goal) and the performance measure (R which includes the e�ciency measure, the

number of required computations, and platforms to perform the task) are within the biological range. (Left bottom) Neural network class can be

defined by comparing a designed neural network with a biological neural network. The similarity decides its class. (Right) Binary division of the

problem space into the natural problem space (BP) and artificial problem space (AP) as aforementioned. Neural network classes are: ANN , artificial

neural network; BNN , biological neural network; BPNN , biologically plausible neural network; SNN , spiking neural network. The black

arrowhead represents the problems for ANN supremacy. Magenta: BNN supremacy; Purple: BPNN supremacy; Yellow: SNN supremacy, compared

with ANN.

FIGURE 3

Suggested pipeline to explore problem spaces and proper design of neural networks. The top-down approach defines the problem to solve based on

the findings of neuroscience and the bottom-up approach designs a neural network. To determine whether the problem can be solved by a designed

neural network without slow search, both need to be hybridized with feasible neural networks such as ANN or SNN.
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5.2. The role of neuroscience in the
bottom-up approach to explore the BNN
supremacy regime

How can we discover points in the problem spaces, specifically

within the BNN or BPNN supremacy regime? Does a proper

design of a BNN or BPNN always exist for certain problems?

We do not have a concrete formalization scheme or rough map

of problem spaces to answer these questions fundamentally using

mathematical proofs. Furthermore, we do not have any information

regarding the proper design of neural networks. Thus, we suggest

the pipeline shown in Figure 3, which starts with neuroscientific

discoveries and shows how to define a problem specifically in the

natural problem space. Accumulated data related to neuroscience

can help define the task goal and the corresponding dataset

to train neural networks through a top-down approach that

specifically pursues the neural network mechanism by starting

from observations at the level of the cognitive behavior of an

intelligent agent. Thus, a top-down approach may be able to define

a point in the problem space and distinguish between points

in the BP and AP. Simultaneously, a bottom-up approach may

enable the design of a neural network by combining many essential

properties of the targeted BNN with the generalized principles of

a neural network. However, because the definition of the problem

in BP may be too complicated to completely formulate, and it

is difficult to judge whether the designed neural network can

solve the problem before emulation, the defined problem and

the hypothesized neural network design should be embedded

in an already built scheme such as ANN or SNN to utilize

feasible engineering techniques. Such hybridization is necessary for

estimating the solvability of the problem without a full emulation.

We speculate that persistent exploration by following the suggested

pipeline will fill the information in the diagram shown in Figure 2,

which can eventually enable a formal investigation to derive the

set boundary. We believe that this type of slow but straightforward

bottom-up approach and collaboration with a top-down approach

and interfacing with current ANN will help us to light up the

way to build a thinking machine like the human on the concrete

foundation of neural circuit principles. Moreover, this pipeline

could promote improved communication between neuroscience

and AI engineering.

Author contributions

IJ and TK searched and analyzed the references. IJ wrote

the draft. TK arranged the original idea and revised the

draft. All authors contributed to the article and approved the

submitted version.

Funding

This research was supported by the Original Technology

Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Science and ICT (no.

2021M3F3A2A01037811) and by the KIST Institutional Program

(project no., 2E32211).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abdissa, D., Hamba, N., and Gerbi, A. (2020). Review article on adult neurogenesis
in humans. Transl. Res. Anat. 20:100074. doi: 10.1016/j.tria.2020.100074

Abraham,W. C. (2008). Metaplasticity: tuning synapses and networks for plasticity.
Nat. Rev. Neurosci. 9, 387–387. doi: 10.1038/nrn2356

Abraham, W. C., Jones, O. D., and Glanzman, D. L. (2019). Is plasticity
of synapses the mechanism of long-term memory storage? NPJ Sci. Learn. 4:9.
doi: 10.1038/s41539-019-0048-y

Aimone, J. B., Ho, Y., Parekh, O., Phillips, C. A., Pinar, A., Severa, W., et
al. (2021). “Provable advantages for graph algorithms in spiking neural networks,”
in Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’21 (New York, NY: Association for Computing Machinery),
35–47. doi: 10.1145/3409964.3461813

Akam, T., and Kullmann, D. M. (2014). Oscillatory multiplexing of population
codes for selective communication in the mammalian brain. Nat. Rev. Neurosci. 15,
111–122. doi: 10.1038/nrn3668

Albus, J. S. (1971). A theory of cerebellar function. Math. Biosci. 10, 25–61.
doi: 10.1016/0025-5564(71)90051-4

Albus, J. S. (1975). A new approach to manipulator control: the cerebellar
model articulation controller (CMAC). J. Dyn. Syst. Measure. Control 97, 220–227.
doi: 10.1115/1.3426922

Alejandre-García, T., Kim, S., Pérez-Ortega, J., and Yuste, R. (2022). Intrinsic
excitability mechanisms of neuronal ensemble formation. eLife 11:e77470.
doi: 10.7554/eLife.77470

Amer, M., and Maul, T. (2019). A review of modularization techniques in artificial
neural networks. Artif. Intell. Rev. 52, 527–561. doi: 10.1007/s10462-019-09706-7

Apps, R., Hawkes, R., Aoki, S., Bengtsson, F., Brown, A. M., Chen, G., et al.
(2018). Cerebellar modules and their role as operational cerebellar processing units.
Cerebellum 17, 654–682. doi: 10.1007/s12311-018-0952-3

Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., et al. (2019).
Quantum supremacy using a programmable superconducting processor. Nature 574,
505–510. doi: 10.1038/s41586-019-1666-5

Averbeck, B. B. (2022). Pruning recurrent neural networks replicates adolescent
changes in working memory and reinforcement learning. Proc. Natl. Acad. Sci. U.S.A.
119:e2121331119. doi: 10.1073/pnas.2121331119

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2023.1092185
https://doi.org/10.1016/j.tria.2020.100074
https://doi.org/10.1038/nrn2356
https://doi.org/10.1038/s41539-019-0048-y
https://doi.org/10.1145/3409964.3461813
https://doi.org/10.1038/nrn3668
https://doi.org/10.1016/0025-5564(71)90051-4
https://doi.org/10.1115/1.3426922
https://doi.org/10.7554/eLife.77470
https://doi.org/10.1007/s10462-019-09706-7
https://doi.org/10.1007/s12311-018-0952-3
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1073/pnas.2121331119
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Jeon and Kim 10.3389/fncom.2023.1092185

Averbeck, B. B., Latham, P. E., and Pouget, A. (2006). Neural correlations,
population coding and computation. Nat. Rev. Neurosci. 7, 358–366.
doi: 10.1038/nrn1888

Balcazar, J., Gavalda, R., and Siegelmann, H. (1997). Computational power of neural
networks: a characterization in terms of kolmogorov complexity. IEEE Trans. Inform.
Theory 43, 1175–1183. doi: 10.1109/18.605580

Barlaud, M., and Guyard, F. (2021). “Learning sparse deep neural networks
using efficient structured projections on convex constraints for green AI,” in 2020
25th International Conference on Pattern Recognition (ICPR) (Milan), 1566–1573.
doi: 10.1109/ICPR48806.2021.9412162

Barrett, D. G., Denève, S., and Machens, C. K. (2016). Optimal compensation for
neuron loss. eLife 5:e12454. doi: 10.7554/eLife.12454

Beckinghausen, J., and Sillitoe, R. V. (2019). Insights into cerebellar development
and connectivity. Neurosci. Lett. 688, 2–13. doi: 10.1016/j.neulet.2018.05.013

Beniaguev, D., Segev, I., and London, M. (2021). Single cortical
neurons as deep artificial neural networks. Neuron 109, 2727–2739.e3.
doi: 10.1016/j.neuron.2021.07.002

Benna, M. K., and Fusi, S. (2016). Computational principles of synaptic memory
consolidation. Nat. Neurosci. 19, 1697–1706. doi: 10.1038/nn.4401

Bennett, M. R., Gibson, W. G., and Robinson, J. (1994). Dynamics of the ca3
pyramidial neuron autoassociative memory network in the hippocampus. Philos.
Trans. R. Soc. Lond. Ser. B Biol. Sci. 343, 167–187. doi: 10.1098/rstb.1994.0019

Berger, T. W., Song, D., Chan, R. H. M., Marmarelis, V. Z., LaCoss, J., Wills, J., et
al. (2012). A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear
modeling and VLSI implementation. IEEE Trans. Neural Syst. Rehabil. Eng. 20,
198–211. doi: 10.1109/TNSRE.2012.2189133

Bhatia, A., Moza, S., and Bhalla, U. S. (2019). Precise excitation-inhibition balance
controls gain and timing in the hippocampus. eLife 8:e43415. doi: 10.7554/eLife.43415

Bicknell, B. A., and Häusser, M. (2021). A synaptic learning rule for
exploiting nonlinear dendritic computation. Neuron 109, 4001–4017.e10.
doi: 10.1016/j.neuron.2021.09.044

Bienenstock, E., Cooper, L., and Munro, P. (1982). Theory for the development of
neuron selectivity: orientation specificity and binocular interaction in visual cortex. J.
Neurosci. 2, 32–48. doi: 10.1523/JNEUROSCI.02-01-00032.1982

Bird, A. D., Jedlicka, P., and Cuntz, H. (2021). Dendritic normalisation improves
learning in sparsely connected artificial neural networks. PLoS Comput. Biol.
17:e1009202. doi: 10.1371/journal.pcbi.1009202

Bird, C. M., and Burgess, N. (2008). The hippocampus and memory: insights from
spatial processing. Nat. Rev. Neurosci. 9, 182–194. doi: 10.1038/nrn2335

Bosch, H., and Kurfess, F. J. (1998). Information storage capacity of
incompletely connected associative memories. Neural Netw. 11, 869–876.
doi: 10.1016/S0893-6080(98)00035-5

Boven, E., Pemberton, J., Chadderton, P., Apps, R., and Costa, R. P. (2023). Cerebro-
cerebellar networks facilitate learning through feedback decoupling.Nat. Commun. 14,
1–18. doi: 10.1038/s41467-022-35658-8

Braganza, O., and Beck, H. (2018). The circuit motif as a conceptual tool for
multilevel neuroscience. Trends Neurosci. 41, 128–136. doi: 10.1016/j.tins.2018.01.002

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., et al (2020).
“Language models are few-shot learners,” in Advances in Neural Information Processing
Systems, Vol. 33, eds H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin
(Vancouver, CA; Red Hook, NY: Curran Associates, Inc.), 1877–1901.

Brzosko, Z., Mierau, S. B., and Paulsen, O. (2019). Neuromodulation of
spike-timing-dependent plasticity: past, present, and future. Neuron 103, 563–581.
doi: 10.1016/j.neuron.2019.05.041

Cajal, R. Y. (1888). Revista trimestral de histología normal y patológica. Barcelona:
Casa Provincial de la Caridad, 1

Cameron, B., de la Malla, C., and López-Moliner, J. (2014). The role of differential
delays in integrating transient visual and proprioceptive information. Front. Psychol.
5:50. doi: 10.3389/fpsyg.2014.00050

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural
networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.
doi: 10.1007/s11263-014-0788-3

Caporale, N., and Dan, Y. (2008). Spike timing-dependent
plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46.
doi: 10.1146/annurev.neuro.31.060407.125639

Catsigeras, E. (2013). Dale’s principle is necessary for an optimal neuronal network’s
dynamics. Appl. Math. 4, 15–29. doi: 10.4236/am.2013.410A2002

Cayco-Gajic, N. A., Clopath, C., and Silver, R. A. (2017). Sparse synaptic
connectivity is required for decorrelation and pattern separation in feedforward
networks. Nat. Commun. 8:1116. doi: 10.1038/s41467-017-01109-y

Cembrowski, M. S., and Spruston, N. (2019). Heterogeneity within classical cell
types is the rule: lessons from hippocampal pyramidal neurons. Nat. Rev. Neurosci. 20,
193–204. doi: 10.1038/s41583-019-0125-5

Chavlis, S., and Poirazi, P. (2021). Drawing inspiration from biological
dendrites to empower artificial neural networks. Curr. Opin. Neurobiol. 70, 1–10.
doi: 10.1016/j.conb.2021.04.007

Chen, B. L., Hall, D. H., and Chklovskii, D. B. (2006). Wiring optimization can
relate neuronal structure and function. Proc. Natl. Acad. Sci. U.S.A. 103, 4723–4728.
doi: 10.1073/pnas.0506806103

Chen, S., Zhang, S., Shang, J., Chen, B., and Zheng, N. (2019). Brain-inspired
cognitive model with attention for self-driving cars. IEEE Trans. Cogn. Dev. Syst. 11,
13–25. doi: 10.1109/TCDS.2017.2717451

Chklovskii, D. B. (2004). Synaptic connectivity and neuronal morphology: two sides
of the same coin. Neuron 43, 609–617. doi: 10.1016/S0896-6273(04)00498-2

Clune, J., Mouret, J.-B., and Lipson, H. (2013). The evolutionary origins of
modularity. Proc. R. Soc. B: Biol. Sci. 280:20122863. doi: 10.1098/rspb.2012.2863

Comša, I.-M., Potempa, K., Versari, L., Fischbacher, T., Gesmundo, A., and
Alakuijala, J. (2021). “Temporal coding in spiking neural networks with alpha synaptic
function: learning with backpropagation,” in ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain,
8529–8533, doi: 10.1109/ICASSP40776.2020.9053856

Cook, E. P., and Johnston, D. (1997). Active dendrites reduce location-
dependent variability of synaptic input trains. J. Neurophysiol. 78, 2116–2128.
doi: 10.1152/jn.1997.78.4.2116

Cools, R., and Arnsten, A. F. T. (2022). Neuromodulation of prefrontal cortex
cognitive function in primates: the powerful roles of monoamines and acetylcholine.
Neuropsychopharmacology 47, 309–328. doi: 10.1038/s41386-021-01100-8

Cornford, J., Kalajdzievski, D., Leite, M., Lamarquette, A., Kullmann, D. M.,
and Richards, B. (2021). “Learning to live with dale’s principle: ANNs with
separate excitatory and inhibitory units,” in 9th International Conference on Learning
Representations (Austria). doi: 10.1101/2020.11.02.364968

Cui, P., Shabash, B., and Wiese, K. C. (2019). “EvoDNN - an evolutionary
deep neural network with heterogeneous activation functions,” in 2019 IEEE
Congress on Evolutionary Computation (CEC) (Wellington), 2362–2369.
doi: 10.1109/CEC.2019.8789964

Dayan, P., and Abbott, L. (2001). Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. Cambridge, MA: Massachusetts Institute of
Technology Press.

Debanne, D., Inglebert, Y., and Russier, M. (2019). Plasticity of intrinsic neuronal
excitability. Curr. Opin. Neurobiol. 54, 73–82. doi: 10.1016/j.conb.2018.09.001

DeFelipe, J., and Fariñas, I. (1992). The pyramidal neuron of the cerebral cortex:
morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39,
563–607. doi: 10.1016/0301-0082(92)90015-7

Denève, S., Alemi, A., and Bourdoukan, R. (2017). The brain as an efficient and
robust adaptive learner. Neuron 94, 969–977. doi: 10.1016/j.neuron.2017.05.016

Denève, S., and Machens, C. K. (2016). Efficient codes and balanced networks. Nat.
Neurosci. 19, 375–382. doi: 10.1038/nn.4243

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, eds J. Burstein, C. Doran, and T. Solorio
(Association for Computational Linguistics), 4171–4186. doi: 10.18653/v1/n19-1423

Dittmer, P. J., Dell’Acqua, M. L., and Sather, W. A. (2019). Synaptic crosstalk
conferred by a zone of differentially regulated ca<sup>2+</sup> signaling in the
dendritic shaft adjoining a potentiated spine. Proc. Natl. Acad. Sci. U.S.A. 116,
13611–13620. doi: 10.1073/pnas.1902461116

Dos Santos, M., Salery, M., Forget, B., Garcia Perez, M. A., Betuing, S., Boudier, T.,
et al. (2017). Rapid synaptogenesis in the nucleus accumbens is induced by a single
cocaine administration and stabilized by mitogen-activated protein kinase interacting
kinase-1 activity. Biol. Psychiatry 82, 806–818. doi: 10.1016/j.biopsych.2017.03.014

Doya, K., Miyazaki, K. W., and Miyazaki, K. (2021). Serotonergic
modulation of cognitive computations. Curr. Opin. Behav. Sci. 38, 116–123.
doi: 10.1016/j.cobeha.2021.02.003

D’Souza, R. D., Wang, Q., Ji, W., Meier, A. M., Kennedy, H., Knoblauch, K., et al.
(2022). Hierarchical and nonhierarchical features of the mouse visual cortical network.
Nat. Commun. 13, 1–14. doi: 10.1038/s41467-022-28035-y

Duan, S., Yu, S., and Príncipe, J. C. (2022). Modularizing deep learning via
pairwise learning with kernels. IEEE Trans. Neural Netw. Learn. Syst. 33, 1441–1451.
doi: 10.1109/TNNLS.2020.3042346

Eavani, H., Satterthwaite, T. D., Filipovych, R., Gur, R. E., Gur, R. C.,
and Davatzikos, C. (2015). Identifying sparse connectivity patterns in the brain
using resting-state fMRI. NeuroImage 105, 286–299. doi: 10.1016/j.neuroimage.2014.
09.058

Eccles, J. C., Jones, R. V., and Paton, W. D. M. (1976). From electrical to chemical
transmission in the central nervous system: the closing address of the sir henry dale
centennial symposium Cambridge, 19 September 1975. Notes Rec. R. Soc. Lond. 30,
219–230. doi: 10.1098/rsnr.1976.0015

Frontiers inComputationalNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fncom.2023.1092185
https://doi.org/10.1038/nrn1888
https://doi.org/10.1109/18.605580
https://doi.org/10.1109/ICPR48806.2021.9412162
https://doi.org/10.7554/eLife.12454
https://doi.org/10.1016/j.neulet.2018.05.013
https://doi.org/10.1016/j.neuron.2021.07.002
https://doi.org/10.1038/nn.4401
https://doi.org/10.1098/rstb.1994.0019
https://doi.org/10.1109/TNSRE.2012.2189133
https://doi.org/10.7554/eLife.43415
https://doi.org/10.1016/j.neuron.2021.09.044
https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982
https://doi.org/10.1371/journal.pcbi.1009202
https://doi.org/10.1038/nrn2335
https://doi.org/10.1016/S0893-6080(98)00035-5
https://doi.org/10.1038/s41467-022-35658-8
https://doi.org/10.1016/j.tins.2018.01.002
https://doi.org/10.1016/j.neuron.2019.05.041
https://doi.org/10.3389/fpsyg.2014.00050
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.4236/am.2013.410A2002
https://doi.org/10.1038/s41467-017-01109-y
https://doi.org/10.1038/s41583-019-0125-5
https://doi.org/10.1016/j.conb.2021.04.007
https://doi.org/10.1073/pnas.0506806103
https://doi.org/10.1109/TCDS.2017.2717451
https://doi.org/10.1016/S0896-6273(04)00498-2
https://doi.org/10.1098/rspb.2012.2863
https://doi.org/10.1109/ICASSP40776.2020.9053856
https://doi.org/10.1152/jn.1997.78.4.2116
https://doi.org/10.1038/s41386-021-01100-8
https://doi.org/10.1101/2020.11.02.364968
https://doi.org/10.1109/CEC.2019.8789964
https://doi.org/10.1016/j.conb.2018.09.001
https://doi.org/10.1016/0301-0082(92)90015-7
https://doi.org/10.1016/j.neuron.2017.05.016
https://doi.org/10.1038/nn.4243
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1073/pnas.1902461116
https://doi.org/10.1016/j.biopsych.2017.03.014
https://doi.org/10.1016/j.cobeha.2021.02.003
https://doi.org/10.1038/s41467-022-28035-y
https://doi.org/10.1109/TNNLS.2020.3042346
https://doi.org/10.1016/j.neuroimage.2014.09.058
https://doi.org/10.1098/rsnr.1976.0015
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Jeon and Kim 10.3389/fncom.2023.1092185

Ellefsen, K. O., Mouret, J.-B., and Clune, J. (2015). Neural modularity helps
organisms evolve to learn new skills without forgetting old skills. PLoS Comput. Biol.
11:e1004128. doi: 10.1371/journal.pcbi.1004128

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: a survey.
J. Mach. Learn. Res. 20, 1997–2017. doi: 10.1007/978-3-030-05318-5_3

Fernández, J. G., Hortal, E., and Mehrkanoon, S. (2021). “Towards
biologically plausible learning in neural networks,” in 2021 IEEE
Symposium Series on Computational Intelligence (SSCI) (Orlando, FL), 1–8.
doi: 10.1109/SSCI50451.2021.9659539

Fischer, A. G., and Ullsperger, M. (2017). An update on the role of serotonin
and its interplay with dopamine for reward. Front. Hum. Neurosci. 11:484.
doi: 10.3389/fnhum.2017.00484

Foerde, K., and Shohamy, D. (2011). Feedback timing modulates
brain systems for learning in humans. J. Neurosci. 31, 13157–13167.
doi: 10.1523/JNEUROSCI.2701-11.2011

Foster, S. A., and Baker, J. A. (2004). Evolution in parallel: new insights from a classic
system. Trends Ecol. Evol. 19, 456–459. doi: 10.1016/j.tree.2004.07.004

Francioni, V., and Harnett, M. T. (2022). Rethinking single neuron electrical
compartmentalization: dendritic contributions to network computation in vivo.
Neuroscience, 489, 185–199. doi: 10.1016/j.neuroscience.2021.05.038

Friedrich, J., Urbanczik, R., and Senn, W. (2011). Spatio-temporal credit
assignment in neuronal population learning. PLoS Comput. Biol. 7:e1002092.
doi: 10.1371/journal.pcbi.1002092

Fukushima, K. (1975). Cognitron: a self-organizing multilayered neural network.
Biol. Cybern. 20, 121–136. doi: 10.1007/BF00342633

Fusi, S., Drew, P. J., and Abbott, L. (2005). Cascade models of synaptically stored
memories. Neuron 45, 599–611. doi: 10.1016/j.neuron.2005.02.001

Galván, E., and Mooney, P. (2021). Neuroevolution in deep neural networks:
current trends and future challenges. IEEE Trans. Artif. Intell. 2, 476–493.
doi: 10.1109/TAI.2021.3067574

Garcia, I., Quast, K., Huang, L., Herman, A., Selever, J., Deussing, J., et al. (2014).
Local CRH signaling promotes synaptogenesis and circuit integration of adult-born
neurons. Dev. Cell 30, 645–659. doi: 10.1016/j.devcel.2014.07.001

Gerstner, W., Kreiter, A. K., Markram, H., and Herz, A. V. M. (1997). Neural
codes: firing rates and beyond. Proc. Natl. Acad. Sci. U.S.A. 94, 12740–12741.
doi: 10.1073/pnas.94.24.12740

Gil, Z., Connors, B. W., and Amitai, Y. (1997). Differential regulation of
neocortical synapses by neuromodulators and activity. Neuron 19, 679–686.
doi: 10.1016/S0896-6273(00)80380-3

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,
MA: MIT Press.

Goodhill, G. J. (2018). Theoretical models of neural development. iScience 8,
183–199. doi: 10.1016/j.isci.2018.09.017

Gottwald, S, and Braun, D. A. (2020). The two kinds of free energy and the Bayesian
revolution. PLoS Comput. Biol. 16:e1008420. doi: 10.1371/journal.pcbi.1008420

Goulas, A., Betzel, R. F., and Hilgetag, C. C. (2019). Spatiotemporal ontogeny of
brain wiring. Sci. Adv. 5:eaav9694. doi: 10.1126/sciadv.aav9694

Graham, B. P., Cutsuridis, V., and Hunter, R. (2010). Associative Memory Models
of Hippocampal Areas CA1 and CA3. New York, NY: Springer New York, 459–494.
doi: 10.1007/978-1-4419-0996-1_16

Greve, P. F. (2015). The role of prediction in mental processing: a process approach.
New Ideas Psychol. 39, 45–52. doi: 10.1016/j.newideapsych.2015.07.007

Guerguiev, J., Lillicrap, T. P., and Richards, B. A. (2017). Towards deep learning
with segregated dendrites. eLife 6:e22901. doi: 10.7554/eLife.22901

Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., and Yang, G.-
Z. (2019). XAI-explainable artificial intelligence. Sci. Robot. 4:eaay7120.
doi: 10.1126/scirobotics.aay7120

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2021). Neural coding in
spiking neural networks: a comparative study for robust neuromorphic systems. Front.
Neurosci. 15:638474. doi: 10.3389/fnins.2021.638474

Haber, A., and Schneidman, E. (2022). “The computational and learning benefits
of daleian neural networks,” in Advances in Neural Information Processing Systems 35:
NeurIPS 2022, New Orleans, Louisiana, USA, eds S. Koyejo and S. Mohamed and A.
Agarwal and D. Belgrave and K. Cho and A. Oh (Red Hook, NY: Curran Associates
Inc.), 5194–5206. Available online at: https://proceedings.neurips.cc/paper_files/paper/
2022/file/21cb5931c39d7bd21b34b3b8f14a125c-Paper-Conference.pdf

Hadsell, R., Rao, D., Rusu, A. A., and Pascanu, R. (2020). Embracing change:
continual learning in deep neural networks. Trends Cogn. Sci. 24, 1028–1040.
doi: 10.1016/j.tics.2020.09.004

Han, S., Pool, J., Tran, J., and Dally, W. (2015). “Learning both weights and
connections for efficient neural network,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems (Montreal, QC), 1135–1143.

Hanse, E., Seth, H., and Riebe, I. (2013). Ampa-silent synapses in brain development
and pathology. Nat. Rev. Neurosci. 14, 839–850. doi: 10.1038/nrn3642

Harris, K. M., and Spacek, J. (2016). “Dendrite structure,” in Dendrites, eds
G. Stuart, N. Spruston, and M. Häusser (Oxford: Oxford University Press).
doi: 10.1093/acprof:oso/9780198745273.003.0001

Harvey, M. A., Saal, H. P., Dammann, III, J. F., and Bensmaia, S. J. (2013).
Multiplexing stimulus information through rate and temporal codes in primate
somatosensory cortex. PLoS Biol. 11:e1001558. doi: 10.1371/journal.pbio.1001558

Hasson, U., Nastase, S. A., and Goldstein, A. (2020). Direct fit to nature: an
evolutionary perspective on biological and artificial neural networks. Neuron 105,
416–434. doi: 10.1016/j.neuron.2019.12.002

Helfer, P., and Shultz, T. R. (2018). Coupled feedback loops maintain synaptic
long-term potentiation: a computational model of PKMZETA synthesis and AMPA
receptor trafficking. PLoS Comput. Biol. 14:e1006147. doi: 10.1371/journal.pcbi.
1006147

Hennequin, G., Agnes, E. J., and Vogels, T. P. (2017). Inhibitory plasticity:
balance, control, and codependence. Annu. Rev. Neurosci. 40, 557–579.
doi: 10.1146/annurev-neuro-072116-031005

Hermundstad, A. M., Brown, K. S., Bassett, D. S., and Carlson, J. M. (2011).
Learning, memory, and the role of neural network architecture. PLoS Comput. Biol.
7:e1002063. doi: 10.1371/journal.pcbi.1002063

Hilgetag, C. C., and Goulas, A. (2020). “Hierarchy” in the organization of brain
networks. Philos. Trans. R. Soc. B 375:20190319. doi: 10.1098/rstb.2019.0319

Hill, A. V. (1936). Excitation and accommodation in nerve. Proc. R. Soc. Lond. Ser.
B Biol. Sci. 119, 305–355. doi: 10.1098/rspb.1936.0012

Hiratani, N., and Latham, P. E. (2022). Developmental and evolutionary constraints
on olfactory circuit selection. Proc. Natl. Acad. Sci. U.S.A. 119:e2100600119.
doi: 10.1073/pnas.2100600119

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol. 117,
500–544. doi: 10.1113/jphysiol.1952.sp004764

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and Peste, A. (2022). Sparsity
in deep learning: pruning and growth for efficient inference and training in neural
networks. J. Mach. Learn. Res. 22, 1–124.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558.
doi: 10.1073/pnas.79.8.2554

Hwang, K.-D., Baek, J., Ryu, H.-H., Lee, J., Shim, H. G., Kim, S. Y., et al. (2023).
Cerebellar nuclei neurons projecting to the lateral parabrachial nucleus modulate
classical fear conditioning. Cell Rep. 42:112291. doi: 10.1016/j.celrep.2023.112291

Ingrosso, A., and Abbott, L. (2019). Training dynamically balanced excitatory-
inhibitory networks. PLoS ONE 14:e0220547. doi: 10.1371/journal.pone.0220547

Ishizuka, N.,Weber, J., and Amaral, D. G. (1990). Organization of intrahippocampal
projections originating from CA3 pyramidal cells in the rat. J. Compar. Neurol. 295,
580–623. doi: 10.1002/cne.902950407

Isomura, T., and Friston, K. (2018). In vitro neural networks minimise variational
free energy. Sci. Rep. 8:16926. doi: 10.1038/s41598-018-35221-w

Isomura, T., Shimazaki, H., and Friston, K. J. (2022). Canonical neural networks
perform active inference. Commun. Biol. 5:55. doi: 10.1038/s42003-021-02994-2

Iwadate, K., Suzuki, I., Watanabe, M., Yamamoto, M., and Furukawa, M. (2014).
“An artificial neural network based on the architecture of the cerebellum for behavior
learning,” in Soft Computing in Artificial Intelligence (Berlin: Springer), 143–151.
doi: 10.1007/978-3-319-05515-2_13

Iyer, A., Grewal, K., Velu, A., Souza, L. O., Forest, J., and Ahmad, S. (2022). Avoiding
catastrophe: active dendrites enable multi-task learning in dynamic environments.
Front. Neurorobot. 16:846219. doi: 10.3389/fnbot.2022.846219

Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Trans. Neural Netw.
14, 1569–1572. doi: 10.1109/TNN.2003.820440

Jedlicka, P., Tomko, M., Robins, A., and Abraham, W. C. (2022). Contributions
by metaplasticity to solving the catastrophic forgetting problem. Trends Neurosci. 45,
656–666. doi: 10.1016/j.tins.2022.06.002

Johansen, J. P., Diaz-Mataix, L., Hamanaka, H., Ozawa, T., Ycu, E., Koivumaa,
J., et al. (2014). Hebbian and neuromodulatory mechanisms interact to trigger
associative memory formation. Proc. Natl. Acad. Sci. U.S.A. 111, E5584–E5592.
doi: 10.1073/pnas.1421304111

Johnston, D., and Narayanan, R. (2008). Active dendrites: colorful wings of the
mysterious butterflies. Trends Neurosci. 31, 309–316. doi: 10.1016/j.tins.2008.03.004

Jonas, E., and Kording, K. P. (2017). Could a neuroscientist understand a
microprocessor? PLoS Comput. Biol. 13:e1005268. doi: 10.1371/journal.pcbi.1005268

Jun, N. Y., Ruff, D. A., Kramer, L. E., Bowes, B., Tokdar, S. T., Cohen, M. R., et
al. (2022). Coordinated multiplexing of information about separate objects in visual
cortex. eLife 11:e76452. doi: 10.7554/eLife.76452

Frontiers inComputationalNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2023.1092185
https://doi.org/10.1371/journal.pcbi.1004128
https://doi.org/10.1007/978-3-030-05318-5_3
https://doi.org/10.1109/SSCI50451.2021.9659539
https://doi.org/10.3389/fnhum.2017.00484
https://doi.org/10.1523/JNEUROSCI.2701-11.2011
https://doi.org/10.1016/j.tree.2004.07.004
https://doi.org/10.1016/j.neuroscience.2021.05.038
https://doi.org/10.1371/journal.pcbi.1002092
https://doi.org/10.1007/BF00342633
https://doi.org/10.1016/j.neuron.2005.02.001
https://doi.org/10.1109/TAI.2021.3067574
https://doi.org/10.1016/j.devcel.2014.07.001
https://doi.org/10.1073/pnas.94.24.12740
https://doi.org/10.1016/S0896-6273(00)80380-3
https://doi.org/10.1016/j.isci.2018.09.017
https://doi.org/10.1371/journal.pcbi.1008420
https://doi.org/10.1126/sciadv.aav9694
https://doi.org/10.1007/978-1-4419-0996-1_16
https://doi.org/10.1016/j.newideapsych.2015.07.007
https://doi.org/10.7554/eLife.22901
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.3389/fnins.2021.638474
https://proceedings.neurips.cc/paper_files/paper/2022/file/21cb5931c39d7bd21b34b3b8f14a125c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/21cb5931c39d7bd21b34b3b8f14a125c-Paper-Conference.pdf
https://doi.org/10.1016/j.tics.2020.09.004
https://doi.org/10.1038/nrn3642
https://doi.org/10.1093/acprof:oso/9780198745273.003.0001
https://doi.org/10.1371/journal.pbio.1001558
https://doi.org/10.1016/j.neuron.2019.12.002
https://doi.org/10.1371/journal.pcbi.1006147
https://doi.org/10.1146/annurev-neuro-072116-031005
https://doi.org/10.1371/journal.pcbi.1002063
https://doi.org/10.1098/rstb.2019.0319
https://doi.org/10.1098/rspb.1936.0012
https://doi.org/10.1073/pnas.2100600119
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1016/j.celrep.2023.112291
https://doi.org/10.1371/journal.pone.0220547
https://doi.org/10.1002/cne.902950407
https://doi.org/10.1038/s41598-018-35221-w
https://doi.org/10.1038/s42003-021-02994-2
https://doi.org/10.1007/978-3-319-05515-2_13
https://doi.org/10.3389/fnbot.2022.846219
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1016/j.tins.2022.06.002
https://doi.org/10.1073/pnas.1421304111
https://doi.org/10.1016/j.tins.2008.03.004
https://doi.org/10.1371/journal.pcbi.1005268
https://doi.org/10.7554/eLife.76452
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Jeon and Kim 10.3389/fncom.2023.1092185

Kabilan, R., and Muthukumaran, N. (2021). “A neuromorphic model
for image recognition using SNN,” in 2021 6th International Conference
on Inventive Computation Technologies (ICICT) (Coimbatore), 720–725.
doi: 10.1109/ICICT50816.2021.9358663

Kang, S., Jun, S., Baek, S., Park, H., Yamamoto, Y., and Tanaka-Yamamoto, K. (2021).
Recent advances in the understanding of specific efferent pathways emerging from the
cerebellum. Front. Neuroanat. 15:759948. doi: 10.3389/fnana.2021.759948

Kawato,M., Kuroda, S., and Schweighofer, N. (2011). Cerebellar supervised learning
revisited: biophysical modeling and degrees-of-freedom control.Curr. Opin. Neurobiol.
21, 791–800. doi: 10.1016/j.conb.2011.05.014

Kepecs, A., and Fishell, G. (2014). Interneuron cell types are fit to function. Nature
505, 318–326. doi: 10.1038/nature12983

Kerchner, G. A., and Nicoll, R. A. (2008). Silent synapses and the emergence of a
postsynaptic mechanism for LTP.Nat. Rev. Neurosci. 9, 813–825. doi: 10.1038/nrn2501

Khajeh, R., Fumarola, F., and Abbott, L. (2022). Sparse balance: excitatory-
inhibitory networks with small bias currents and broadly distributed synaptic weights.
PLoS Comput. Biol. 18:e1008836. doi: 10.1371/journal.pcbi.1008836

Kirsch, L., Kunze, J., and Barber, D. (2018). “Modular networks: learning to
decompose neural computation,” inAdvances in Neural Information Processing Systems
31: NeurIPS 2018, Montréal, QC, eds S. Bengio, H. M. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett (Red Hook, NY: Curran Associates Inc.),
2414–2423.

Kornijcuk, V., Park, J., Kim, G., Kim, D., Kim, I., Kim, J., et al. (2019).
Reconfigurable spike routing architectures for on-chip local learning in neuromorphic
systems. Adv. Mater. Technol. 4:1800345. doi: 10.1002/admt.201800345

Kovács, K. A. (2020). Episodic memories: how do the hippocampus and the
entorhinal ring attractors cooperate to create them? Front. Syst. Neurosci. 14:559168.
doi: 10.3389/fnsys.2020.559186

Kozachkov, L., Tauber, J., Lundqvist, M., Brincat, S. L., Slotine, J.-J., andMiller, E. K.
(2022). Robust and brain-like working memory through short-term synaptic plasticity.
PLoS Comput. Biol. 18:e1010776. doi: 10.1371/journal.pcbi.1010776

Krogh, A., and Vedelsby, J. (1994). “Neural network ensembles, cross validation,
and active learning,” in Advances in Neural Information Processing Systems, Vol. 7, eds
G. Tesauro, D. Touretzky, and T. Leen (Cambridge, MA: MIT Press).

Kuhn, H. G., Palmer, T. D., and Fuchs, E. (2001). Adult neurogenesis: a
compensatory mechanism for neuronal damage. Eur. Arch. Psychiatry Clin. Neurosci.
251, 152–158. doi: 10.1007/s004060170035

Kuo, I.-C., and Zhang, Z. (1994). “Capacity of associative memory,” in Proceedings
of 1994 IEEE International Symposium on Information Theory (Trondheim), 222.
doi: 10.1109/ISIT.1994.394746

Kwisthout, J., and Donselaar, N. (2020). “On the computational power and
complexity of spiking neural networks,” in Proceedings of the Neuro-Inspired
Computational Elements Workshop, NICE ’20 (New York, NY: Association for
Computing Machinery). doi: 10.1145/3381755.3381760

Laborieux, A., Ernoult, M., Hirtzlin, T., and Querlioz, D. (2021).
Synaptic metaplasticity in binarized neural networks. Nat. Commun. 12:2549.
doi: 10.1038/s41467-021-22768-y

Lankarany, M., Al-Basha, D., Ratt, S., and Prescott, S. A. (2019). Differentially
synchronized spiking enables multiplexed neural coding. Proc. Natl. Acad. Sci. U.S.A.
116, 10097–10102. doi: 10.1073/pnas.1812171116

Le, T.-L., Huynh, T.-T., Hong, S.-K., and Lin, C.-M. (2020). Hybrid neural network
cerebellar model articulation controller design for non-linear dynamic time-varying
plants. Front. Neurosci. 14:695. doi: 10.3389/fnins.2020.00695

LeCun, Y., Cortes, C., and Burges, C. (2010). MNIST Handwritten Digit Database.
ATT Labs [Online]. Available online at: http://yann.lecun.com/exdb/mnist

Lee, A., Lam, B., Li, W., Lee, H., Chen, W., Chang, M., et al. (2018). Conditional
activation for diverse neurons in heterogeneous networks.CoRR, abs/1803.05006. arXiv
[preprint] arXiv:1803.05006.

Li, C., Zhang, X., Chen, P., Zhou, K., Yu, J., Wu, G., et al. (2023). Short-
term synaptic plasticity in emerging devices for neuromorphic computing. iScience
26:106315. doi: 10.1016/j.isci.2023.106315

Li, T., Arleo, A., and Sheynikhovich, D. (2020). Modeling place cells and
grid cells in multi-compartment environments: entorhinal-hippocampal loop as a
multisensory integration circuit. Neural Netw. 121, 37–51. doi: 10.1016/j.neunet.2019.
09.002

Liang, J., Meyerson, E., and Miikkulainen, R. (2018). “Evolutionary architecture
search for deep multitask networks,” in Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’18 (New York, NY: Association for Computing
Machinery), 466–473. doi: 10.1145/3205455.3205489

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., and Hinton, G.
(2020). Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346.
doi: 10.1038/s41583-020-0277-3

Lin, Y., Li, G., Zhang, X., Zhang,W., Chen, B., Tang, R., et al. (2021). “ModularNAS:
towards modularized and reusable neural architecture search,” in Proceedings of
Machine Learning and Systems, Vol. 3, eds A. Smola, A. Dimakis, and I. Stoica (Virtual),
413–433.

Liu, T. (2020). BHN: a brain-like heterogeneous network. arXiv [preprint]
arXiv:2005.12826.

Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G. G., and Tan, K. C. (2021). A survey
on evolutionary neural architecture search. IEEE Trans. Neural Netw. Learn. Syst. 34,
550–570. doi: 10.1109/TNNLS.2021.3100554

Liu, Y., and Yao, X. (2008). Nature inspired neural network ensemble learning. J.
Intell. Syst. 17(Suppl.), 5–26. doi: 10.1515/JISYS.2008.17.S1.5

Liu, Y. H., Smith, S., Mihalas, S., Shea-Brown, E., and Sümbül, U. (2021). Cell-
type-specific neuromodulation guides synaptic credit assignment in a spiking neural
network. Proc. Natl. Acad. Sci. U.S.A. 118:e2111821118. doi: 10.1073/pnas.2111821118

Llorca, A., Ciceri, G., Beattie, R., Wong, F. K., Diana, G., Serafeimidou-Pouliou,
E., et al. (2019). A stochastic framework of neurogenesis underlies the assembly of
neocortical cytoarchitecture. eLife 8:e51381. doi: 10.7554/eLife.51381

London, M., and Häusser, M. (2005). Dendritic computation. Annu. Rev. Neurosci.
28, 503–532. doi: 10.1146/annurev.neuro.28.061604.135703

Luczak, A., McNaughton, B. L., and Kubo, Y. (2022). Neurons learn by predicting
future activity. Nat. Mach. Intell. 4, 62–72. doi: 10.1038/s42256-021-00430-y
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