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The active inference framework (AIF) is a promising new computational framework

grounded in contemporary neuroscience that can produce human-like behavior

through reward-based learning. In this study, we test the ability for the AIF to capture

the role of anticipation in the visual guidance of action in humans through the

systematic investigation of a visual-motor task that has been well-explored—that of

intercepting a target moving over a ground plane. Previous research demonstrated

that humans performing this task resorted to anticipatory changes in speed intended

to compensate for semi-predictable changes in target speed later in the approach. To

capture this behavior, our proposed “neural” AIF agent uses artificial neural networks

to select actions on the basis of a very short term prediction of the information about

the task environment that these actions would reveal along with a long-term estimate

of the resulting cumulative expected free energy. Systematic variation revealed that

anticipatory behavior emerged only when required by limitations on the agent’s

movement capabilities, and only when the agent was able to estimate accumulated

free energy over su�ciently long durations into the future. In addition, we present

a novel formulation of the prior mapping function that maps a multi-dimensional

world-state to a uni-dimensional distribution of free-energy/reward. Together, these

results demonstrate the use of AIF as a plausible model of anticipatory visually guided

behavior in humans.
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1. Introduction

The active inference framework (AIF) (Friston et al., 2009) is an emerging theory of

neural encoding and processing that captures a wide range of cognitive, perceptual, and motor

phenomena, while also offering a neurobiologically plausible means of conducting reward-

based learning through the capacity to predict sensory information. The behavior of an AIF

agent involves the selection of action-plans that span into the near future and centers around

the learning of a probabilistic generative model of the world through interaction with the

environment. Ultimately, the agent must take action such that it is making progress toward

its goals (goal-seeking behavior) while also balancing the drive to explore and understand

its environment (information maximizing behavior), adjusting the internal states of its world

to better account for the evidence that it acquires over time. As a result, AIF unifies

perception, action, and learning by framing them as processes that result from approximate

Bayesian inference.

The AIF framework has been used to study a variety of reinforcement learning (RL) tasks,

including the inverted pendulum problem (CartPole) (Millidge, 2020; Shin et al., 2022), the

mountain car problem (MountainCar) (Friston et al., 2009; Ueltzhöffer, 2018; Çatal et al.,

2020; Tschantz et al., 2020a; Shin et al., 2022) and the frozen lake problem (Frozen Lake)
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(Sajid et al., 2021). Each task places different demands on motor and

cognitive abilities. For instance, CartPole requires online control of

a paddle to balance a pole upright, whereas MountainCar requires

intelligent exploration of the task environment; a simple “greedy”

policy (typical of many modern-day RL approaches) would fail to

solve the problem. The popular Frozen Lake requires skills related to

spatial navigation and planning if the agent is to find the goal while

avoiding unsafe states.

One fundamental aspect of human and animal behavior that

has so far not been sufficiently studied from an active inference

perspective is the on-line visual guidance of locomotion. On-

line visual guidance comprises a class of ecologically important

behaviors for which movements of the body are continuously

regulated based on currently available visual information seen

from the first-person perspective. Some of the most extensively

studied tasks include steering toward a goal (Warren et al., 2010),

negotiating complex terrain on foot (Matthis and Fajen, 2013; Diaz

et al., 2018), intercepting moving targets (Fajen and Warren, 2007),

braking to avoid a collision (Yilmaz and Warren, 1995; Fajen and

Devaney, 2006), and intercepting a fly ball (Chapman, 1968; Fajen

et al., 2008). For each of these tasks, researchers have formulated

control strategies that capture the coupling of visual information

and action.

One aspect of on-line visual guidance that AIF might be

particularly well-suited to capture is anticipation. To successfully

perform any of these kinds of tasks, actors must be able to regulate

their actions in anticipation of future events. One approach to

capturing anticipation in visual guidance is to identify sources

of visual information that specify how the actor should move

at the current instant in order to reach the goal in the future.

For example, when running to intercept a moving target, the

sufficiency of the interceptor’s current speed is specified by the

rate of change in the exocentric visual direction of the target, or

bearing angle (Figure 1). If the interceptor is able to move so as

to maintain a constant bearing angle (CBA), then an interception

is guaranteed. Such accounts of anticipation are appealing because

they avoid the need for planning on the basis of predictions or

extrapolations of the agent’s or target’s motion, thereby presumably

requiring fewer cognitive resources for task execution. Similar

accounts of anticipation in the context of locomotor control

have been developed for fly ball catching (Chapman, 1968) and

braking (Lee, 1976).

However, there are other aspects of anticipatory control that are

more difficult to capture based on currently available information

alone. For example, moving targets sometimes change speeds and

directions in ways that are somewhat predictable, allowing actors to

alter their movement in advance in anticipation of the most likely

change in target motion. This was demonstrated in a previously

published study in which subjects were instructed to adjust their

self-motion speed while moving along a linear path in order to

intercept a moving target that changed speed partway through each

episode (Diaz et al., 2009). Note that episode refers to a single,

complete course of interception for the agent and the target to be

compatible with the conventions used by the reinforcement learning

community. In contrast, Diaz et al. (2009) uses the word trial. The

final target speed randomly varied between episodes such that the

target usually accelerated but occasionally decelerated. In response,

subjects quickly learned to adjust their speed during the first part

of the episode in anticipation of the change in target speed that

FIGURE 1

A top-down view of the interception problem. The agent (triangle) and

target (circle) approach the invisible interception point (square) by

going straight ahead. 9 denotes the exocentric direction of the target

(bearing angle) and α denotes the target’s approach angle. Image

adapted from Diaz et al. (2009).

was most likely given past experience and the initial conditions of

that episode.

Active inference offers a potentially useful framework for

understanding and modeling this kind of anticipatory behavior. The

behavior of an AIF agent involves the selection of action plans (or

policies) that span into the near future. These plans are selected based

on expected free energy (EFE), i.e., a reward signal that takes into

account both the action’s contribution to reaching a desired goal

state (i.e., an instrumental component), and the new information

gained by the action (i.e., an epistemic component). This method of

action selection is ideal for the study of predictive and anticipatory

behavior in that it allows for the selection of action plans that do

not immediately contribute to task completion, but that reveal to

the agent something previously unknown about how the agent’s

action affects the environment. Similarly, in the task presented

in Diaz et al. (2009), the human participants learned that success

required increasing speed early in the episode in order to increase the

likelihood of an interception after the target’s semi-predictable change

in speed. Critically, this early change in speed was not motivated

by currently available visual information, but rather by the positive

reinforcement of actions selected in the process of task exploration.

In contrast to reinforcement learning methods, active inference

(AIF) formulates action-driven learning and inference from a

Bayesian, belief-based perspective (Parr and Friston, 2019; Sajid

et al., 2021). Generally, AIF offers: (1) flexibility to define a prior

preference (or preferred outcome) over the observation space (which

pushes the agent to uncover goal-orienting policies), which provides

an alternative to designing a reward function, (2) a principled

treatment for epistemic exploration as a means of uncertainty

reduction, information gain, and intrinsic motivation (Parr and

Friston, 2017, 2019; Schwartenbeck et al., 2019), and (3) an

encompassing uncertainty or precision over the beliefs that the
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generative model of the AIF agent computes as a natural part of

then agent’s belief updating (Parr and Friston, 2017). Despite being

a popular and powerful framework of perception, action (Friston,

2009, 2010; Buckley et al., 2017; Friston K. et al., 2017), decision-

making and planning (Kaplan and Friston, 2018; Parr and Friston,

2018) with biological plausibility, AIF has been mostly applied to

problems with a low-dimensionality and often discrete state space

and actions (Friston et al., 2012, 2015, 2018; Friston K. et al., 2017;

Friston K. J. et al., 2017). One of the key limitations is that calculation

of the EFE values for all policies starting from the current time step

is needed in order to select the optimal action at the immediate

time step. The exact EFE calculation becomes intractable quickly as

the size of the action space |A| and the planning time horizon H

grows (Millidge, 2020; Shin et al., 2022). We refer to Da Costa et al.

(2020) for a comprehensive review on AIF.

The present study makes several specific contributions to the

understanding of visually guided action and active inference:

• We present a novel model for locomotor interception of a target

that changes speeds semi-predictably, as in Diaz et al. (2009).

This model is a scaled-up version of AIF where EFE is treated as

a negative value function in reinforcement learning (RL) (Shin

et al., 2022) and deep RL methodology is utilized to scale AIF to

solve tasks such as locomotor interception with continuous state

spaces. Specifically, our method predicts action-conditioned

EFE values with a joint network (see Section 2.4.2) and by

bootstrapping on the continuous observation space over a long

time horizon. This allows the agent to account for the long-term

effects of its current chosen action(s).

• To calculate the instrumental value, we designed a problem-

specific prior mapping function to convert the original

observations into a one-dimensional prior space where a

prior preference can be (more easily) specified. This allows

us to inject domain knowledge into the instrumental reward.

The instrumental measurements in prior space simultaneously

promote interpretability as well as computationally efficient

task performance.

• We present a comparison of task performance of a baseline

deep-Q network (DQN) agent, or an AIF agent in which EFE is

computed using only the instrumental signal/component, with a

full AIF agent in which EFE is computed using both instrumental

and epistemic signals/components.

• We demonstrate behavioral differences among our full AIF

agent under the influence of two varying parameters: the

discount factor γ , which describes the weight on future

accumulated quantities when calculating EFE value at each time

step, and pedal lag coefficient K, which specifies how responsive

changes in pedal position is reflected on agent’s speed (or the

amount of inertia that is associated with the agent’s vehicle).

• We interpret our findings as a model for anticipation in

the context of visually guided action as well as in terms of

specific contributions to the active inference and machine

learning communities.

2. Materials and methods

Our aim in this study was to develop an agent that selects

from a set of discrete actions in order to perform the task of

interception. In this section, we describe the task that we aim to

solve as well as formally describe the AIF model designed to tackle

it. We start with the problem formulation and brief notation and

definitions, then move on to describe our proposed agent’s inference

and learning dynamics.

2.1. The perceptual-motor problem:
Intercepting a moving target

We designed and simulated a perception-motor problem based

on the human interception task used by Diaz et al. (2009). In the

original study, subjects sat in front of a large rear-projection screen

depicting an open field with a heavily textured ground plane. The

subject’s task was to intercept a moving spherical target by controlling

the speed of self-movement along a linear trajectory with a foot pedal,

the position of which was mapped onto speed according to a first-

order lag. Subjects began each episode from a stationary position

at an initial distance sampled uniformly from between 25 and 30

m from the interception point. The spherical target approached the

subject’s path at one of three initial speeds (11.25, 9.47, and 8.18 m/s).

Between 2.5 and 3.25 s after the episode began, the target changed

speeds linearly by an amount that was sampled from a normal

distribution of possible final speeds. The mean of the distribution

was 15 m/s such that target speed usually increased, but occasionally

decreased (standard deviation was 5 m/s, final speed is truncated by

one standard deviation from the mean). The change of target speed

takes exactly 500 ms.

This interception problem is difficult because a human or agent

that is purely reactive to the likely change in target speed will often

arrive at the interception point after the target (e.g., they will be

too slow). The problem is exacerbated when the agent’s vehicle

is less responsive. In Diaz et al. (2009), subjects were found to

increase their speed during the early part of the episode in order to

anticipate the most likely change in target speed, which helped them

perform at near optimal levels. Differences between the behavior

of subjects and the ideal pursuer were also found under some

conditions. Findings in the original study further yielded insight into

the strategies that humans adopt when dealing with uncertainty in

realistic interception tasks.

2.2. Notation

We next define the notation and mathematical operators that we

will use throughout the rest of this paper. ⊙ indicates a Hadamard

product, · indicates a matrix/vector multiplication (or dot product if

the two objects it is applied to are vectors of the same shape), and (v)T

denotes the transpose. ||v||p is used to represent the p-norm where

p = 2 results in the 2-norm or Euclidean (L2) distance.

2.3. Action and input space specification

To simplify the problem for this work, we assume that the

mapping between environmental (latent) states and observations is

the identity matrix. Furthermore, we formulate the problem as a

Markov Decision Process (MDP) with a discrete action space. The
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action space at (action vector at time t) is defined as a one-hot vector

a ∈ {0, 1}6×1, where each dimension corresponds to a unique action

and the actions are mutually exclusive. Each dimension corresponds

to one of the pedal speeds (m/s) in {2, 4, 8, 10, 12, 14} respectively.

Once a pedal speed is selected, the agent will change its own speed by

the amount of1V = K∗ (Vp−Vs) in one time step whereVp is pedal

speed, Vs is current subject speed and K is a constant lag coefficient.

In this study, we experiment with 2 variants of peal lag coefficient, i.e.,

K = 1.0K’ and K = 0.5K’. K’ is set to 0.017 to be consistent with the

original study (Diaz et al., 2009) and provides a smooth relationship

between the pedal movement and vehicle speed change. Similar to

Tschantz et al. (2020b), we assume that the control state vector

(which, in AIF, control states are originally treated separately from

action states) lines up one-to-one with the action vector, meaning

that it too is a vector of the form u ∈ {0, 1}6×1. We define the

observation/state space (o ∈ R4×1) to be a 4-dimensional vector ot =

〈xt , vt , xs, vs〉
T , which corresponds to target distance, target speed,

subject distance and subject speed. All distances aforementioned are

with respect to the invisible interception point.

2.4. Neural active inference

Active inference (AIF) is a Bayesian computational framework

that brings together perception and action under one single

imperative: minimizing free energy. It accounts for how self-

organizing agents operate in dynamic, non-stationary environments

(Friston, 2019), offering an alternative to standard, reward function-

centric reinforcement learning (RL). In this study, we craft a simple

AIF agent that resembles Q-learning (Shin et al., 2022) where the

expected free energy (EFE) serves the role of a negative action-value

function in RL. We frame the definition of EFE in the context of

a stochastic policy and cast action-conditioned EFE as a negative

action-value using a policy φ = φ(at|st) (where st = ot as per

our assumption earlier). The same policy φ is used for each future

time step τ , and the probability distribution over the first-step action

is separated from φ resulting in a substitution distribution q(at) for

φ(at). Therefore, the one-step substituted EFE can be interpreted as

the EFE of a policy of (q(at),φ(at+1), . . . ,φ(aT))).

Following Shin et al. (2022), we consider the deterministic

optimal policy φ∗ which always seeks an action with a minimum EFE

and obtain the following EFE definition:

Gφ∗ (st) = min
a

Gφ∗ (st|a)

= min
a

Ep(st+1|st ,at=a)p(ot+1|st+1)

[

log
p(st+1|st , at = a)

p̃(ot+1)q(st+1|ot+1)
+ Gφ∗ (st+1)

]
(1)

According to Shin et al. (2022), the equation above is quite similar

to the Bellman optimality equation, where Gφ∗ (st+1) corresponds to

the state-value function V∗(st+1) = maxπ Vπ (st+1) and Gφ∗ (st|a)

corresponds to the action-value functionQ∗(st , a). Then the first term

log
p(st+1|st ,at=a)

p̃(ot+1)q(st+1|ot+1)
can be treated as a one-step negative reward and

thus EFE can be treated as a negative value function. This term can

then be further decomposed into two components:

Rt : = −log
p(st+1|st , at = a)

p̃(ot+1)q(st+1|ot+1)
= logp̃(ot+1)

︸ ︷︷ ︸

Instrumental

+ (−log
p(st+1|st , at)

q(st+1|ot+1)
)

︸ ︷︷ ︸

Epistemic

= Rt,i + Rt,e

(2)

To connect the formulation above back to AIF, with the term

rephrased as Rt,i is the instrumental (also known as extrinsic,

pragmatic or goal-directed) component (Tschantz et al., 2020b), which

measures the similarity between the future outcome following the

policy φ and preferred outcome (or prior preference). The term

rephrased as Rt,e is known as the epistemic (also known as intrinsic,

uncertainty-reducing or information-seeking) component (Tschantz

et al., 2020b), which measures the prediction error between the

estimation of the future state by the transition model and the

state predicted by the encoder given the actual observation from

the environment.

Ultimately, we simplify and approximate the search for optimal

EFE values by adapting an estimation approach based on the Bellman

equation, arriving at a Q-learning bootstrap scheme. We assume

that the outcome/observation can be set equal to state variables

and, as a result, our generative model is designed with respect to

fully observed environment (Tschantz et al., 2020a). Following the

active inference literature, we adopt the Laplace assumption and

mean-field approximation. Therefore, a fixed identity covariance

matrix is used for the likelihood distribution p(o|s). Our model (the

function approximator) outputs the mean of states, which encodes

the belief that there is a direct mapping between outcomes and

states. Similarly, our model outputs the mean of estimated EFE

values. Following (Mnih et al., 2015), we integrated an experience

replay as well as a target network in order to facilitate learning and

improve sample efficiency. Note that the Q-learning style framing

of negative EFE estimation is referred to as G-learning. Our model

estimates the EFE for each possible action that it could take in

the immediate next time step (i.e., time t + 1) then selects the

action that corresponds to the minimal EFE value. This, in effect,

corresponds to only explicitly calculating the EFE over a horizon of 1

(whereas as planning over horizons >1 quickly become prohibitive,

requiring expensive search methods such as Monte Carlo tree search)

but incorporates a bootstrap estimate of future EFE values via the

G-learning setup. Our definition in Equation (1) is similar to the

EFE definition in Friston et al. (2021) in the sense that EFE is

formulated recursively in both works. However, differences between

our method and sophisticated inference (Friston et al., 2021) still

exist. For instance, our method works with continuous state space

whereas sophisticated inference works with a discrete state space.

Our method displays a connection to Q-learning, thus it is able

to plan over a trajectory of arbitrary length in principle using

bootstrap estimation, whereas sophisticated inference terminates the

evaluation of recursive EFE whenever an action is found as unlikely

or an outcome is implausible. We utilize the AIF framework within

the G-learning framing for the interception task and modify the

framework to fit the interception task, see Figure 2. Spatial variables,

i.e., distance and speed, will serve as the inputs to our framework and,

as mentioned before, an identity mapping is assumed to connect the

observation directly to the state variables (allowing us to avoid having

to learn additional parameterized encoder/decoder functions). As
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FIGURE 2

Our neural AIF architecture for the interception task. The joint model is a two-headed artificial neural network which consists of shared hidden layers, an

EFE (estimation) head, and a transition dynamics (prediction) head. The EFE head estimates EFE values for all possible actions given the current

(latent/hidden) state. An action which is associated with maximum EFE value is selected and executed in the environment and the resulting observation is

fed into the prior mapping function where the instrumental value Rt,i is calculated in prior space. Meanwhile, the transition dynamics head predicts the

resulting observation given the current (latent/hidden) state. The error between the predicted and actual observation at t+ 1 forms the epistemic value

Rt,e. The summation of Rt,i and Rt,e results in the final EFE (target) value.

a result, the AIF agent we designed for this paper’s experiments

consists of two major components: a prior mapping function and a

multi-headed joint neural model.

Notably, our particular proposed joint model works jointly as a

function approximator of EFE values as well as a forward dynamics

predictor. It takes in the current observation ot as input and then

conducts, jointly, action selection and next-state prediction (as well

as epistemic value estimation). The selected action is executed and

the resulting observation is returned by the environment. The prior

mapping function itself takes in as input the next observation ot+1,

the consequence/result of the agent’s currently selected action, and

calculates the log likelihood of the preferred/prior distribution (set

according to expert knowledge related to the problem), or the

instrumental term Rt,i. The squared difference between the outcome

of the selected action ot+1 and its estimation ôt+1 (as per the

generative transition component of our model) forms the epistemic

term Rt,e as shown in Equation 7. The summation of the instrumental

and epistemic terms forms the G-value (or negative EFE value) which

is ultimately used to train / adapt the joint model. Formally, Rt =

−Gφ∗ (st) = Rt,i + Rt,e. We explain each component in detail below.

2.4.1. The prior mapping function and prior space
With the ability and freedom of designing a prior preference

(or distribution over problem goal states or preferred outcomes)

afforded by AIF, we integrate domain knowledge of the interception

task into the design of a prior mapping function. In essence, our

designed prior mapping function transforms the original observation

vector ot to a lower-dimensional space (the prior space) where a

semantically meaningful variable is calculated and prior preference

distribution is specified over this new variable—in our case, this is set

to be the speed difference, as shown in Figure 3. The speed difference

represents the difference between the agent’s speed after taking the

selected action and the speed required for successful interception,

i.e., speed difference = speedagent − speedrequired. Given the current

observation, the required speed is calculated as the agent’s distance

to the interception point divided by the first-order target time-to-

contact (TTC). We define TTC as the duration for the target or agent

to reach the theoretical interception point from the current time step

regardless of the success of the actual interception task. Then, target’s

first-order TTC is the amount of time that it would take for the

target to reach the interception point assuming that target speed does

not change throughout the episode, i.e., TTCfirst−order = xt/vconstant
where xt is the target distance and vconstant is the target constant

speed. In our neural AIF framework, the instrumental values are

calculated given all possible actions (blue circles in Figure 3) and

a prior distribution over speed difference. The smaller the absolute

speed difference associated with a particular action, the higher the

instrumental value prior mapping function assigns.

Note that the agent might not have enough time to adjust

its speed later in the interception task if it only follows the

guidance of this prior mapping function without anticipating the

likely future speed change of target, since this prior mapping function

only accounts/embodies first-order information. To overcome this

limitation, we investigated the effects of discounted long-term EFE

value on the behavior of the agent in Section 3.4.
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FIGURE 3

The prior preference specified in the prior space where each action

corresponds to a di�erent instrumental value. Circles correspond to

pedal positions to choose from.

2.4.2. Joint model
Our proposed joint model embodies two key functionalities:

EFE estimation and transition dynamics prediction, which are

typically implemented as separate artificial neural networks (ANNs)

in earlier AIF studies (Shin et al., 2022) (in contrast, we found that,

during preliminary experimentation, that a joint, fused architecture

improved both the agent’s overall generalization ability as well as

its training stability). Concretely, we implement the joint model as

a multi-headed ANN with an EFE head and a transition head (see

Figure 2). The system takes in the current observation ot and predicts:

(1) the EFE values for all possible actions, and (2) a future observation

at a distance ot+D (in this work, we fix the temporal distance to be one

step, i.e., D = 1). Within the joint model, the current observation ot
is taken as input and a latent hidden activity vector zt is produced,

which is then provided to both output heads as input. The transition

head p(ot+D|zt) serves as a generative model (or a forward dynamics

model) and the EFE head Gφ∗ (zt , a) represents an approximation

over the EFE values. As a result, EFE module and transition modules

are wired together such that the prediction of the future observation

ot+D and the estimation of EFE values Gt+D are driven by the shared

encoding from the topmost (hidden) layer of the joint model. This

enables the sharing of underlying knowledge between the module

selecting actions and the module predicting the outcome(s) of an

action. Our intuition is that we humans tend to evaluate the “value”

of an action by the consequences that it produces.

We next formally describe the dynamics of our joint model,

including both its inference and learning processes.

Inference In general, our agent is meant to produce an

action conditioned on observations (or states) sampled from the

environment at particular time-steps. Specifically, within any given

T-step episode, our agent receives as input the observation ot ∈

RD×1, whereD is the dimensionality of the observation space ot (D =

4 for the problem investigated in this study). The agent then produces

a set of approximate free energy values, one for each action (similar in

spirit to Q-values) as well as a prediction of the next observation that

it is to receive from its environment (i.e., the perceptual consequence

of its selected action).

Formally, in this work, the outputs described above are ultimately

produced by a multi-output function z3a, z
3
o = f2(ot), implemented

as a multi-layer perceptron (MLP), where z3a contains estimated

expected free energy values (one per discrete action) while z3o is the

generative component’s estimation of the next incoming observation

ot+1. Note that we denote only outputting an action value set from

this model as z3a = f a2(ot) (using only the action output head) and

only outputting an observation prediction as z3o = f o2(ot) (using

only the state prediction head). This MLP is parameterized by a set

of synaptic weight matrices 2 = {W1,W2,W3
a,W

3
o}, that operates

according to the following:

z1 = φz(W
1 · z0), z2 = φz(W

2 · z1) (3)

z3a = φa(W
3
a · z

2)), z3o = φo(W
3
o · z

2)) (4)

Where z0 = ot (the input layer to our model is the observation

at t). Note that a single discrete action is read out/chosen from our

agent function’s action output head as: a = argmaxa f
a
2(ot). The

linear rectifier φz(v) = max(0, v) was chosen to be the activation

function applied to the internal layers of our model while φa(v) = v

(the identity) is the function specifically applied to the action neural

activity layer z3a and φo(v) = v is the function applied to predicted

observation layer neurons. Note that the first hidden layer z1 ∈

RJ1×1 contains J1 neurons and z2 ∈ RJ2×1 contains J2 neurons,

respectively. The action output layer z3a ∈ RA×1 contains A neurons

(A = 6 for the problem investigated in this study), one neuron

per discrete action (out of A total possible actions as defined by

the environment/problem), while the observation prediction layer

z3o ∈ RD×1 contains D = 4 neurons, making it the same

dimensionality/shape as the observation space.

LearningWhile there are many possible ways to adjust the values

inside of 2, we opted to design a cost function and calculate the

gradients of this objective with respect to the synaptic weight matrices

of our model for the sake of simulation speed. The cost function that

we designed to train our full agent was multi-objective in nature and

is defined in the following manner:

L(ot+1, t;2) = La(ot+1;2)+ Lo(tt+1;2) (5)

La(t;2) =
1

2σ 2
a

||t− z3a||
2
2 (6)

Lo(ot+1;2) =
1

2σ 2
o

||ot+1 − z3o||
2
2 (7)

Where the target value for the action output head is calculated as

tj = rj + γ maxa f
a
2(ot) while the target action vector is computed as

tj = tjaj + (1− aj)⊙f a2(ot). In the above set of equations, we see that

the MLP model’s weights are adjusted so as to minimize the linear

combination of two terms, the cost associated with the difference

between a target vector t, which contains the bootstrap-estimated of

the EFE values, and the agent’s original estimate z3a as well as the cost

associated with how far off the agent’s prediction/expectation z3o of

its environment is from the actual observation ot+1. In this study,

the standard deviation coefficients associated with both output layers

are set to one, i.e., σa = σo = 1 (highlighting that we assume unit

variance for our model’s free energy estimates and its environmental

state predictions—note that a dynamic variance could be modeled

by adding an additional output head responsible for computing the

aleatoric uncertainty associated with ot+1).

Updating the parameters 2 of the neural system then

consists of computing the gradient ∂L(ot+1 ,t;2)
∂2

using reverse-mode

differentiation and adjusting their values using a method such as
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stochastic gradient descent or variants, e.g., Adam (Kingma and Ba,

2014), RMSprop (Tieleman et al., 2012). Specifically, at each time

step of any simulated episode, our agent first stores the current

transition of the form (ot , at , rt , ot+1) into an episodic memory

replay buffer (Mnih et al., 2015) and then immediately calculates
∂L(ot+1 ,t;2)

∂2
from a batch of observation/transition data (uniformly)

sampled from the replay buffer, which stores up to 105 transitions.

We will demonstrate the benefit of this design empirically in the

results section.

3. Results

3.1. Hypotheses for interception strategies

Given the fact that the target changes its speed during an episode

in our interception task, the agent / human subject could gain

advantage by anticipating the target speed change prior to the change

of target speed. To select an optimal action early within the trail,

the agent needs to take into consideration the initial target speed in

the current episode and make adjustments based on the experience

acquired from previous episodes. So, the question becomes: how

does the agent adapt its behavior on the basis of current episode’s

observation of target speed/distance from the interception point and

the learned statistics across episodes?

3.2. Experimental setup

We implemented the interception task as an environment in

Python based on the OpenAI gym (Brockman et al., 2016) library.

This integration provides the full functionality and usability of the

gym environment, which means that the environment can work / be

used with any RL algorithm and is made accessible to the machine

learning community as well. Our AIF agents and baseline algorithm

DQN are implemented with the Tensorflow2 (Abadi et al., 2015)

library. Experimental data and code will be made publicly available

upon acceptance.

3.3. Task performance

We compare AIF agents with and without the epistemic

component and a baseline algorithm, i.e., a deep-Q network

(DQN) (Mnih et al., 2015). We define a trial as a computational

experiment where the agent performs the interception task

sequentially for a number of episodes. We run a number of trials and

then calculate the mean and standard deviation across trials in order

to obtain a statistically valid results. The simulations in our study set

the update frequency of the task environment to be 60Hz in order to

match the exact frequency of the original human study by Diaz et al.

(2009). During each episode, the joint model receives an observation

each time step at 60Hz and estimates the EFE value for each possible

action. Finally, an action is selected based on the estimated EFE

values and executed in the environment. This process corresponds

to Section 2.4.2. Experiments are conducted for 20 trials where each

trial contains 3000 episodes. The task performance of agents is shown

as curves plotting window-averaged rewards (with a window size of

100 episodes) in Figure 4, where the solid line depicts the mean value

across trials and the shaded area represents standard deviation. We

conducted a set of experiments where the discount factor γ of the

models and the pedal lag coefficient K were varied (note that, in AIF

and RL research, γ is typically fixed to a value between 0.9 and 1

to enable the model to account for long term returns). In order to

compare the performance of our agents to that of human subjects, we

apply the original pedal lag coefficient in one set of our experiments

(specifically shown in Figure 4C).

Observe that our AIF agents are able to reach around a 90%

success rate stably with very low variance. This beats human

performance with 47% (std = 11.31) on average and 54.9% in the

final block of experiments reported in Diaz et al. (2009). The baseline

DQN agent, which learns from the problem’s sparse reward signal at

the end of each episode, yields an average success rate of 22% at test

time. Similarly, the AIF agent with both instrumental and epistemic

components achieves a 90% mean success rate.

Note that the DQN agent is outperformed by the AIF agents

trained with our customized prior preference function by a large

margin. This reveals that the flexibility of injecting prior knowledge

is crucial for solving complex tasks more efficiently and validates our

motivation of applying AIF to cognitive tasks. In our preliminary

experiments, we tested an AIF agent which consists of an EFE

network and a transition network separately. This AIF agent is out-

performed by the AIF agent with joint model in terms of windowed

mean rewards and stability. Furthermore, the AIF agent with joint

model has lower model complexity. Specifically, AIF agent with joint

model has only 66.8% of the parameter counts of that of AIF agent

with separate models. This supports our intuition that combining

the EFE model with the transition model yields an overall better

model agent.

Interestingly, the AIF agent with only instrumental component

was able to nearly reach the same level of performance as the full

AIF agent. However, success rate of this agent exhibited a larger

variance than the full AIF agent. Based on comparison between agents

with and without epistemic component, we argue that epistemic

component serves, at least in the context of the interception task we

investigate, as a regularizer for the AIF models, providing improved

robustness. Since we apply experience replay and bootstrapping to

train the AIF models, it is possible that a local minimum is reached

in the optimization process because the replay buffer is filled up

with samples which come from the same subspace as the state

space. Therefore, with the help of epistemic component, the agent is

encouraged to explore the environment more often and adjusts its

prediction of future observations such that it has a higher chance

of escaping poorer local optima. Our proposed AIF agent reaches a

plateau in performance after about 1, 000 episodes and stabilizesmore

after 1, 500 episodes. Note that, in contrast, human subjects were able

to perform the task at an average success rate after 9 episodes of initial

practice (Diaz et al., 2009).

3.4. Anticipatory behavior of AIF agents

Do the AIF agents exhibit a similar capacity for anticipatory

behavior as humans do? To answer this question and to compare

the strategy used by our AIF agents to that of human subjects, we

record the Time-To-Contact (TTC) from trained AIF agents at the

onset of the target’s speed change in each episode. We then calculate,
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FIGURE 4

(A–D) Window-averaged reward measurements of agent performance on the interception task. DQN_Reward represents a DQN agent that utilized the

sparse reward signal and ǫ − greedy exploration; AIF_InstOnly represents our AIF agent with only instrumental component which is defined by the prior

mapping function; AIF_InstEpst represents an AIF agent that consists of both instrumental and epistemic components. Discount factor is denoted by γ ,

pedal lag coe�cient is denoted by K.

at the same time: 1) the target’s TTC using first-order information,

and 2) target’s TTC with the assumption that the target would change

its speed at the most likely time and reach an averaged final speed.

Finally, we compose these three types of TTC data grouped by

target initial speed into a single boxplot in Figure 5. Following the

assumptions made in Diaz et al. (2009), we expect that the agent

would adjust its speed in a way such that its first-order TTC will equal

the target’s first-order TTC before it learns enough from experience

to realize that the target almost always accelerates. The target’s actual

TTC with the interception point would be less than the first-order

TTC if the target accelerates midway through. If the agent is able

to anticipate the target’s acceleration later in the episode, it should

accelerate even before the target does in order to match the target’s

actual TTC with the interception point.

In our experimental analysis, we found that the discount factor

γ plays a big role in forming different behavior patterns within

AIF agents. All variants of AIF agents were trained with the

instrumental value computed using our first-order prior mapping

function. Intuitively, the agent’s behavior should conform to a reactive

agent who uses only the first-order information and acts to match

its own TTC to the target’s first-order TTC, just like what has

been observed in Figure 5A (please see that the green box is nearly

identical to the blue box under all target initial conditions). The

AIF agent depicted in Figure 5A is set to use a discount factor of 0,

which means that the agent only seeks to maximize its immediate

reward without considering the long-term impact of the action(s)

that it selects. Such an agent converges to a reactive behavior.

However, when we increase the discount factor to 0.99 (which is a

common practice in RL literature), the AIF agent starts to behave

more interestingly. In Figure 5C, the agent’s TTC (green box) lies in

between target’s first-order TTC (blue box) and target’s actual mean

TTC (orange box), which suggests that the AIF agent tends to move

faster than a pure-reactive, first-order agent would in the early phase

of interception. In other words, the agent tends to anticipate the

likely target speed change in the future and adjusts its action selection

policy. This behavioral pattern can be explained as exploiting the

benefits provided by estimating long-term accumulated instrumental

reward signal (when the discount factor value is increased). Given a

higher discount factor, in this case γ = 0.99, the AIF agent estimates

the summation of instrumental values from its current (time) step

in the task until the end of the interception using discounting. This

leads to an agent who seeks to maximize long-term benefits in terms

of reaching the goal when selecting actions.

3.5. E�ect of vehicle dynamics on agent
behavior

To test how anticipatory behavior is affected when simple reactive

behavior is no longer sufficient, we increased the inertia on the
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FIGURE 5

(A–D) TTC values taken at the onset of target’s speed change. In each subplot, the target’s first-order TTC, the target’s actual mean TTC, and the agent’s

TTC are shown in di�erent colors, with data grouped by target initial speed. The discount factor is denoted by γ while the pedal lag coe�cient is denoted

by K.

agent’s vehicle by changing the pedal lag coefficient K. Given the

same discount factor γ = 0.99, we compare two different pedal

lag coefficients K = 1.0 in Figure 5C and K = 0.5 in Figure 5D,

where lower K indicates less responsive vehicle dynamics. With the

same discount factor, the AIF agent performing the task under a

lower pedal lag coefficient in Figure 5D has a lower success rate in

intercepting the target. This is due to the fact that the agent’s ability

to manipulate its own speed is limited, therefore there is less room

left for error. However, the AIF agent in this condition yields TTC

values that are closer to the target’s actual mean TTC. Note that,

when the target initial speed is 11.25 m/s (Figure 5D), the median

of agent’s TTC value is actually smaller than target’s actual mean

TTC. This supports our hypothesis that purely reactive behavior is

not sufficient for successful interception and anticipatory behavior is

emergent when the vehicle becomes less responsive.

4. Discussion

Variations of an AIF agent were trained to manipulate the speed

of movement so as to intercept a target moving across the ground

plane, and eventually across the agent’s linear path of travel. On each

episode, the target would change in speed on most episodes to a value

that was selected from a Gaussian distribution of final speeds. The

results demonstrate that the AIF framework is able to model both

on-line visual and anticipatory control strategies in an interception

task, as was previously demonstrated by humans performing the

same task (Diaz et al., 2009). The agent’s anticipatory behavior aimed

to maximize the cumulative expected free energy in the duration

that follows action selection. Variation of the agent’s discount factor

modified the length of this duration. At lower discount factors,

the agent behaved in a reactive manner throughout the approach,

consistent with the constant bearing angle strategy of interception. At

higher values, actions that were selected before the predictable change

in speed took into account the most likely change in target speed

that would occur later in the episode. Anticipatory behavior was

also influenced by the agent’s capabilities for action.This anticipatory

behavior was most apparent when the pedal lag coefficient was

set to lower values, which had the effect of changing the agent’s

movement dynamics so that purely reactive control was insufficient

for interception behavior.

Despite the agent’s demonstration of qualitatively human-like

prediction, careful comparison of the agent’s behavior to the human

performance and learning rates demonstrated in Diaz et al. (2009)

reveals notable differences. Analysis of participant behavior in the

fourth and final block of Experiment 1 in Diaz et al. (2009) reveals
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FIGURE 6

Human subject data from Exp 1. of Diaz et al. (2009). TTCs were taken

at the onset of target’s speed change. Dotted line represents the mean

of target’s first-order TTC, solid line represents the mean of target’s

actual TTC, black disk represents the mean of subject’s TTC with a bar

indicating 95% confidence interval of the mean.

that subject TTC at the onset of the target’s change in speed was well

matched to the most likely time and magnitude of the target’s likely

change in speed (i.e., the mean actual target TTC in Figure 6). In

contrast, the AIF agent with an equivalent pedal lag (K = 1.0; i.e.,

the matched agent) demonstrated only partial matching of its TTC

to the likely change in target speed (the target’s mean actual TTC in

Figure 5C). Although one might attribute this to under-training of

the agent, it is notable that the agent achieved a hit rate exceeding

80% by the end of training, while human participants in the original

study consistently improved in performance until reaching 55% hit

rate at the end of the experiment.

To better understand the potential causes of these differences

between agent and human performance, it is helpful to consider

how the agent’s mechanism for anticipation differs from that of

humans. The agent chooses actions on the basis of a weighted

combination of reward-based reinforcement (instrumental reward)

and short model-based prediction (epistemic reward), both of which

are computed within the two-headed joint model. EFE values are

computed in the EFE head, which is responsible for selecting the

action (i.e., pedal position) that it estimates would produce the lowest

expected free energy later in the agent’s approach. The estimate of

EFE associated with each pedal position does not involve an explicit

process of model-based prediction, but is learned retrospectively,

through the use of an experience replay buffer. Following action

selection, visual feedback provides an indication of the cumulative

EFE over the duration of the replay buffer. The values of EFE within

this buffer are weighted by their temporal distance from the selected

action in accordance with the parameter of discount factor. This

is similar to both reward-based learning and is often compared to

the dopaminergic reward system in humans (Holroyd and Coles,

2002; Haruno, 2004; Lee et al., 2012; Momennejad et al., 2017). The

epistemic component of the EFE reward signal is thought to drive

exploration toward uncertain world states, and it relies on predictions

made in the transition head. This component of the model relies

on the hidden states provided by the shared neural layers in the

joint model and predicts an observation at next time step ôt+1.

The estimated observation at next time step is then compared to

the ground truth observation ot+1 and the difference between them

generates the epistemic signal Rt,e. The role of the transition head

is in many ways consistent with a “strong model-based” form of

prediction (Zhao and Warren, 2015), whereby predictive behaviors

are planned on the basis of an internal model of world states

and dynamics that facilitate continuous extrapolation. In summary,

whereas the EFE head is consistent with reward based learning,

the transition head is consistent with relatively short-term model

based prediction.

How does this account of anticipation demonstrated by our

agent compare with what we know about anticipation in humans?

As discussed in the introduction, empirical data on the quality of

model-based prediction suggests that it degrades sufficiently quickly

that it cannot explain behaviors of the sort demonstrated here, by

our agent, or by the humans in Diaz et al. (2009). In contrast,

a common theory in motor control and learning relies upon a

comparison of a very short-term prediction (e.g., milliseconds) of

self-generated action with immediate sensory feedback (Hoist et al.,

1950; Wade, 1994; Wolpert et al., 1995; Blakemore et al., 1998).

However, this similarity is weakened by the observation that, in

the context of motor-learning, short-term prediction is thought to

rely upon access to an efferent copy of the motor signal used to

generate the action. For this reason, it is problematic that the AIF

agent is predicting both its own future state (xs, vs) and the future

state of the target (xt , vt), for which there is no efferent copy or

analogous information concerning movement dynamics. Although

research on eye movements has revealed evidence for the short-

term prediction of future object position and trajectory (Ferrera and

Barborica, 2010; Diaz et al., 2013a,b), it remains unclear whether

these behaviors are the result of predictive models of object dynamics

or representation-minimal heuristics.

Another possible contribution to the observed differences

between agent and human performance is the perceptual input.

When considering potential causes for the difference between agent

and human anticipatory behavior, it is notable that the agent

relies upon an observation vector defined by agent’s and target’s

position and velocity measured in meters, and meters per second,

respectively. However, in the natural context, these spatial variables

must be recovered or estimated on the basis of perceptual sources of

information, such as the rate of global optic flow due to translation

over the ground plane, the exocentric direction of the target,

the instantaneous angular size of the target, or the looming rate

of the target during the agent’s approach. It is possible that by

depriving the agent of these optical variables, we are also depriving

the agent of opportunities to exploit task-relevant relationships

between the agent and environment, such as the bearing angle.

It is also notable that some perceptual variables may provide

redundant information about a particular spatial variable (e.g.,

both change in bearing angle and rate of change in angular size

may be informative about an objects approach speed). However,

redundant variables will differ in reliability by virtue of sensory

thresholds and resolutions. For these reasons, a more complete

and comprehensive model of human visually guided action and
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anticipation would take as input potential sources of information

and learn to weight them according to context-dependent reliability

and variability.

Another potential contributor to differences between human

and agent performance is the notable lack of visuo-motor delays

within the agent’s architecture. In contrast, human visuo-motor

delay has been estimated to be on the order of 100–200 ms

between the arrival of new visual information and the modification

or execution of an action (Nijhawan, 2008; Le Runigo et al.,

2010). Because uncompensated delays would have devastating

consequences on human visual and motor control, they are often

cited as evidence that humans must have some form of predictive

mechanism that acts in compensation (Wolpert et al., 1995).

Future attempts to make this model’s anticipatory behavior more

human-like in nature may do so by imposing similar length

delay between the agent’s choice of motor plan on the basis of

the observed world-state and the time that this motor plan is

executed (Walsh et al., 2009). Finally, note that our proposed

architecture is “flat” in the temporal sense. It other words, EFE

values are calculated and actions are planned in a single linear

time scale. In contrast, a deep/hierarchical temporal model would

imply that policies are inferred, learned, and ultimately operate

at different time scales (Friston et al., 2018). We believe that our

approach is sufficient for the given task of this study. However, if

one intended to extend the problem to more sophisticated settings

where higher level cognitive functions are separated from lower-

level motor control, a deep temporal model could be a more

suitable/useful approach.

Due to limited computation resources that we have access to and

the high computational cost of the full Bayesian inference framework

(which, in the context of neural networks, requires formulating

each neural network as a Bayesian neural network where training,

typically to obtain good-quality performance, requires Markov chain

Monte Carlo), we simplify the Bayesian inference by assuming a

uniform prior (or uninformative prior) on the parameters of our

model, similar to Tschantz et al. (2020a). Maximum likelihood

estimation (MLE), in our setup, is generally equivalent to maximum

a posteriori (MAP) estimation while assuming the priors to be

uniform distributions. More general forms of Bayesian inference

with different prior assumptions could be examined in future work.

Also, note that the Laplace approximation applied in this work

leads to the expected free energy reducing to a KL-divergence

(i.e., KL control).

5. Conclusion

We present a novel scaled-up version of active inference

framework (AIF) model for studying online visually guided

locomotion using an interception task where a moving target changes

its speeds in a semi-predictable manner. In order to drive the agent

toward the goal more effectively, we devised a problem-specific prior

mapping function, improving the agent’s computational efficiency

and interpretability. Notably, we found that our proposed AIF agent

exhibits better task performance when compared to a commonly

used RL agent, i.e., the deep-Q network (DQN). The full AIF agent,

containing both instrumental and epistemic components, exhibited

slightly better task performance and lower variance compared to

the AIF agent with only an instrumental component. Furthermore,

we demonstrated behavioral differences among our full AIF agents

given different discount factor γ values as well as levels of the

agent’s action-to-speed responsiveness. Finally, we analyzed the

anticipatory behavior demonstrated by our agent and examined the

differences between the agent’s behavior and human behavior. While

our results are promising, future work should address the following

limitations—first, inputs to our agent are defined in a simplified

vector space whereas sensory inputs to the humans that actually

perform the interception task are visual in nature (i.e., the model

should work directly with unstructured sensory data such as pixel

values). We remark that a vision-based approach could facilitate the

extraction of additional information and features that are useful for

solving the interception task more reliably. Second, our simulations

do not account for visuo-motor delays inherent to the human visual

and motor systems, and that might be modeled using techniques like

delayed Markov decision process formulations (Walsh et al., 2009;

Firoiu et al., 2018).
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