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Meltblown nonwoven materials have gained attention due to their excellent filtration

performance. The research on the performance of the intercalation meltblown

preparation process is complex and a current research focus in the field of chemical

production. Based on data related to intercalated and unintercalated meltblown

materials under given process conditions, a product performance prediction

model of intercalated meltblown materials was established under different process

parameters (receiving distance, hot air velocity). The structural variables (thickness,

porosity, and compressive resilience), the change in product performance, and

the relationship between structural variables and product performance (filtration

resistance, efficiency, air permeability) after intercalation were studied. Multiple

regression analysis was used to analyze the structural variables, and evaluation of

the regression results were made using R2, MSE, SSR, and SST. A BP neural network

prediction model for product performance was established. The BP neural network

model was used to find the maximum filtration efficiency. The study provides

theoretical support for regulating product performance by solving the maximum

filtration efficiency using BP neural network model.

KEYWORDS

meltblown non-woven materials, correlation analysis, regression analysis, BP neural
network, structural variables

1. Introduction

Meltblown non-woven material is an important raw material for mask production. The
meltblown method has very fine fibers, a fluffy structure after bonding by itself, high
porosity and small average pore size, which has good filtration performance (Ji et al., 2003;
Tanthapanichakoon et al., 2003). However, meltblown non-woven materials have very fine fibers,
and their performance is often not guaranteed in the process of use due to poor compression
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resilience. Therefore, we created the interlayer meltblown method, in
which coarse denier high curl fibers such as polyester staple fibers
are inserted into the meltblown fiber stream during the traditional
meltblown preparation process to produce a “Z-shaped” structure of
interlayer meltblown non-woven materials. At the same grammage,
the compression resilience of the product is greatly improved and the
structure becomes more fluffy, it is widely used in the field of medical
protection (Song et al., 2011; Hao et al., 2021).

There are many parameters in the preparation process of
intercalated meltblown non-woven materials, and there are
interactions between the parameters, and the airflow of intercalated
layers is more complicated afterward. The study of filtration
resistance, filtration efficiency, and air permeability also becomes
more complicated. Yesil and Bhat (2017) Investigate the effects of
process variables, die temperature, air pressure, and die-to-collector
distance on some characteristics of polyethylene meltblown non-
wovens such as pore size, air permeability, hydrostatic head, and
SEM analysis. Rathinamoorthy and Balasaraswathi (2022) aim to
analyze the impact of non-woven fabric structural parameters and
weathering on the microfiber release characteristics (Yesil and Bhat,
2017). Guo et al. (2011) used meltblown non-wovens as a collection
material to prepare a filter material with fiber diameter grade by
electrospinning technology. A brief overview of the principle of
elastic non-wovens with meltblown technology and recent research
progress. Čepič and Gorjanc (2022) determined the effects of
spunbond and meltblown processes and various combinations of
the two processes on the functional properties of medical layered
non-wovens. Kwon et al. (2022) investigated the formation of
superfine fibers in aquatic and air environments for 15 commercial
disposable non-woven products (wet wipes) and 16 melt blown
non-woven materials produced in the pilot plant, and compared
them with selected textile materials and paper towel materials.
Liu et al. (2020) Found that in a humid and hot environment,
the meltblown material will undergo electric charge evolution,
resulting in the attenuation of filtration efficiency. Dennis et al.
(2020) Report that small numbers of disinfection cycles at reasonable
virucidal doses of ozone do not significantly degrade the filtration
efficiency of meltblown polypropylene filter material (Liu et al.,
2020). Wang et al. (2022) Built on the theoretical model of film-based
TENGs, here, an analytical model is introduced for conductor-to-
dielectric contact-mode non-woven-based TENGs, which copes with
the unique hierarchical structure of non-wovens and details the
correlation between the triboelectric output (maximum transferred
charge density) and non-woven structural parameters (thickness,
solidity, and average fiber diameter). At present, the research on
melt blown non-wovens mainly focuses on the qualitative research
of process parameters and structural variables or process parameters
and product performance, while the quantitative analysis of process
parameters and structural variables and product performance is
relatively less. In this article, the relationship models between process
parameters and structural variables, structural variables and product
properties are established by statistical methods such as correlation
analysis, regression analysis and neural network prediction model,
which provide a theoretical basis for the performance control
research of intercalated melt blown non-wovens (Lan et al., 2011). As
shown in Figure 1, the process principle of simplified melt spraying
method.

2. Basic overview

2.1. Correlation analysis

According to the theoretical basis of the correlation analysis
method it can be known that: With random variables X and Y, for
which n random trials are conducted, the observations obtained are
(Xi,Yi) (i = l, 2....n), respectively. XȲ are the respective expected
values of

√
DX with

√
DY are the Variance of X and Y, respectively,

cov (X,Y) is the co-Variance, r is the correlation coefficient, and R is
the random variables X and Y for the sample (Xi,Yi) (i = l, 2,.. n) of
the correlation coefficient, called the sample correlation coefficient.
In practice, the sample correlation coefficient R is often used as an
estimate of the correlation coefficient r. The correlation coefficient is
calculated as shown in Equation (1) (Fan et al., 2020).

r = cov(X,Y)
√
DX
√
DY

R =
∑n

i=1(Xi−X̄)(Yi−Ȳ)
√∑n

i=1(Xi−X̄)2 ∑n
i=1(Yi−Ȳ)2

cov(X,Y) = E[(Xi − X̄)(Yi − Ȳ)]

X̄ = 1
n
∑n

i=1 Xi

Ȳ = 1
n
∑n

i=1 Yi

(1)

For a relationship with multiple variables, where the random
variables X and Y can represent any two of the random variables.

2.2. Typical correlation analysis model

Typical correlation analysis is a multivariate statistical method
to study the correlation between two sets of variables (multiple
indicators in each set of variables), which can reveal the intrinsic
connection between two sets of variables, and its core idea is
to transform the correlation between multiple variables into the
relationship between two representative variables.

Typical correlation analysis was proposed by Hotelling, and its
basic idea is very similar to that of principal component analysis.
First, the linear combination of variables in each group is identified
so that the two linear combinations have the largest correlation
coefficients with each other. Then the linear combination that is
not correlated with the initially selected pair is selected to make it
Pair, and the pair with the largest correlation coefficient is selected
(Xiyuan, 2021). The selected linear Pair is called the typical variable,
and their correlation coefficient is called the typical correlation
coefficient. The typical correlation coefficient measures the strength
of the association between these two sets of variables.

FIGURE 1

Process principle of meltblown method.
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2.3. Back propagation neural network

Back Propagation neural network is a multilayer feedforward
network trained according to the error back propagation mechanism
and the forward propagation algorithm of information. The BP
network can learn and store many input-output pattern mapping
relationships. It can reveal the mathematical equations describing
such mapping relationships after some time. Its learning rule is to use
the gradient descent method to continuously adjust the weights and
net values of the network by back propagation to minimize the sum
of squared errors of the network, and the topology of the BP neural
network model including input layer, hidden layer, and output layer
(Bin et al., 2009; Liu et al., 2022).

And when a pair of learning modes is provided to the BP neural
network, the corresponding input nodes are activated, the activation
value propagates from the input layer through each intermediate
layer to the output layer, and the input response of the network is
obtained at each node of the output layer, and in the direction of
reducing the deviation between the expected output and the actual
output, the connection weights are corrected layer by layer from
the output layer through each intermediate layer, and finally back to
the input layer. With the continuous correction of this error reverse
propagation, the correct rate of neural network response to the input
mode is constantly improving (Horikawa et al., 1992; Liang et al.,
2022). The basic structure of neural network is given as Figure 2.

3. Study on the law of change and
related relationship after intercalation

3.1. The variation of structural variables
and product performance after
intercalation

3.1.1. Descriptive statistics of structural variables
and product performance

Through the descriptive statistics in Supplementary Tables 1,2,
it can be preliminarily concluded that the average value of each index
after intercalation increases except for filtration resistance, and the
variance decreases except for air permeability.

FIGURE 2

BP neural network structure.

3.1.2. Trends before and after interpolation of
different indicators

It can be obtained from Figure 3 that the Thickness, Porosity,
air permeability and filtration efficiency of the non-woven materials
after intercalation meltblown have been improved to a certain extent,
and the filtration resistance size is reduced after intercalation melting,
which is also in line with the research conclusions given by relevant
literature. Namely, melt blown non-wovens are characterized by
ultra-fine fibers, large specific surface area, small pore diameter and
high porosity (Tanthapanichakoon et al., 2003). After intercalation,
materials are added between products, so the thickness of materials
will increase; In the process of intercalation, due to the characteristics
of the material itself and the role of hot air, the material can be evenly
distributed, effectively preventing the accumulation and blocking of
the material, thus improving the porosity. Due to the improvement
of the material, polyester (PET) staple fibers are inserted into the
melt blown fiber stream during the melt blown preparation of
polypropylene (PP), and the toughness of the material is effectively
improved, so the compression resilience of the product is improved.

However, the growth of compression resilience is unstable,
and there are several groups of non-woven materials inferior to
unintercalated materials [It is known from fig.(f) that the compressive
resilience performance of group 4–8, 18, and 20 meltblown materials
after intercalation is not as good as before intercalation]. In general,
intercalation can improve product performance to a certain extent,
which is also in line with modern improvement technology.

3.2. Correlation analysis and typical
correlation analysis

3.2.1. Correlation of structural variables to product
performance

À There is a significant strong positive correlation between
thickness, Porosity and receiving distance, and a significant weak
positive correlation with hot air velocity, that is, a proper reduction of
the receiving distance can reduce the porosity and thus improve the
filtration efficiency.

Á And there is a non-significant positive correlation between
Compression rebound rate and receiving distance, and a non-
significant negative correlation with hot air velocity.

Â There is a significant strong positive correlation between
thickness and porosity, which is consistent with its physical
properties, i.e., porosity increases with increasing thickness.

These can be seen from Supplementary Table 3 and Figure 4.

3.2.2. The relationship between structural variables
and product performance

Through the normality test (El Bouch et al., 2022), it was found
that the structural variables all satisfied the normality, while the
filtration efficiency and air permeability in the product performance
did not satisfy the normality. Therefore, for the correlation analysis
of structural variables and product performance, Pearson correlation
analysis was applied to the structural variables and Spearman
correlation analysis was applied to the product performance. The
normality test is visible in Supplementary Table 4.

The results of correlation analysis: Within the structural variables
Thickness and Porosity have a significant strong positive correlation,
and Compression rebound rate has a strong negative correlation.
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FIGURE 3

Material properties of nonwoven. (A) Rate of intercalation. (B) Thickness. (C) Compression rebound rate. (D) Filtration efficiency. (E) Filtration resistance.
(F) Air permeability.

porosity and Compression rebound rate have a significant weak
negative correlation; within the product performance, there is a
significant strong positive correlation between filtration resistance
and filtration efficiency, and a strong negative correlation with
air permeability. filtration efficiency and air permeability have a
significant strong negative correlation. The results of the Spearman
correlation analysis are visible in Supplementary Tables 5, 6.

3.2.3. Typical correlation analysis of structural
variables and product performance

The results of the typical correlation analysis solved using SPSS
are as follows. It can be seen from Supplementary Table 7 that
the correlation between the first two pairs of typical variables is
considered to be significant through the Sig. test, and the correlation
coefficient of the first pair of typical variables is 0.946. The correlation
coefficient for the second pair of typical variables is 0.605.

Typical variable relationship equation.

The formula for the 1st typical variable of the set
Y: Y1 = 2.537 × Thickness–0.253 × Porosity +0.043
× Compression rebound rate.
The formula for the 2nd typical variable of the set Y:
Y2 = −4.538 × Thickness+1.995 × Porosity–1.112 ×
Compression rebound rate.
Equation for the 1st typical variable of the set X:
X1 = −0.23 × filtration resistance −0.003 × air permeability
−0.035× filtration efficiency.
Formula for the 2nd typical variable of the set X:
X2 = −0.126 × filtration resistance +0.01 × air permeability
+0.141× filtration efficiency.

These equations are derived from Supplementary Tables 8, 9.
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Take the analysis of the first typical variable as an example: From
Supplementary Table 7, we know that the correlation coefficient of
the first pair of typical variables reaches 0.946, P << 0.05, which
means that there is a significant strong positive correlation between
the first typical variables. From the first typical variable relationship
equation above, we know that if the Thickness of Y1 increases, then
Y1 increases, then X1 also increases, and X1 increases, then the
product performance will decrease.

Similarly, there are similar increasing and decreasing
relationships among other typical variables.

From the Supplementary Table 10, it can be seen that the typical
variable X1 explains 70.226% of the information content of the
indicator in set Y and 46.437% of the information content of the
indicator in set X. The typical variable X2 explains 19.021% of the
information content of the indicator in set Y and 18.337% of the
information content of the indicator in set X. The typical variable X2
explains 19.021% of the information content of the indicator in set
Y and 18.337% of the information content of the indicator in set X.
The typical variable Y1 explains 41.583% of the information content
of the indicator in set Y and 62.886% of the information content of
the indicator in set X. The typical variable Y2 explains 41.583% of
the information content of the indicator in set Y and 62.886% of the

information content of the indicator in set X. The typical variable Y2
explains 6.707% of the information content of the indicator in set Y
and 6.957% of the information content of the indicator in set X. The
heat diagram of typical variable Y/X cross load matrix can be seen in
Figure 5.

4. Multiple regression analysis and
establishment of predictive models

4.1. Establishing linear regression models
between process parameters and
structural variables

4.1.1. Linear regression general equation
The model for the multiple linear regression analysis (Qin, 2020)

is:{
y = β0 + β1x1 + β2x2 + ...+ βmxm + ε

ε ∼ N(0, δ2),
m = 1, 2, ...n

(2)

FIGURE 4

Heat map of correlation coefficient.

FIGURE 5

Thermal diagram of typical variable. (A) Y cross-load matrix. (B) X cross-load matrix.
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FIGURE 6

Histogram of regression-standardized residuals with normal curve.

FIGURE 7

Normal P-P plot of regression-standardized residuals.
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where β0, β1, β2,..., βm, δ2 is the partial regression coefficient, which
is not correlated with x1, x2...xm is no correlation, and ε is the
random error term. Suppose, there is a linear relationship between
the dependent variable and the respective variable, then the
linear overall regression model between them can be expressed
as: y = β0 + β1x1 + β2x2 + ε, where ε is the random error term, ε ∼

N(0, δ 2).

4.1.2. Multiple linear regression solution results
The multiple regression equations between Thickness (y1),

Porosity (y2), Compression rebound rate (y3) and receiving distance
(x1), hot air velocity (x2) were obtained using Matlab’s regression
function. 

y1 = −0.932+ 0.0396x1 + 0.0013x2

y2 = 80.004+ 0.2072x1 + 0.0061x2

y1 = 77.4328+ 0.1487x1 − 0.0009x2

(3)

Supplementary Table 11 shows that the linear regression fitting
effect of thickness to receiving distance and hot air velocity is
better (R2 = 0.784), indicating that the receiving distance and hot
air velocity can explain 78.4% of the change of thickness index,
which is generally explained. Figures 6, 7 show that the residuals
roughly follow the normal distribution, indicating that the model is
generally established.

Here is an example of analyzing the multiple linear regression
equation for Thickness.

4.2. Establishing non-linear regression
models between process parameters and
structural variables

4.2.1. Non-linear regression general equation
The multiple non-linear regression (Luyu and Jing, 2021)

equation model is:{
y = β0 + β1xi + β2x2

i + ε

ε ∼ N(0, δ2),
i = 0, 1, 2, ...n (4)

There is a non-linear relationship between the dependent variable
and the respective variable, then the non-linear overall regression
model between them can be expressed as : y = β0 + β1xi + β2x2

i + ε,
where ε is the random error term, ε ∼ N

(
0, δ 2 ).

4.2.2. Multiple non-linear regression solution
results

The above non-linear regression model is solved using Matlab’s
nlinfit function.

From Supplementary Table 12, it can be seen that the non-linear
regression fitting effect of thickness to receiving distance and hot air
velocity is better (R2 = 0.782), indicating that the receiving distance
and hot air velocity can explain 78.2% of the change of thickness
index, and the degree of interpretation is average. Figures 8, 9 show
that the residuals roughly follow the normal distribution, indicating
that the model is generally established.


y1 = −0.30836+ 0.03956x1 + 6.27802690637809 ∗ 10−7x2

2
y1 = 83.06234+ 0.20724x1 + 3.00946686674695 ∗ 10−6x2

2
y1 = 77.26178+ 0.14872x1 − 6.71549591749362 ∗ 10−7x2

2

(5)

FIGURE 8

Histogram of regression normalized residuals with normal curve.

FIGURE 9

Normal P-P plot of regression normalized residuals.

Here the multivariate non-linear regression equation for the
analysis of Thickness is used as an example:

In summary, there is no obvious difference between the two
models according to the goodness-of-fit comparison of the two
models, and the multiple linear regression model is actually better
than the non-linear regression model in terms of mean squared error,
so for the quantitative analysis of thickness, porosity, compression
resilience and process parameters, multiple linear regression can be
satisfied, and can also be used for prediction. However, due to the
pursuit of higher model accuracy, the BP neural network model is
introduced next.

4.3. Back propagation neural network
prediction model for structural variables

4.3.1. Selection of network structure
The receiving distance and hot air velocity in the process

parameters are used as independent variable inputs. Thickness,
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Porosity and Compression rebound rate are used as dependent
variable targets, respectively. The uninterpolated sample data in data
1 are divided into three categories of training set (70%), test set (15%),
and test set (15%).

(1) The number of hidden neurons applicable to each dependent
variable was derived from many experiments. Finally, the number
of hidden neurons for Thickness and Porosity was determined
to be four, and the number of hidden neurons for Compression
rebound rate was three.

(2) The training method for the neural network model is the
Levenberg–Marquardt algorithm.

4.3.2. Test for each parameter (to analyze thickness
as an example)

(1) R coefficients for training set, test set, validation
set and all data.

The regression value R indicates the correlation between the
predicted output and the target output, and it can be seen from the
figure below that the R values are all greater than 0.85, indicating a
good fit. It can be seen from Figure 10.

(2) Mean Squared Error
The green circle in the figure shows the number of iterations and

the mean square error size of the network at the best mean square
error of the validation set, which is 0.0358, and the final iteration
number of 3. It can be seen from Figure 11.

(1) Historical residuals of training data

The error histogram can be spent on the error between the
predicted output and the target output. It can be seen from Figure 12.

With the BP neural network result plots of (1–3), we can consider
this model training result acceptable.

According to Supplementary Tables 11, 12 and Figures 10–12,
the goodness-of-fit of multiple linear regression and multiple non-
linear regression is not as high as that of BP neural network model,
and the mean squared error of multiple linear regression and multiple
non-linear regression is higher than that of BP neural network
model. Therefore, using this prediction model, the prediction of
structural variables for a given process condition has positive practical
significance.

5. Establishment of BP neural
network prediction model with
maximum filtering efficiency

5.1. Establishment of BP neural network

(1) Similar to the BP neural network model above, the process
parameters, structural variables and product performance in filtration
resistance and filtration efficiency are used here as independent
variables input and filtration efficiency as dependent variable target,
and the 75 sample data in data three are divided into Three categories,

FIGURE 10

R-factor.
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FIGURE 11

Optimal training effect of the 3rd generation.

FIGURE 12

Error histogram.

training set (70%), test set (15%), and test set (15%) (Kessler et al.,
2007; Liu et al., 2014).

(2) The number of hidden neurons applicable to the dependent
variable is derived through many experiments, and the best-hidden
neuron is finally determined to be five.

(3) The training method of neural network model is Levenberg-
Marquardt algorithm.

5.2. Back propagation neural network
model parameter test

From the Figures 13, 14, it can be seen that the results of this
model training are acceptable.

5.3. Back propagation neural network to
find the maximum filtration efficiency

Using the obtained training model, different value pairs
of hot air velocity and receiving distance of the process

FIGURE 13

R-coefficient.

FIGURE 14

Historical residuals of training data.

parameters are carried out to iteratively solve the problem to
find the maximum filtration efficiency. Here we expand the
range of receiving distance values to 20–60 cm, and the value
of hot air velocity to 800–2,500 r/min, pair different process
parameters, and predict the maximum filtration efficiency.
The results of the iterations are shown in the Supplementary
Table 13.

The result shows that the maximum filtration efficiency is
81.904%, which corresponds to the process parameters of receiving
distance 20 cm, hot air velocity 1,250 r/min or 1,280 r/min.

6. Conclusion

There are many technological parameters in the preparation of
intercalated melt blown non-wovens, among which there are cross
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effects. These parameters are more complex when the intercalated
air flow is added. This article extracts the attribute values of process
variables, structural parameters, product performance, and other
attributes from the open dataset. It analyzes the relationship between
variables through descriptive statistics and multiple regression. It
is found that the BP neural network model is more accurate
in predicting structural variables. Therefore, using the BP neural
network prediction model has good guiding significance for
improving the product performance of intercalated meltblown non-
woven materials. In addition to this problem, the model can also
adapt to too many other multi factor analysis problems.
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