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Introduction: Intracortical Brain-Computer Interfaces (iBCI) establish a new

pathway to restore motor functions in individuals with paralysis by interfacing

directly with the brain to translate movement intention into action. However, the

development of iBCI applications is hindered by the non-stationarity of neural

signals induced by the recording degradation and neuronal property variance.

Many iBCI decoders were developed to overcome this non-stationarity, but

its effect on decoding performance remains largely unknown, posing a critical

challenge for the practical application of iBCI.

Methods: To improve our understanding on the effect of non-stationarity, we

conducted a 2D-cursor simulation study to examine the influence of various

types of non-stationarities. Concentrating on spike signal changes in chronic

intracortical recording, we used the following three metrics to simulate the non-

stationarity: mean firing rate (MFR), number of isolated units (NIU), and neural

preferred directions (PDs). MFR and NIU were decreased to simulate the recording

degradation while PDs were changed to simulate the neuronal property variance.

Performance evaluation based on simulation data was then conducted on three

decoders and two different training schemes. Optimal Linear Estimation (OLE),

Kalman Filter (KF), and Recurrent Neural Network (RNN) were implemented as

decoders and trained using static and retrained schemes.

Results: In our evaluation, RNN decoder and retrained scheme showed consistent

better performance under small recording degradation. However, the serious

signal degradation would cause significant performance to drop eventually. On

the other hand, RNN performs significantly better than the other two decoders

in decoding simulated non-stationary spike signals, and the retrained scheme

maintains the decoders’ high performance when changes are limited to PDs.

Discussion: Our simulation work demonstrates the effects of neural

signal non-stationarity on decoding performance and serves as a

reference for selecting decoders and training schemes in chronic iBCI.

Our result suggests that comparing to KF and OLE, RNN has better

or equivalent performance using both training schemes. Performance
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of decoders under static scheme is influenced by recording degradation and

neuronal property variation while decoders under retrained scheme are only

influenced by the former one.

KEYWORDS

brain-computer interfaces, simulation, chronic intracortical recording, recurrent neural
network, training scheme

Introduction

Intracortical Brain-Computer Interfaces (iBCI) have the
potential to restore motor function in paralyzed patients (Hochberg
et al., 2012; Aflalo et al., 2015; Salahuddin and Gao, 2021; Willett
et al., 2021). Recent iBCI studies were able to achieve fluent
control of cursors and prostheses using subjects’ neural signals,
such as spikes or local field potentials (LFPs) (Wodlinger et al.,
2015; Pandarinath et al., 2017). However, despite the remarkable
achievements of iBCI studies, many more challenges remain (Gilja
et al., 2011; Rapeaux and Constandinou, 2021). One of such
challenge is the non-stationarity of neural signals in chronic
intracortical recording (Carmena et al., 2005; Wang et al., 2014;
Downey et al., 2018), which involves many complicated factors and
is thus difficult to evaluate. A typical cause of non-stationarity is the
glial scarring induced by immune rejection (Salahuddin and Gao,
2021). Glial cells could wrap the tips of intracortical microelectrode
due to foreign body reaction during recordings, leading to a
decrease in the peak amplitude of spike signals (Polikov et al., 2005;
Rapeaux and Constandinou, 2021). Likewise, the neuronal firing
patterns of subjects could adapt to fit the patterns of decoders,
leading to intrinsic changes in neurons (Jarosiewicz et al., 2008;
Ganguly and Carmena, 2009; Orsborn et al., 2014; Takmakov et al.,
2015). These degradations and neuronal variances will increase the
non-stationarity of neural signals.

Previous studies mainly used mean firing rate (MFR)
and number of isolated neurons (NIU) to describe recording
degradation while neural preferred direction (PDs) was used to
describe neural signal variance (Simeral et al., 2011; Ahmadi et al.,
2021). Previous chronic iBCI studies have reported a decrease
in MFR (Wang et al., 2014; Ahmadi et al., 2021) and NIU as
recording time increases (Rousche and Normann, 1998; Sharma
et al., 2015; Ahmadi et al., 2021), as well as time-varying changes
in neural PDs (Ganguly and Carmena, 2009; Fraser and Schwartz,
2012; Wang et al., 2014). Overall, these above results suggest that
the non-stationarity of neural signal has a great influence on
iBCI performance and presents a great challenge to its practical
application. To overcome this challenge, lots of decoders and
various training schemes have been applied to achieve better
performance (Jarosiewicz et al., 2013; Ahmadi et al., 2021), but it
is still unclear how a single type of non-stationarity could affect the
performance of decoders.

Generally, motor iBCI decoders establish the statistical model
mapping neural signals to their corresponding kinematic signals
(Velliste et al., 2008; Gilja et al., 2012; Hochberg et al., 2012; Li
et al., 2012; Flint et al., 2013; Inoue et al., 2018; Willett et al.,
2021). Researchers have implemented several high-performance

decoders. The following three widely used decoders are chosen
for this study to evaluate the effects of non-stationarity variations
on decoding performance: (1) Optimal Linear Estimation (OLE)
(Chase et al., 2009), which is based on the linear model optimized
by the ordinary least square estimator. It gives predictions directly
using linear mapping functions from neural signal to kinematic
signal; (2) Kalman filter (KF) (Gilja et al., 2012; Hochberg et al.,
2012; Pandarinath et al., 2017), which works by a two-phase
process. It produces estimates of the current kinematic signals in
the prediction phase. It updates the predictions using a weight
average between the kinematic signals in the prediction phase and
the kinematic signal estimated with the observed neural signals;
and (3) Recurrent Neural Network (RNN) (Sussillo et al., 2012;
Zaremba et al., 2014), which is based on a non-linear model that
predicts kinematic signals using the sequential information of input
neural signals. Due to its unique structure, RNN was reported to
have better performance than KF and OLE in some sequential
decoding tasks (Sussillo et al., 2012).

Apart from their implementation, training schemes can also
influence the performance of decoders. Static scheme and retrained
scheme were both investigated in this study. In the static scheme,
decoders are trained with data in the first session and the
parameters were kept fixed in the rest sessions (Jarosiewicz et al.,
2013; Ahmadi et al., 2021). Decoders under static scheme are
easy and convenient to deploy but are less resistant to non-
stationarity in neural signals. In the retrained scheme, decoders
are retrained with data in each session and then tested with data
in the same session. Thus, they often have increased performance
comparing to decoders under static scheme (Jarosiewicz et al., 2013;
Milekovic et al., 2018). It will be practically advantageous if we
know approximately how much the variations of each type of non-
stationarity influences the decoding performance with different
training schemes, because we could choose suitable decoders and
training schemes to maintain robust performance in chronic iBCI
experiments based on the findings.

Since recording degradation and neuronal variance usually
change simultaneously in real-world iBCI experiments, it is difficult
to investigate the effects of each type of non-stationarity specifically
using recording data. Therefore, neural simulation was used to
synthesize spike data so that different types of non-stationarity can
be introduced separately (Kim et al., 2018). The simulation model
is not only used in offline spike generation (Chase et al., 2009;
Inoue et al., 2018; Wan et al., 2019) but also adopted to build
online spike signal simulators (Awasthi et al., 2022; Ferrea et al.,
2022). It reduced experimental expenses in close-loop experiments
and utilized the full advantage of previous data. One of the most
commonly used spike simulation methods is the one based on
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FIGURE 1

The flow chart explaining the simulation and decoding procedure. Firstly, we selected the non-stationarity metric type to simulate. Then we
generated the corresponding parameters, and the spike signals were simulated with the PV model using the 2D kinematic data. Next, we estimated
the spike counts using Poisson process. Lastly, we trained and tested the decoders with simulated spike data and evaluated the results. The
procedure was repeated 20 times.

the Population Vector (PV) model (Georgopoulos et al., 1986).
The PV model comes from the observation of physiological 2D
center-out experiments and is explainable from the neuroscience
perspective, which is suitable for the implementation of non-
stationarity variations. In this study, we generated the spike data
with the PV model using 2D kinematic data recorded from a real
iBCI center-out experiment.

Our results demonstrate that: (1) RNN performs better or
equivalent in comparison with that of KF and OLE when using
either training scheme. (2) Performance of decoders trained
with both schemes are influenced by recording degradation

and decoders under static scheme are also influenced by
neural variation.

Materials and methods

Figure 1 shows the simulation and decoding procedure. For
simulation part, we selected the non-stationarity metric type and
generated the corresponding parameters. Then, we simulated the
spike signal with the PV model using the 2D kinematic data, and
we estimated the spike counts with Poisson process. For decoding
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part, we trained and tested the decoders with simulated spike data
and evaluated the results. The procedure was repeated 20 times. The
decoding results of the simulated spikes were used to evaluate the
influences of different types of non-stationarity.

Parameters setting for simulating the
non-stationarity of neural signals in
chronic recordings

As reported by several studies, recording degradation and
neuronal variance are the main source of neural signal non-
stationarity in chronic intracortical recordings (Chestek et al., 2011;
Wang et al., 2014). Here, we used three metrics (MFR, NIU, and
PDs) to imitate the non-stationarities of neural signals in chronic
recordings. MFR decrease and NIU loss were used to simulate the
recording degradation and PD change to simulate the neuronal
variance. The parameters of MFR, NIU, and PDs were changed in
each session of all simulations.

In each type of non-stationarity experiment, we simulated 11 5-
min sessions of spike data with different non-stationarity variances.
A total of 3,000 sample points were provided with a sample rate of
10 Hz in each session.

MFR decrease
Previous studies have reported an approximately negatively

linear relationship between neurons’ MFR and recording time
(Downey et al., 2018; Ahmadi et al., 2021), which aligns with the
chronic intracortical recording data collected in our previous work
(Wang et al., 2014). Therefore, MFR was assumed to decrease
linearly in our simulation. Specifically, two steps were involved in
spike data generation. We first generated spike data for all sessions.
Some spike counts were then dropped to mimic the aforementioned
degradation, shown in Eq (1).

fi (n) = fi (1)−di, di ∼ N (n ∗ r,σ) , (1)

where i, n, r are the neuron index, session index and scale ratio,
respectively. fi (n) is the MFR of neuron i in session n. di is the
number of dropped spikes sampled from a Gaussian distribution
with mean equal to n ∗ r. The minimum firing rate was set to 0 for
each neuron. We decreased the MFR from 28.0 Hz to about 1.0 Hz
in the 11 sessions. We calculated the firing rate of real recorded
neural data and it shows that firing rates of more than 90% neurons
are lower than 28 Hz, shown in Supplementary Figure 1. Based on
previous reports indicating that spike signals with extremely lower
firing rates could not carry enough effective information (Wang
et al., 2014), the minimum firing rate of the last session was set to
1 Hz instead of 0. Figure 2A shows the MFR decreased tendency as
the recording session index increases.

NIU loss
Similar to MFR, NIU loss is also approximately negatively

linear to recording time (Ahmadi et al., 2021). In addition, our
experiment data showed a trend of linearly decrease in the number
of detective units in chronic intracortical recording (Wang et al.,
2014). In this study, a linear model was used to simulate NIU loss
to simplify the research conditions. The simulation of NIU loss can

FIGURE 2

The change of recording properties as the recording session
index increases. (A) The MFR decreasing curve as the recording
session increases. (B) The NIU dropping curve as the recording
session increases. (C) The average PD change curve based on curve
fitting model. The error bar represents the standard error of PDs
change relative to PDs in the first session.

be divided into two steps: Firstly, we calculated the NIU in each
session based on the linear model, which ranged from 96 in the first
session to 26 in the last session (Wang et al., 2014). Secondly, we
generated the spike counts of remaining neurons in each session.
In each session, the firing rate was set to 0 for the neurons that
were dropped, which means no spike firing was collected from the
dropped neurons (Degenhart et al., 2020). Figure 2B shows the
NIU in each session.

PD changes
In chronic recording, it is reported that the neuron PD varied in

different sessions (Dickey et al., 2009; Fraser and Schwartz, 2012),
which is also confirmed by our own data (Wang et al., 2014). The
PD variations are affected by a wide variety of factors, but can be
fit approximately using the following curve function (Fraser and
Schwartz, 2012):

y (n) = b1−b2exp
(
b3 ∗ n

)
+ ε (n) , (2)

where n, b are session index and model parameters, respectively.
y (n) is the predicted change of PD in session n. ε (n) is the noise
in session n. The change in PD is defined as the difference between
PD in the first session and PD in current session. This model will
be henceforth referred to as the curve fitting model. The simulation
contains two steps. Individual PD changes were first calculated for
each neuron in each session, with changes ranging from 0 to 0.8 rad.
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The individual changes were then added to the initial PDs as the
sessions continue, forming the PDs change in each session. Then,
spike counts were generated with corresponding parameters in each
session. Figure 2C shows the PDs change in each session.

Spike activity simulation

A simulation method based on the PV model was applied
(Georgopoulos et al., 1986; Inoue et al., 2018). In this model, the
spike firing rates are synthesized with speed signal, shown in Eq
(3).

fi (t) = bi,0+bi,1||v (t)||2cos (θ (t)−θPD)+bi,s||v (t)||2 + ε (t) ,

(3)
where bi,0 is the baseline firing rate of neuron i. bi,1 and θPD are the
modulation depth and preferred direction of neuron i. bi,s describes
the speed modulation of neuron i. t is the sample time point. The
sample rate of firing rate is the same as that of kinematic signal,
which is 10 Hz. ||v (t)||2 is the second-order norm of speed at time
t. ε (t) is the noise representing the deviation from the model. fi (t)
is the firing rate of neuron i at time t.

The baseline firing rate b0 of all neurons were sampled from
a normal distribution with a mean of 20 Hz and a variance of 6
based on the recorded spike data in our previous study (Wang
et al., 2014). The modulation depth bi, 1 and speed factor bi,s of all
neurons obeyed the normal distribution with a mean of 5 and a
variance of 2. θPD obeyed a uniform distribution on [0, 2∗π]. After
generating the neural firing rate with Eq (3), we estimated the spike
counts in each time bin. We assumed every detection of spike signal
as a Bernoulli trial, so the binned spike counts obey the Poisson
distribution. Therefore, the Poisson Process shown in Eq (4) was
applied to probabilistically generate the binned spike counts (Inoue
et al., 2018; Kim et al., 2018).

P
(
N (t+τ)−N (t) = k

)
=

(τλ)ke−τλ

k!
(4)

where τ = 0.1 s is the time interval and λ is the expected value of
the Poisson distribution N. The left side of Eq (4) is the probability
of a neuron firing k times between time t and t+τ. According to Eq
(4), the binned spike counts can be estimated by using λ = fi(t),
where fi(t) is derived from Eq (3).

According to Eq (3), spike simulation needs speed signals
as input. The speed signals in our study were collected from a
kinematic dataset from one of our previous monkey studies (Li
et al., 2014; Wang et al., 2014), in which, a monkey was trained to
control a cursor on screen using a joystick in a center-out task. At
the start of each trial, a cursor was shown at the center of the screen,
as a target appeared randomly in one of the four positions around
the screen (top, bottom, left, right). The monkey was trained to
move the cursor to reach the target and held it steadily within a
limited time. Then, the monkey was required to move the cursor
back to center position. Upon a successful attempt, the monkey
would receive water as reward. No reward was given otherwise.
In this study, the speed signals were calculated from the cursor
trajectory and normalized with a z-score before simulation. The
example cursor trajectory is shown in Figure 1. We used two sets
of cursor trajectories from the 2D center-out task conducted by a
monkey. The first set of trajectory data was used to simulate spikes

in the first session. For comparison, we used the second trajectory
set repetitively to simulate spikes in the latter 10 sessions.

Decoders

Optimal Linear Estimation, KF, and RNN were used as
decoders to investigate the effect of each type of non-stationarity
on decoding performance.

Optimal linear estimation
Optimal linear estimation is an improvement to the Population

Vector algorithm (PVA). In OLE, the encoding equation can be
written as:

rt = Bvt + εt, (5)

where rt is an n∗1 vector consisting of the firing rates of sampled
neurons. n is the number of neurons. B is a n∗3 matrix consisting
of the preferred directions of sampled neurons and baseline firing
rates. vt is the velocity vector, and εt is the measurement error.
In OLE, the matrix B is used as the explanatory variable in the
multiple regression model, the predicted velocity vector ṽt can thus
be calculated as:

ṽt =
(

B
′

B
)−1

B
′

rt, (6)

In OLE, the multiple regression model is used to reduce the
decoding error caused by the non-uniformity of PD of neurons.
The speed gain in each movement direction obeys uniform
distribution. If B

′

B = I, where I is the identity matrix, then the
preferred directions of sampled neurons are uniformly distributed.
OLE and PVA have the same performance under this condition.
There are 288 parameters in our OLE model.

Kalman filter
As one of the commonly used decoders in motor neural signal

decoding, KF (Welch and Bishop, 1995) illustrates the observed
spike signals changing over time with a first-order Markov model
defined in Eq (7a). Where vt is the kinematic signals at time t.
A is the state transform matrix. δt is the Gaussian noise with
zero mean and variance Q. KF also assumes a linear relationship
between the spike signals and the kinematic signals, as defined in
Eq (7b), where rt is the spike signals. H is the transform matrix.
εt is the Gaussian noise with zero mean and variance R. H and
A are estimated by the least square method in model calibration.
In each iteration, we predicted the priori kinematic data vt using
the first-order Markov model in Eq (7a) and the linear model in
Eq (7b). Then, we calculated the optimal Kalman gain and updated
the posterior estimation of the kinematic data (Wang et al., 2014).
There are 9,420 parameters in this model.

vt = Avt−1+δt, δt ∼ N (0, Q) , (7a)

rt = Hvt+εt, εt ∼ N (0, R) , (7b)

Recurrent neural network
Recurrent neural network is widely used for its excellent

ability to predict sequential signals (Sussillo et al., 2012, 2016).
In this study, a vanilla RNN was used to decode the simulation
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TABLE 1 The detailed hyperparameters of RNN.

Name Value Name Value

Hidden layer 1 Max HF iteration 1,000

Hidden units 48 Min CG iteration 10

Activation function tanh Max CG iteration 100

Drop out 0.5 λ 0.004

L2 weight 0.01 Total parameters 7,106

Hessian-Free (HF) refers to hessian free optimization method. CG is the conjugate gradient,
which is used to estimate the optimal gradient descent direction. λ is the damping parameter
in HF optimization, and L2 refers to L2 regularization.

signals. It took the spike counts of all neurons in a bin time as
input, then output the predicted speed at the bin time. Our RNN
implementation can be defined as follows:

ht = Winrt+bin, (8a)

ot = f
(
ht+Whht−1

)
, (8b)

ṽt = Woot+bo, (8c)

where rt , ht , ot , ṽt each represents the input neuron signal, the
input of hidden layer value, the output of hidden layer and the
predicted velocity vector. Win, Wh, and Wo are the weights of the
input layer, the recurrent layer, and the output layer. bin and bo
are the bias in the input layer and output layer. The Hessian-Free
(HF) optimization was used to optimize the network parameters
(Martens, 2010). HF is a second-order algorithm for calculating
the gradient descent in back-propagation. To avoid the intensive
calculation required in solving the Hessian matrix, HF uses the
conjugate gradient decrease method to estimate the local minimum
point with iterations. Compared to the traditional backpropagation
through time (BPTT), HF is faster, more accurate and easier to use
for finding the optimal solution. HF has four primary parameters:
the maximum HF iteration times, the initial damping parameter
λ, the minimum and the maximum conjugate gradient iteration
times. We also used L2 regularization to reduce overfitting. The
mean squared error (MSE) was used as the loss function for this
study. A more detailed description of network parameters is shown
in Table 1.

Training schemes

Two training schemes were investigated in this study. In
static scheme, 80% of the data (2,400 sample points) in the first
session were used for training. The decoders were trained once
and their parameters were fixed in the following sessions. In
retrained scheme, decoders were trained in every session. A total
of 80% data in the session was used for training. In both schemes,
the rest 20% data were used for testing. The test data for both
schemes were the same in each session to ensure the comparability
of results. We compared results from the second session to the
last session since the decoders under static scheme and decoders
under retrained scheme were the same in the first session. A more
detailed view of the dataset arrangement for both schemes is
shown in Figure 3. We used a fivefold cross-validation for all
sessions.

Evaluation

In this study, the decoding performance was evaluated with
Pearson’s Correlation Coefficient (CC) and Root Mean Square
Error (RMSE). CC represents the similarity of shapes in real and
decoded speed, while RMSE represents the average error magnitude
between real and decoded speed. The definition of CC and RMSE
are as follows:

CC = Cov(X,X̂)
√

Var(X)∗Var(X̂)
, (9)

RMSE =

√
(X−X̂)∗(X−X̂)T

N , (10)

where Cov
(

X, X̂
)

is the covariance of real data X and decoded data

X̂. Var (X) is the variance of X. And N is the sample point number
of X and X̂.

Statistical analysis

To reduce the effects of randomness in the simulation process,
the whole simulation procedure was repeated 20 times for each type
of non-stationarity experiments. The performance of decoders and
schemes was assessed by the CCs and RMSEs of predicted velocity
and real velocity. Performance was evaluated for each session
in each repetitive simulation experiment. We used the two-way
ANCOVA to verify the influence of non-stationarity metrics and
decoder types on the decoding results. The significance results are
shown in Supplementary Table 1. The main effect of the metrics is
significant and Mann-Whitney U-test with Bonferroni’s correction
was used to test the difference between decoder performance. The
significance level α was set to 0.01.

Several boxplots were used to demonstrate the decoder
performance in the last session, where the neural non-stationarity
was the largest. The horizontal line in the box denotes the medium
value, and the box represents the interquartile range (between
25th and 75th percentiles). The whiskers extend 1.5 times of the
interquartile range. The diamond points are data points out of
the whiskers range. Simulation procedure code was written in
MATLAB. The program was running on MATLAB R2020a, with
an i5-7400 CPU and 16 GB memory.

Results

Decoding performance comparison
when MFR decreases

The effects of MFR decline were subsequently examined for all
training schemes and decoders. Figure 4 shows the CCs and RMSEs
of all decoders using different training schemes. For static decoding
(shown in Figures 4A, B), CCs decreased and RMSEs increased as
MFR went down, indicating a causal relationship between neuronal
MFR decline and performance degradation. RNN outperformed
the other two decoders in the first 3 sessions when static scheme
was applied (Mann-Whitney U-test with Bonferroni’s correction,
p < 0.01). For decoders under retrained scheme (shown in
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FIGURE 3

The dataset split method for static and retrained decoding. Each large box represents the data in a session. The blue box and orange box are the
training data for static scheme and retraining scheme. Green box is the testing data, which is the same for both schemes. Spike data in the first
session were generated with trajectory data in the first set while spike data in the rest sessions were generated with the same trajectory data in the
second set.

FIGURE 4

The decoding results of the MFR simulation experiment. (A) The CCs of all decoders using static decoding. The x-axis is the MFR of all simulated
neurons, and the y-axis is the value of CC. The blue, orange, and green lines represent OLE, KF, and RNN. The shadows represent the 95%
confidence interval of repetitive simulation. A green and/or orange squares is drawn above each session whenever RNN had a significant better
performance than OLE, and KF (Mann-Whitney U-test with Bonferroni’s correction, p < 0.01). (B) Similar to (A) but for RMSE. (C,D) Similar to (A,B)
but for retraining scheme.

Figures 4C, D), we can see a performance drop similar to that of
the static scheme. As for the decoders, RNN performed similarly to
KF when the MFR was quite low, whereas OLE was outperformed
by both RNN and KF under all settings.

A performance comparison (shown in Figure 5) was conducted
specifically for the last session where MFR was the lowest. Retrained
RNN performed better than static RNN in RMSE comparison, and
the average CC of retrained RNN is higher than static RNN. Static
OLE showed a significantly better performance than retrained OLE
(Mann-Whitney U-test with Bonferroni’s correction, p < 0.01),
which might be a result of its linear and straightforward design.

These results suggest that retrained RNN has better performance
than OLE and KF when the decline of MFR is not severe. Also
retrained RNN outperformed static RNN when MFR decreased.

Decoding performance comparison
when NIU decreases

To investigate the effects of the NIU loss, spike data were
generated and decoded using different decoders and training
schemes. Their performance is shown in Figure 6, where
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FIGURE 5

Performance comparison of different training schemes in the last
session of the MFR simulation experiment. (A) The box plot of CCs
of each decoder with static and retrained schemes. Cyan boxes are
the CC distributions of decoders under static scheme and yellow
boxes are that of decoders under retrained scheme. Mann-Whitney
U-test with Bonferroni’s correction was used to calculate
significance (n.s.: no significance, p > 0.05; **p < 0.01). (B) Similar
to (A) but for RMSE.

Figures 6A, B demonstrates the decoding performance using the
static scheme. As shown in the line charts, the CCs decreased while
RMSEs increased for all decoders as NIU declined. Using static
decoding, RNN consistently outperformed OLE in terms of both
CC and RMSE, while offering better capability than KF in the first
test session (Mann-Whitney U-test with Bonferroni’s correction,
p < 0.01). However, no significant difference was found between the
performance of RNN and KF when the NIU continued to drop. As
for retrained decoding shown in Figures 6C, D, the performance
of all decoders declined as the NIU decreased, with RNN having
the best performance in all sessions (Mann-Whitney U-test with
Bonferroni’s correction, p < 0.01).

Similar to MFR, we compared the performance of different
training schemes in the last session, as shown in Figure 7. The
retrained RNN and KF outperformed the static version (Mann-
Whitney U-test with Bonferroni’s correction, p < 0.01). For OLE,
the static scheme had a lower RMSE than that of the retrained
scheme. Our result suggests that retrained RNN has the best
performance when non-stationarity is limited to NIU decrease.

Decoding performance comparison
when the PDs change

We investigated the effect of PDs change based on the curve-
fitting model. Figures 8A, B showed a performance drop in all
decoders as the change of PDs got larger. RNN outperformed the
other decoders in test sessions with a small PDs change in the
early sessions (Mann-Whitney U-test with Bonferroni’s correction,
p < 0.01) and performed similarly to KF in the latter sessions
(Mann-Whitney U-test with Bonferroni’s correction, p > 0.01).
Figures 8C, D showed the CCs and RMSEs of decoders with
retrained scheme, where the performance of all decoders remained
at a relatively stable level regardless of changes in PDs. RNN
outperformed the other two decoders in all test sessions (Mann-
Whitney U-test with Bonferroni’s correction, p < 0.01), while
KF maintained as a close second (Mann-Whitney U-test with
Bonferroni’s correction, p < 0.01).

Figure 9 compares the performance of different training
schemes in the last session. Noticeably, all decoders under
static scheme performed significantly worse than decoders
under retrained scheme (Mann-Whitney U-test with Bonferroni’s
correction, p < 0.01), suggesting trivial influence of PDs variances
on the performance of retrained decoding.

Discussion

In this study, we investigated how different types of non-
stationarity influence the decoding performance of different
decoders and training schemes. The effects of three types of non-
stationarity, either caused by recording degradation (MFR decline,
NIU loss) or neuronal property variance (PDs variation), were
evaluated using three decoders and two training schemes. Although
conducted under hypothetical settings, our simulation provides a
new aspect for the examination of signal degradation. Both linear
and non-linear decoders, as well as different training schemes were
compared in this study. Our result suggests that neural signal
degradation leads to a performance decrease in all three decoders
(OLE, KF, and RNN) and both training schemes. Overall, decoders
under retrained scheme kept stable performance regardless of
variance increased. RNN also demonstrated better or equivalent
performance consistently when compared with KF and OLE.

The influence of degradation and
neuronal property variance on chronic
decoding

It has been reported that the variation of neuronal properties
has effects on decoding performance (Kim et al., 2018). Here we
further investigated the influence of spike signal non-stationarity
by considering both recording degradation and neuronal variance
observed in chronic intracortical recordings. Many studies reported
that the decline of MFR and NIU is to be associated with decreased
decoding performance (Wang et al., 2014; Kim and Kim, 2016). We
simulated the spike signals to mimic the decline of MFR and NIU,
respectively.

Our results showed that the performance of decoders decreased
as either MFR or NIU declined. As MFR decreased, the amplitude
of neural signals carrying kinematic information got smaller,
leading to a drop in signal-noise ratio (SNR). The decline of
MFR made it more difficult to get the mappings from firing
rate to kinematic data. NIU experiment demonstrated the main
consequences of dropping NIU. The first is the loss of neural
information. The decrease of NIU reduced the amount of neuron
information, resulting in inaccurate prediction (Kim et al., 2018).
The second is the change in PDs distributions. The dropping units
led to non-uniform PDs distribution, which induced instability in
decoding performance. Therefore, the prediction speed had a large
range of bias to a certain speed (Chase et al., 2009), which led to a
larger standard error in RMSEs.

Unlike the MFR and NIU experiments, the variations of PDs
had little influence on signal quality. The neural firing rate was
still highly correlated with kinematic signals. Therefore, there was
no obvious decline in retrained decoding results. Nevertheless, the
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FIGURE 6

The decoding results of the NIU loss experiment. (A) The CCs of all decoders using static decoding. The x-axis is the remained NIU, and the y-axis is
the value of CC. The blue, orange, and green lines represent OLE, KF, and RNN. The shadows represent the 95% confidence interval of repetitive
simulation. A green and/or orange squares is drawn above each session whenever RNN had a significant better performance than OLE, and KF
(Mann-Whitney U-test with Bonferroni’s correction, p < 0.01). (B) Similar to (A) but for RMSE. (C,D) Similar to (A,B) but for retraining scheme.

FIGURE 7

The comparison of decoding performance with different training
schemes in the last session in the NIU loss experiment. (A) The CC
of all decoders with static and retrained schemes. Cyan boxes are
the CC distributions of decoders under static scheme and yellow
boxes are that of decoders under retrained scheme. Mann-Whitney
U-test with Bonferroni’s correction was used to calculate the
significance (n.s.: no significance, p > 0.05; ∗p < 0.05; ∗∗p < 0.01).
(B) Similar to (A) but for RMSE.

PDs variations changed the mappings from firing rate to kinematic
data for each session (Jarosiewicz et al., 2015), causing the declining
performance of static decoding.

Comparison between different decoders
in chronic decoding

Previous studies have reported RNN as having either better
or similar performance compared to OLE and KF (Sussillo et al.,
2012; Ahmadi et al., 2021), which is supported by the result of
this study. In the first few sessions, where the signal quality was
high and the firing patterns were similar, the non-linear recurrent
structure was able to ensure better performance of RNN. However,

these advantages could not ensure RNN’s performance when the
signal quality decreased and the firing patterns changed in the latter
sessions, resulting in decreasing performance. Specifically, for RNN
under retrained decoding, the neural mappings in the training and
testing dataset were the same, thus minimizing the influence of
different sessions’ non-stationarity. Moreover, the recurrent layer
in RNN could extract speed information from previous input data,
which helped with decoding. RNN performed best when the spike
signal degradation was slight and performed similarly to the other
two decoders when the degradation was severe, indicating that
RNN had more outstanding decoding ability than KF and OLE.

In addition, KF outperformed OLE in most scenarios due to its
utilization of the Markov model and the linear transform function.
The Kalman gain also offered error correction in the prediction
process. Whereas OLE only used a linear transformation matrix
and had no iteration step (Chase et al., 2009). The performance
of OLE relied heavily on the quality of training data, thus causing
obvious bias if the neural signals contained substantial noise.
Therefore, static OLE might perform better than retrained OLE
when there was severe degradation in signal quality, as shown in
Figure 5. Overall, RNN performed better than linear decoders such
as KF and OLE, and KF outperformed OLE due to the iteration step
with Kalman gain.

Comparison between two training
schemes in chronic decoding

In chronic recording, the performance of decoders under static
scheme got worse when non-stationarity accumulated. Previous
studies have reported the performance advantage of retrained
scheme over static scheme (Jarosiewicz et al., 2013; Ahmadi et al.,
2021). This study reaffirms this conclusion as our retrained RNN
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FIGURE 8

The decoding results of PDs change experiment. (A) The CCs of all decoders using static decoding scheme. The x-axis is the change of PD, and the
y-axis is the value of CC. The blue, orange, and green lines represent OLE, KF, and RNN. The shadows represent the 95% confidence interval of
repetitive simulation. A green and/or orange squares is drawn above each session whenever RNN had a significant better performance than OLE,
and KF (Mann-Whitney U-test with Bonferroni’s correction, p < 0.01). (B) Similar to (A) but for RMSE. (C,D) Similar to (A,B) but for retrained decoding.

FIGURE 9

The comparison of decoding performance with different decoding
training schemes in the last session in the PDs experiment. (A) The
CCs of all decoders with static and retrained schemes. Cyan boxes
are the CC distributions of decoders under static scheme and
yellow boxes are that of decoders under retrained scheme.
Mann-Whitney U-test with Bonferroni’s correction is used to
calculate the significance (n.s.: no significance, p > 0.05;
∗∗p < 0.01). (B) Similar to (A) but for RMSE.

and KF almost always outperformed static ones when only a single
type of neuronal non-stationarity was introduced.

In the first few sessions of MFR and NIU experiments, the
neuron MFR was high and the NIU was sufficient. Hence, no
obvious difference was observed between the two schemes due
to the high similarity in neural signal patterns and the high
SNR. However, in the last few sessions, neural patterns were
sufficiently different from the patterns of the static model. For
both schemes, neural signal degradation made it difficult to capture
the neural patterns, which led to performance drops. In PD
experiment, both schemes achieved similar performance in the
first few sessions when the neural pattern remained relatively
stable. In the last few sessions, the accumulation of PDs variances
changed the mapping from neural signal to kinematic data, causing
the performance decline in static scheme. On the other hand,

retrained scheme showed stable performance since the SNR was
high despite changes in PDs.

Comparison to previous studies

Previous studies have investigated the effects of neuronal
ensemble properties on decoders with spike simulation (Kim and
Kim, 2016; Kim et al., 2018). In our study, we further investigated
the neuronal properties in the case of chronic recordings and
simulated the non-stationarity variations based on previous studies
(Wang et al., 2014; Wan et al., 2019). Furthermore, we introduced
RNN and two training schemes in our performance comparison,
making the investigation more comprehensive. We also used the
PV simulation model (Inoue et al., 2018) and real kinematic signal
from monkey experiments.

It was reported that RNN had better performance and was more
robust than KF in close-loop experiments (Sussillo et al., 2012;
Ahmadi et al., 2021). Using actual neural signals with high quality,
RNN showed robust and prominent performance, which aligns
with our result of the first few testing sessions. However, when
RNN was put under greater neural signal degradation, we found
that when the trajectory information was covered by noise signal, all
decoders will experience a drop in performance. This degradation
of signal quality has a particularly great impact on the performance
of decoders under static scheme, thus in last few sessions, static
RNN performed similar to KF.

As for spike simulation, various spike simulations based on
different methods have been applied in previous studies, such
as PV model (Chase et al., 2009; Inoue et al., 2018; Wan
et al., 2019), deep neural network (Ramesh et al., 2019) and
large datasets based simulation (Hosman et al., 2019). As a
powerful tool in neuroscience research, simulation can provide
neural signals with specific non-stationarity for decoder validation
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or chronic recording investigation. It removed the influences
of uncertain noise in actual neural signals and enabled us to
focus on the research problems. It is challenging to implement
neuronal properties variation to the simulation models based on
generative neural networks and existing large datasets since these
two simulation methods do not come from the observation of
physiological experiments and are thus less explainable from a
neuroscience perspective.

Limitations and future work

Although the effects of neural signal non-stationarity on
decoding performance were investigated with the simulation
datasets, the real-world situations are more complicated than
what was demonstrated in our simulation work. The parameters
adopted for the ranges of MFR, NIU, and PD variation were
relatively arbitrary, which is the main limitation of our simulation
work. Therefore, we propose two possible directions for future
improvements. Firstly, due to the simple and arbitrary nature of
chronic simulation models, the change tendency can only be shown
qualitatively over time. In the future, a more detailed and complex
model could be used to simulate the neural signal degradations and
variances. For instance, a changing model could be extracted from
actual recording data with curve-fitting methods. Secondly, more
non-stationarity metrics can be included to describe the chronic
variation of spike signals. The non-stationarity metrics in chronic
intracortical recordings are not limited to those investigated in
this study. The neural non-stationarity can be explained more
exhaustively if more metrics are considered.
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