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The dynamical properties of the brain and the dynamics of the body strongly

influence one another. Their interaction generates complex adaptive behavior.

While a wide variety of simulation tools exist for neural dynamics or biomechanics

separately, there are few options for integrated brain-body modeling. Here, we

provide a tutorial to demonstrate how the widely-used NEURON simulation

platform can support integrated neuromechanical modeling. As a first step toward

incorporating biomechanics into a NEURON simulation, we provide a framework

for integrating inputs from a “periphery” and outputs to that periphery. In

other words, “body” dynamics are driven in part by “brain” variables, such as

voltages or firing rates, and “brain” dynamics are influenced by “body” variables

through sensory feedback. To couple the “brain” and “body” components, we

use NEURON’s pointer construct to share information between “brain” and

“body” modules. This approach allows separate specification of brain and body

dynamics and code reuse. Though simple in concept, the use of pointers can

be challenging due to a complicated syntax and several di�erent programming

options. In this paper, we present five di�erent computational models, with

increasing levels of complexity, to demonstrate the concepts of code modularity

using pointers and the integration of neural and biomechanical modeling within

NEURON. The models include: (1) a neuromuscular model of calcium dynamics

and muscle force, (2) a neuromechanical, closed-loop model of a half-center

oscillator coupled to a rudimentary motor system, (3) a closed-loop model

of neural control for respiration, (4) a pedagogical model of a non-smooth

“brain/body” system, and (5) a closed-loop model of feeding behavior in the

sea hare Aplysia californica that incorporates biologically-motivated non-smooth

dynamics. This tutorial illustrates how NEURON can be integrated with a broad

range of neuromechanical models.

Code available at: https://github.com/fietkiewicz/PointerBuilder.
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1. Introduction

The central nervous system is strongly coupled to the body;

through peripheral receptors and effectors, it is also coupled to the

constantly changing outside world. The brain, the body, and the

environment are each dynamical systems in their own right, and

the interactions between them give rise to adaptive behavior (Chiel

and Beer, 1997). Therefore, it is important to develop simulation

tools that can represent both neuronal dynamics and peripheral

biomechanics (Weidel et al., 2016; Falotico et al., 2017).

Currently, there are a variety of platforms for simulating neural

systems or biomechanical systems, but relatively few integrate

both to simulate neuromechanical systems in a single, cohesive

application. The only comprehensive solution in use has been

AnimatLab (AnimatLab, 2023). AnimatLab provides the ability to

combine neural circuit models, specified by custom-written C++

code, with biomechanical models, implemented using the Vortex

physics engine (Cofer et al., 2010). However, to the best of our

knowledge, AnimatLab is no longer under active development.

Numerous other solutions have been developed as platforms

that combine a dedicated neural simulation application with

some other type of software for biomechanical simulation. Other

platforms integrating neural and biomechanical dynamics include

the Neurorobotics project (Falotico et al., 2017; Feldotto et al.,

2022; NRP, 2023) and MUSIC (Djurfeldt et al., 2010; Weidel

et al., 2016). NRP is a Linux-based platform that uses the

NEST/PyNN neural simulator, the Gazebo physics simulator, and

the Robot Operating System (ROS, 2023). The Neurorobotics

system is motivated primarily by robotics development, rather than

being focused on understanding the neuromechanics of animals.

MUSIC was originally developed to facilitate the integration of

multiple simulator platforms, and was originally focused on neural

simulations (Djurfeldt et al., 2010). It was extended, via ROS and

Gazebo, to simulate a Braitenberg vehicle (Weidel et al., 2016), with

the goal of using physical robots as tools for studying embodied

neural systems.

Notably, while NEURON has been used in combination with

other biomechanical simulators, no publicly supported platforms

currently exist, to the best of our knowledge. Dura-Bernal et

al. developed a cortical spiking network interfaced with a C++

simulation of a virtual musculoskeletal arm and robotic arm

(Dura-Bernal et al., 2015, 2016). Moraud et al. implemented a

neural network in combination with a model of a rat ankle joint

(Moraud et al., 2016) using OpenSIM (Seth et al., 2011). Volk

et al. used simulated motoneuron recruitment for control of a

model of a human ankle joint implemented with separate finite

element modeling software (Volk et al., 2021). However, none of

these examples using NEURON have been developed as a publicly

supported neuromechanical simulation platform. NEUROiD is a

platform that has been used to interface NEURON with OpenSIM

(Seth et al., 2011) for simulation of a human ankle joint (Iyengar

et al., 2019) and an upper limb (Kapardi et al., 2022). However,

NEUROiD is not yet publicly available (personal communication

from the author).

In this paper, we describe a method for using the NEURON

platform to incorporate biomechanics with the advantage of

utilizing a single, cohesive application that does not require

advanced software installation. NEURON is a widely used neural

simulation platform that has enjoyed continuous development

and active support for over three decades (Hines and Carnevale,

1997; Carnevale and Hines, 2006; Hines et al., 2009; Lytton et al.,

2016; Awile et al., 2022; McDougal et al., 2022). NEURON is

readily extensible and has a large and active user community. A

key challenge for integrating neural dynamics and biomechanics

is establishing communication between the neural simulator and

the biomechanics implementation, in an easy to use programming

environment. AnimatLab provides a graphical user interface in

which the user can specify a transfer function to map neural

variables (firing rates, motor neuron voltages) into mechanical

quantities (applied torques, actuator positions), as well as “sensory”

functions that map, e.g., muscle fiber activations or distensions

to applied currents (Cofer et al., 2010; AnimatLab, 2023).

Similarly, in the Neurorobotics platform, communication between

NEST/PyNN and Gazebo is accomplished via a “Brain Interface

and Body Integrator (BIBI)” that implements a “Transfer Function”

framework, that “translates the output of one simulation into a

suitable input for the other” (Falotico et al., 2017). In this paper,

we take a first step to integrating biomechanics into NEURON,

using an existing (but little used) feature of NEURON, namely its

pointer architecture.

2. Results

We present five models, each of which demonstrates both

the philosophy and techniques of a neuromechanical modeling

approach using NEURON. The first model demonstrates basic

usage of pointers with an example of calcium dynamics and muscle

force. The second is a neuromechanical model of a half-center

oscillator that contrasts the differences between state variables

and parameters. The third model uses the NEURON implicit

management of ionic currents with an application for respiratory

control. The fourth is a small, elementary model that demonstrates

basic techniques for incorporating non-smooth dynamics. The

final example incorporates a firing rate model for control of

musculature and incorporates a more advanced example of non-

smooth dynamics.

2.1. Pointers in the NEURON environment:
neuromuscular system

In the NEURON environment, a low-level language named

NMODL is used to define a mechanism, and mechanisms are

inserted into a section using a high-level language command

(Carnevale and Hines, 2006). A program is stored as a plain text

file, ending with the extension .mod, and is referred to as a mod

file. Generally, one NMODL program cannot access the value of a

state variable or parameter in another NMODL program without

the use of a pointer variable. The only exception to this rule is the

use of certain default state variables (e.g., membrane voltage and ion

concentrations) and parameters (e.g., resistivity) in the NEURON

environment whose values are implicitly shared by all mechanisms

in a section. For all others, a modeler must implement connections
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FIGURE 1

Overview and output of a neuromuscular model adapted from Kim (2020). Left: Arrows indicate dependencies between code modules. A neural

“cell” section contains a Hodgkin-Huxley mechanism, named hh, a network connection mechanism, named NetCon, and a membrane voltage (Vm).

A biomechanical “muscle” section contains a calcium mechanism that receives a notification, through NetCon, when the membrane voltage exceeds

a threshold (see white arrow). The calcium mechanism contains variables for activation level (a) and muscle position (xm). A separate force

mechanism calculates muscle force as a function of muscle activation and position using pointer variables aPointer and xmPointer, respectively (see

solid arrows). Right: Model output, using neuron membrane voltage (top), muscle calcium concentration (middle), and force (bottom).

between variables in different NMODL programs with a pointer

variable. In this section, we discuss the low-level construction of

pointers using NMODL and how a high-level language is used to

instantiate the model prior to simulation. We present an example

from the perspective of someone beginning to design a model with

pointers already in mind. For a discussion of converting an existing

mod file that does not already use pointers, see Appendix 1.2 in

Supplementary material.

2.1.1. Pointers in NMODL
This section demonstrates the use of pointers by adapting a

published neuromuscular model by Kim, which is available on

(Kim, 2017, 2020; McDougal et al., 2017; Kim and Heckman, 2023).

To the best of our knowledge, this model is the only published

treatment of muscle dynamics that has been implemented entirely

in NEURON. From the Kim model, we use two separate

mechanisms for sarcoplasmic calcium dynamics and static muscle

force, respectively. Here, we revise the model to show how a

previous approach for sharing variables can be replaced with

pointers. We also revise the neural components in the Kim model

that previously consisted of a multicompartmental reconstruction

of a motoneuron with detection of action potentials. As an example

of the versatility of NEURON, we instead use standard NEURON

library mechanisms, including a Hodgkin-Huxley neuron, named

hh, and an efficient mechanism for detecting action potentials for

network connections, named NetCon. An overview of the model is

given in Figure 1 that shows the Hodgkin-Huxley neuron, which

is new to our adaption, and the mechanisms for calcium dynamics

and force calculation, which are modified from the Kim model.

In the remainder of this section, we discuss key techniques for

implementing the modular connections shown in Figure 1, and

selected program excerpts are given. Interested readers can find

the model equations in Appendix 1.1 (Supplementary material)

and complete program files using the link provided in Section

4. In our adaptation of Kim’s model, the force mechanism uses

pointers to access the variables for muscle activation (a) and

muscle length (xm) that are located in the calcium mechanism.

The pointer variables are declared in the NEURON block, as shown

in the NMODL example below, and they can be used throughout

the program.

:: NMODL code ::

NEURON {

POINT_PROCESS force

POINTER aPointer, xmPointer

}

As shown in Figure 1, the calcium mechanism depends

on the membrane voltage of the neuron. When an action

potential occurs in the neuron, the calcium mechanism computes

the postsynaptic release of Ca2+, as detailed in Appendix 1.1

(Supplementary material). In our adaptation of Kim’s model, we

apply a mechanism that is widely used for synaptic connections

in NEURON, called NetCon, which is part of the standard

library (Hines and Carnevale, 2004). The NetCon mechanism

efficiently notifies dependent mechanisms when a variable exceeds

a given threshold, such as when a membrane voltage exhibits an
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FIGURE 2

Excerpts from calcium.mod. The NET_RECEIVE function e�ciently tracks action potentials in the neuron. The CaR function computes the calcium

release for use in the BREAKPOINT block (not shown). The complete program is available in the public code repository.

action potential. In neuronal networks, a NetCon can be used

in combination with a synapse to prevent the need for receivers

to constantly monitor the source by themselves. For a receiver

mechanism to respond, it must include a NET_RECEIVE function

that is called by the source mechanism and executed when an event

occurs.

In the original Kim model, the calcium mechanism requires

knowledge of the previous times at which the neuron had action

potentials, or spikes. These spike times were stored in an array

and then used to calculate the release of calcium, as detailed

in Appendix 1.1 (Supplementary material). Our adaption uses a

NET_RECEIVE function to update the array of past spike times

only when a NetCon mechanism detects an action potential.

Figure 2 shows an excerpt from the calciummechanism that shows

the NET_RECEIVE function and a subroutine named CaR that, as

in the Kim model, computes the calcium release (R).

The complete program file for the calcium mechanism is

available using the link provided in Section 4.

2.1.2. Connecting pointers for state variables
using the “hoc” language

Simulation of mechanisms requires one of the two high-level

languages that are supported in NEURON. One language is known

as hoc (pronounced with a long “o” sound, as in “spoke”), and

the other is Python. We first discuss using the hoc language

because it was initially the only high-level language supported in

NEURON. For numerical integration of the differential equations,

hoc instructions are used to insert a mechanism into a section.

A section is traditionally used to represent a part of a neuron,

such as a soma, an axon, or a dendrite. However, a section

is just a programming object that may have its own unique

assortment of mechanisms and properties. Therefore, a section

is a required construct for numerical integration of differential

equations in NEURON.

In the following hoc instructions, a NEURON section named

cell is used for inserting the built-in hh mechanism, and a

section named muscle is used for inserting mechanisms calcium

and force.

// hoc code //

// Create neuron model

create cell

cell {

insert hh

}

// Create muscle model

objref calciumObject, forceObject

create muscle

muscle {

calciumObject = new calcium(0.5)

forceObject = new force(0.5)

}
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FIGURE 3

Configuring pointers for the neuromuscular model.

FIGURE 4

Configuring the NetCon for the neuromuscular model.

The final technique to be discussed is the hoc instruction

setpointer that is used to configure each pointer variable. Pointer

dependencies are configured in hoc using the following syntax:

setpointer pointer,original

where pointer is a pointer variable that has been declared in a

POINTER statement in an NMODL program, and original is the

original variable being referenced, being either a state variable or

parameter. In the setpointer syntax given above, pointer and a state

variable originalmust both use the following syntax:

section.variable

where section is the section in which the mechanism has been

inserted, and variable is the name of the pointer variable or state

variable. For the example model, Figure 3 shows the hoc statements

that will configure the necessary pointers.

In Figure 3, aPointer and xmPointer are pointer variables in

the force mechanism that will access the state variables a and xm,

respectively, in the calcium mechanism. To complete the model, a

NetConmechanism is created to emulate a neuromuscular junction

and notify the calcium mechanism when an action potential

occurs in the neuron. The code in Figure 4 creates and configures

the NetCon.

In the code above, the neuromuscularJunction object will

monitor the membrane voltage (v) of the cell section. When the

voltage reaches a value of −40 mV or higher, the NET_RECEIVE

function of the calciummechanism will be executed.

Using the full model, Figure 1 shows the output, including

neuron action potentials, calcium concentration, and muscle force.

Note that the Kimmodel (Kim, 2017, 2020), which served as a basis

for the model used here, achieved a modular programming design

without using pointers. Appendix 1.1 in Supplementary material

discusses differences between Kim’s implementation and ours.

The example above demonstrates the basic technique of

using pointers. It is valuable to consider the potential effect

that using pointers has on numerical stability in the simulation.

If all differential equations were in the same file, with no

pointers, NEURON would construct a Jacobian with all the

appropriate cross-terms that would completely couple all the

different components. Using pointers creates a Jacobian without

all of the cross-terms, and this could induce instability. Such

instability can be mitigated by using smaller timesteps. When

using NEURON’s variable time step solver, NEURON will do this

automatically, in that it will choose timesteps that let the Jacobian

be “good enough”. Nevertheless, it is always important for the user

to empirically check for convergence by halving the time step and

confirming that the results are essentially the same.

2.2. Connecting pointers for parameters:
half-center oscillator system

In the previous section, pointers were used to access state

variables. Pointers can also be used to access parameter variables,

whose values can be changed after an NMODL program has already

been compiled. In general, a parameter variable would likely only

need to be accessed within a single NMODL program, and a pointer

would not be necessary. However, a pointer to a parameter could

be of use in special circumstances, such as using a single parameter

acrossmultiple NMODL programs or any other situation where use

of a state variable is undesirable. The following section discusses

the syntax for pointers to parameters and presents a model that

demonstrates this technique.

To understand pointers to parameters, one must first be aware

of the different ways that variables are categorized in NMODL.

Variables are first categorized according to how they are declared in

the program, which determines how they are used. This includes,

but is not limited to, categories such as STATE, PARAMETER, and

POINTER, of which the latter allows access to the other variables.

A secondary way to categorize variables is with regard to how they

are handled in multicompartment simulations, where each variable

is either a range or global variable.

The category of range variables includes any variable whose

value is dynamically calculated as a function of the discretized

position within a multicompartmental section. By default, all state

variables are considered range variables, but parameter variables are
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FIGURE 5

Configuring pointers for the half-center oscillator model.

not. The hoc syntax for pointers to parameter variables depends

on whether the parameter is configured in the RANGE block. If the

modeler specifically configures a parameter as a range variable, the

syntax explained previously for pointers would still apply. In the

following example we discuss the default case where a pointer is

used for a parameter that is not also a range variable.

The general format for the setpointer instruction, as introduced

in the previous section, still applies here:

setpointer pointer,original

where pointer is a pointer variable that has been declared in

a POINTER statement in an NMODL program, and original is

a parameter. However, a pointer to a parameter with default

characteristics (i.e., not a range variable) requires a different syntax

for the term original, as compared to the previous example that

used only state variables. For a parameter, the term original

contains only the parameter name and the mechanism name.

The section name and physical location are omitted because the

parameter value applies uniformly to all segments. In this case, the

term original would take the following form:

parameter_mechanism

where parameter is the default parameter variable that is defined

inmechanism.

To demonstrate the use of pointers to parameter variables,

we use a model for motor pattern generation that combines

central pattern generator dynamics with sensory feedback (Yu and

Thomas, 2021). The model equations are reproduced in Appendix

1.4 (Supplementary material). In the model, membrane voltages

V1 and V2 depend on muscle lengths L1 and L2, respectively; and

muscle activations A1 and A2 depend on membrane voltages V1

and V2, respectively.

The NEURON implementation is comprised of separate brain

and body mechanisms. The brain mechanism defines differential

equations for the membrane voltages. The body mechanism

defines differential equations for the muscle activations, as well

as equations for the muscle lengths. Of special importance is that

muscle lengths L1 and L2 are not defined by differential equations

and do not need to be treated as state variables. We can make L1
and L2 accessible to the brain mechanism by declaring them in the

bodymechanism as parameter variables.

The body mechanism declares parameters L1 and L2, and the

brainmechanism declares pointers L1Pointer and L2Pointer

(see Section 4 for a link to the full programs). Finally, a hoc program

connects the pointers, as shown in Figure 5.

Note that the example in Figure 5 also connects pointers

from the body mechanism to the membrane voltages V1 and

V2 in the brain mechanism. Figure 6 shows the output of this

NEURON implementation.

2.3. Connecting pointers using Python:
neuromuscular model revisited

NEURON provides a programming interface for the Python

language. While NEURON runs independently, the Python

interface allows one to control and analyze NEURON simulations

using Python programs and packages, such as machine learning

tools (see Hines et al., 2009; Gratiy et al., 2018).

Python syntax is significantly different than hoc syntax,

and a thorough discussion is beyond the scope of this paper.

Briefly, the NEURON-Python interface is based on an object-

oriented approach, and NEURON functionality begins with

a primary object named “h”. In this section, we revisit our

reimplementation of Kim’s neuromuscular model and present

a Python implementation that is equivalent to the hoc version

presented earlier. The NMODL programs calcium.mod and

force.mod are unchanged, and they can be inserted into a section

as follows.

## Python code ##

body = h.Section(name = ’body’)

calciumObject = h.calcium(body(0.5))

forceObject = h.force(body(0.5))

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2023.1143323
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Fietkiewicz et al. 10.3389/fncom.2023.1143323

FIGURE 6

Output of half-center oscillator model. Top: membrane voltages V1 and V2. Middle: muscle activations A1 and A2. Bottom: pendulum position x.

Legends show hoc syntax used for graphing the variables.

After creating a section and inserting mechanisms, there are

two different ways to configure pointers using Python. One way

uses a direct, object-oriented syntax and is the recommended

approach. The second way uses the Python setpointer function,

similar to the approach used with hoc that was presented in Section

2.1. Both approaches are equivalent and given for completeness.

The recommended way to configure pointers is to use an

assignment statement with the “=” operator and an object-oriented

syntax. Note that the ordering of the terms is consistent with

the ordering for the hoc syntax, whereas the Python setpointer

function (described later) uses a different ordering that may be

confusing when compared to hoc. The basic object-oriented syntax

is as follows:

pointer = original

where pointer is a pointer variable that has been declared in

a POINTER statement in an NMODL program, and original is

either a state variable or parameter. In the assignment statement

given above, pointer and a state variable original can both use the

following syntax:

section(position).mechanism._ref_variable

where section is the section in which mechanism has been inserted,

position ∈ [0, 1] is the relative physical position of the variable in

the section, the prefix “_ref_” indicates a reference to a variable, and

variable is the name of the pointer variable or state variable. For the

neuromuscular model, Figure 7 shows the Python statements that

would configure the pointers, as well as create the NetCon for the

dependency of the calciummechanism on the neuron voltage:

Recall that the syntax for pointers to parameter variables is

different than that for state variables. As explained in Section 2.2,

the section name is omitted when referencing a parameter. Figure 8

demonstrates the Python equivalent for the half-center CPGmodel

in Section 2.2, where the variables L1 and L2 are parameters in the

bodymechanism.

For completeness, the following presents an additional way to

configure pointers in Python. In contrast to the approach discussed

above, a setpointer function is also available, though it is more

complicated to use than the assignment technique above. Using the

Python setpointer function is similar to the approach used with hoc

that was presented in Section 2.1, with two exceptions.

First, the order of the two variables is reversed; and second,

the name of the pointer variable is given as a separate argument

to the setpointer function. The setpointer function uses the

following syntax:

h.setpointer(original, pointer name, pointer mechanism)

where original is either a state variable or parameter, pointer name is

a pointer variable that has been declared in a POINTER statement

in an NMODL program, and pointer mechanism is the mechanism

that contains the pointer. Figure 9 demonstrates the alternative

setpointer instructions necessary to connect the pointers in the

neuromuscular model described at the beginning of this section.

Note that Appendix 1.3 (Supplementary material) discusses an

application called PointerBuilder that can be used to learn and

verify pointer syntax in the Python language.
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FIGURE 7

Python is used to configure pointers in the neuromuscular model, as well as create the NetCon instance.

FIGURE 8

Python is used to configure pointers in the half-center oscillator model.

FIGURE 9

Alternative Python syntax to configure pointers in the neuromuscular model.

2.4. Implicit current management in
NEURON: closed-loop respiratory model

A distinctive feature of NEURON is its ability to implicitly

manage ion currents across a capacitive cell membrane. When

using this feature, themembrane voltage equation can be computed

without the need for the modeler to specify a differential equation.

Additionally, transmembrane currents are automatically summed,

allowing each mechanism to specify its own contribution to a

particular current. This allows a modeler to easily maintain an

independent NMODL program for each current, if desired. Here

we present a model that uses the implicit current management

feature in NEURON. The model originally appeared in Diekman

et al. (2017) using a different simulation platform. It is a closed

loop system comprised of a respiratory control neuron (Butera

et al., 1999), together with lung mechanics, oxygen handling, and

chemosensation (Hlastala and Berger, 2001; West, 2008; Keener

and Sneyd, 2009; Ermentrout and Terman, 2010).

The NEURON implementation presented here uses the

current management feature extensively by defining a separate

mechanism for each of the following transmembrane currents:

potassium, sodium, persistent sodium, leak, and synaptic. The

full model, including equations, is detailed in Appendix 1.5

(Supplementary material). It uses pointers in two different contexts.

First, pointers are used to connect neural mechanisms with other

physical mechanisms in the closed-loop system, similar to the

models in previous sections. Specifically, neural activity drives a

motor response, and chemosensation produces synaptic input to

the neuron. Second, a pointer is used to support a dependency

between the equations for the sodium and potassium currents such

that each current can be defined in a separate NMODL program

(see Appendix 1.5 in Supplementary material). The following

discusses the pointer configuration and the use of NEURON’s

implicit current management.

Similar to the approach of models in previous sections, all

non-neural components are implemented in a single NMODL

mechanism. This includes lung mechanics, oxygen handling, and

chemosensation, and these are contained in a single mechanism

named respiration. Note that the non-neural components could

also have been separated through the use of pointers, but here
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FIGURE 10

Inserting mechanisms and configuring pointers for closed-loop respiratory model.

we focus on using pointers only for connections between neural

and peripheral components. Specifically, respiratorymuscle activity

depends on the membrane voltage V of the neuron, and synaptic

current in the neuron depends on a synaptic conductance gtonic
that is computed from the partial pressure of oxygen in the lung

alveoli (PaO2).

As mentioned earlier, each transmembrane current in the

neuron is defined in a separate mechanism. Additionally,

sodium inactivation depends on the potassium variable n, which

represents a delayed-rectifying activation (see Appendix 1.5 in

Supplementary material). This dependency requires a third pointer

in the model. In total, there are five mechanisms for the

transmembrane currents: k for potassium, na for a fast sodium,

nap for a persistent sodium, leak for a leak current, and syn for the

synapse. All of the neural mechanisms are inserted into a section

named neuron, and the respiration mechanism is inserted into a

separate section named body. The hoc code shown in Figure 10

inserts the necessary mechanisms and connects the pointers.

The model output is shown in Figure 11. For comparison,

Figure 12 shows the equivalent Python code.

2.5. Non-smooth dynamics (basic):
oscillator model

Modeling of biomechanics often requires the representation

of non-smooth dynamics in which the rate of change of certain

variables changes discontinuously along boundaries defining

subregions of the variable domain. For example, when part of

the body makes contact with an external substrate, typically one

or more degrees of freedom are removed from the system, and

are restored when the body breaks contact with the substrate.

Then, the values of one or more variables may be constrained

to lie in a prescribed subset during part of their trajectory. This

situation arises during the swing-stance transition in locomotion

(Spardy et al., 2011a,b) and when the grasper engages or releases

a strip of seaweed in the sea hare Aplysia californica (Shaw et al.,

2015; Lyttle et al., 2017). Incorporating non-smooth dynamics into

neuromechanical simulations requires careful implementation. As

an example of how to handle this situation in the NEURON

context, we consider a simplified “firing rate model” comprising

two variables. A scalar firing rate a(t) ≥ 0 obeys “excitable”

dynamics given by the logistic equation

da

dt
= f (a, b) = a(1− a)− b.

Here we consider the “body” variable b to represent an external

drive—inhibitory if b > 0—that is periodically driving the firing

rate up and down, say as

db

dt
= −b0ω sin(ωt).

However, the firing rate cannot become negative, so we must

supplement these equations with a hard boundary condition at
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FIGURE 11

Closed-loop respiratory model output. Top: Neuron membrane voltage shows a bursting pattern.Middle: Lung volume is calculated based on activity

from a motor pool that is driven by the neuron. Bottom: Blood oxygen (PaO2) is calculated based on lung volume and lung oxygen (not shown).

FIGURE 12

Python code for inserting mechanisms and configuring pointers for closed-loop respiratory model.
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FIGURE 13

Defining the brain mechanism for the non-smooth oscillator model. The logic is performed in the BREAKPOINT block.

a = 0. Thus, in effect, the variable a follows separate differential

equations depending on whether the constraint is active or not,

resulting in an example of a non-smooth or Filippov system

(Filippov, 1988; Jeffrey, 2020). When a > 0 the rate of change is

given by the equation above. When a = 0, then if the input b > 0

would drive a outside the allowed region, the rate of change of a

must simply remain equal to zero. However, if the input b ≤ 0

would not force a beyond the constraint, then a is allowed to

follow the previous ODE. Formally, the condition may be written

as follows:

da

dt
=

{

a(1− a)− b, if (a > 0) or (a(1− a)− b ≥ 0)

0, otherwise

(1)

db

dt
= −b0ω sin(ωt) (2)

This simple model provides another example of using

pointers. To implement it, we declare state variables a and b

in separate NEURON mechanisms. In the following, we present

three techniques for programming logical conditions in the

model, like those in Equation (1). The methods vary in their

conceptual transparency, their compatibility with variable time-

step integration, and their potential appeal to different user

communities. These techniques do not require the use of pointers,

but they are relevant in the context of neuromechanical modeling

where pointers may be used.

The first technique is to use a logical if statement in the

BREAKPOINT block. Though Equation (1) defines the behavior

of the differential equation, it happens that the simplest approach,

programmatically, is to control the value of the state variable itself,

instead of the differential equation (It will be shown later that using

an if statement for the differential equation is more complicated.).

It can be observed that Equation (1) contains conditional

logic. To achieve this logic, we first use the SOLVE statement,

which executes the DERIVATIVE block named “states”, to evaluate

the non-zero differential equation in Equation (1) as if the first

condition were true, without the use of an if statement. Following

the SOLVE statement, an if statement is used to reset a to zero if the

second condition in Equation (1) is found to be true. The NMODL

program in Figure 13 defines a brain mechanism with this logic in

the BREAKPOINT block.
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FIGURE 14

Defining the body mechanism for the non-smooth oscillator model.

FIGURE 15

Creating a section and configuring the pointer for the non-smooth oscillator model.

Figure 14 shows the corresponding NMODL program for the

body mechanism that declares the state variable b and parameters

b0 and ω.

Using the above mechanisms, the hoc program shown in

Figure 15 shows how to create a section and connect the pointer.

Figure 16 shows the output of the full model.

For comparison, Figure 17 shows the equivalent Python code.

Next, a second technique is used to address a limitation with the

technique described above. Though the previous technique is the

least complicated with regard to programming, it is not compatible

with the NEURON feature of variable time step integration,

where the integration time step can be dynamically adjusted

during the simulation for efficiency. The use of variable time step

may significantly improve computational speed by dynamically

choosing larger time steps, when doing so would not reduce

accuracy. This feature can be enabled programmatically or through

the standard NEURON graphical interface, and the modeler can

specify the level of integration accuracy.

The incompatibility of the previous technique is due to the

way in which variable time step integration reevaluates derivatives
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during the simulation. At each integration step, derivatives are

computed formultiple time step values to determine the largest step

size that can maintain the minimum accuracy. However, the forced

resetting within the BREAKPOINT block disrupts the ability of the

algorithm to compare different step sizes.

In the second technique, the incompatibility is mitigated by

performing conditional logic at the level of the DERIVATIVE block

instead of the BREAKPOINT block. In this case, the logic more

closely resembles the original logic given in (1). The disadvantage

to this approach is that it requires a more complex program design.

To implement Equation (1), a particular restriction in the

NMODL language must be considered. The DERIVATIVE block

is restricted to defining equations using single programming

statements. This allows the compiler to accurately parse the

syntax for the differential equations. Consequently, additional

programming statements, such as if statements, cannot be

added directly to the DERIVATIVE block. Instead, additional

programming statements can be accommodated by defining

a separate FUNCTION block which is called directly by the

differential equation statement in the DERIVATIVE block. In our

example, the right hand side of Equation (1) is implemented

in a FUNCTION block. The NMODL program for the brain

mechanism is given in Figure 18 and uses a function named da_dt()

to calculate the right hand side of the differential equation.

With the above revisions, the new oscillator model can

now be simulated after enabling variable time step integration

through either the VariableStepControl tool, available through the

NEURON graphical interface, or programmatically. When doing

FIGURE 16

Oscillator model output. The variable a (top) is driven by the

oscillatory variable b (bottom). Variable a demonstrates non-smooth

dynamics in which the value is limited to non-negative values.

so, one can specify a minimum integration accuracy. We compared

run times with and without variable time step and found a 28.6%

improvement when using variable time step (see Section 4 for

methods used).

Finally, we explain a third technique for implementing non-

smooth dynamics that is also compatible with the use of variable

time step integration. This technique uses Boolean comparisons

for the differential equations without an explicit if/else statement.

Instead, the Boolean comparisons are incorporated into numeric

expressions to achieve the same effect. The technique works

because Boolean comparisons in the NMODL language return 1

for true and 0 for false. Therefore, we modify Equation 1 as follows:

f (a, b) = a(1− a)− b (3)

da

dt
= (a > 0)f (a, b)+ (a ≤ 0)(f (a, b) ≥ 0)f (a, b) (4)

The da_dt function can then be revised as shown in Figure 19.

The above implementation produces the same output, with

the same efficiency, as the previous version that used an explicit

if/else statement.

2.6. Non-smooth dynamics (advanced):
Aplysia feeding model

This section presents a final demonstration of the use of

pointers with a more advanced example of non-smooth dynamics.

The neuromechanical, closed-loop model describes the feeding

behavior for the sea hareAplysia californica (Shaw et al., 2015; Lyttle

et al., 2017; Wang et al., 2022). The full equations are given in

Appendix 1.6 (Supplementary material). The following is a partial

list of differential equations for only the state variables that involve

the use of pointers.

da0

dt
= (a0(1− a0 − γ a1)+ µ + ε0(xr − ξ0)σ0)/τa

da1

dt
= (a1(1− a1 − γ a2)+ µ + ε1(xr − ξ1)σ1)/τa

da2

dt
= (a2(1− a2 − γ a0)+ µ + ε2(xr − ξ2)σ2)/τa

du0

dt
= ((a0 + a1)umax − u0)/τm

du1

dt
= (a2umax − u1)/τm

dxr

dt
= (Fmusc(u0, u1, xr)+ rFsw)/br

(5)

Here a0, a1, and a2 are neural population firing rates, u0
and u1 are muscle activation variables, xr is the one-dimensional

FIGURE 17

Python code for creating a section and configuring the pointer for the non-smooth oscillator model.
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FIGURE 18

Alternative design for the non-smooth oscillator model. Logic is performed in the DERIVATIVE block through the use of the FUNCTION da_dt.

FIGURE 19

Alternative design for the non-smooth oscillator model. Logic is performed algebraically.
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FIGURE 20

Inserting mechanisms and configuring pointers for the Aplysia feeding model.

position of a grasping organ, and the following are parameters (see

Appendix 1.6 in Supplementary material): γ , µ, εi, ξi, τa, umax,

τm, Fsw, and br . The muscle force Fmusc acting on the grasper is

specified in Appendix 1.6 (Supplementary material). We enforce

a requirement on the neuronal firing rates ai ≥ 0, i = 1, 2, 3,

namely that the values are restricted to the range [0, 1]. A similar

requirement holds naturally for the muscle activation variables

ui, i = 1, 2, but does not have to be enforced algorithmically.

The grasper state r is either open (r = 0) or closed (r = 1),

and switches between these two discrete states when the neural

activity crosses a threshold, a1 + a2 ≥
1
2 . See Appendix 1.6 in

Supplementary material for details.

Previous implementations of the model used simulation

platforms other than NEURON (Shaw et al., 2015; Lyttle et al.,

2017; Wang et al., 2022). In the present NEURON implementation,

equations for a0, a1, and a2 are placed in amechanism named brain,

and all other equations are placed in a mechanism named body. A

pointer is necessary for the brain mechanism to access the variable

xr , which is the physical grasper position. Below is the beginning

of the program brain.mod that shows the pointer variable xrPointer

for this purpose.

:: NMODL code ::

NEURON {

SUFFIX brain

POINTER xrPointer

}

Pointers are also necessary for the body mechanism to access

the variables a0, a1, and a2. Below is the beginning of the program

body.mod that shows the pointer variables a0Pointer, a1Pointer, and

a2Pointer for this purpose.

:: NMODL code ::

NEURON {

SUFFIX body

POINTER a0Pointer, a1Pointer, a2Pointer

}

The mechanisms can be inserted and pointers connected as

shown in Figure 20.

The model requires greater programming complexity than the

previously discussed models, due to the nature of the non-smooth

dynamics. State variables a0, a1, and a2 require a lower bound

of 0, similar to the logic used in the model from Section 2.5. In

the present model, there is an additional requirement that these

variables have an upper bound of 1. Care is given to also ensure that

state variable values used in the differential equations themselves

are bounded in the range [0, 1]. NEURON does not include

native “min” or “max” functions, so we implement supplementary

functions for this purpose within NMODL. Using the Boolean

algebra formulation from the end of Section 2.5, Figure 21 shows

a partial code listing from the program brain.mod that computes

the derivative for the state variable a0.

For state variables a1 and a2, the programming is nearly

identical except that the right hand side of each differential equation

would be different, according to (5). Note that source files are

available using the link in Section 4.

When simulating this model, it is useful to consider its

multimodal behavior that can be determined by a parameter µ,

which appears in Equation (5). For example,µ = 1×10−5 produces

heteroclinic behavior, while µ = 2 × 10−5 produces limit cycle

behavior (Lyttle et al., 2017). The variable mu is declared as a

parameter variable in brain.mod with a default value of 1 × 10−5.

Because it is a parameter variable, its value can be modified at any

time without recompiling the NMODL program. For example, the
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FIGURE 21

Example from the brain mechanism for the Aplysia feeding model. This excerpt only includes code for the state variable a0.

following hoc statement can be used to reconfigure the model for

limit cycle behavior using µ = 2× 10−5.

// hoc code //

mu_brain = 2e-5

Below is the Python equivalent of this parameter value change.

# Python code #

h.mu_brain = 2e-5

To demonstrate this flexibility, Figure 22 presents a Python

graphical user interface (GUI) that allows the user to both view the

output and control certain settings for the simulation.

Figure 22 reproduces a key result from Lyttle et al. (2017). For

sufficiently small values of the endogenous activation parameter

µ, the neural activity (a0, a1, a2) enters a “heteroclinic cycling

mode” in which inhibition drives the neural trajectory to collide

with the constraint surfaces ai ≥ 0, engaging the non-smooth

element of the neural mechanics. The trajectory remains pinned

to a constraint surface for an interval dictated by the time it

takes for the inhibition—which carries the sensory feedback signal

from the grasper to the brain—to release the inhibited neural

pool. Under these conditions the system responds robustly to

small forces resisting the intake of the seaweed by extending the

retraction phase of the motion, as described in Shaw et al. (2015)
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FIGURE 22

Graphical user interface for Aplysia feeding model. Written in Python, the interface allows the user to set simulation parameters and visualize model

output. (A) Heteroclinic-cycle–like behavior using µ = 0.00001. This activity pattern results in e�ective intake of seaweed. (B) Limit-cycle behavior

using µ = 0.00002. This activity pattern is ine�ective at drawing in seaweed. Top graphs show activation levels for three neuron pools (a0, a1, and a2).

Middle graphs show activation levels for two muscles (u0 and u1). Bottom graphs show the simulated seaweed position.

and Wang et al. (2022). In contrast, when µ is slightly larger,

the endogenous activation does not permit inhibition to push the

firing rates all the way to zero, so the constraint ai ≥ 0 goes

unenforced. Consequently, the progress of the trajectory around its

limit cycle orbit is much less sensitive to the effects of an applied

force, and the system fails to consume seaweed effectively. Note

the downward slope of the seaweed position in Figure 22B, bottom

panel, indicating a net loss of seaweed.

3. Discussion

The models presented here demonstrate two main aspects

of our proposed NEURON framework for neuromechanical

modeling. First, program organization may be improved in

NEURON by separating neural and biomechanical components

with the use of pointers. Second, the NEURON environment

provides several options for modeling biomechanical mechanisms

while offering flexibility in the choice of neuronal models. We

demonstrated these concepts using five different models with

increasing levels of complexity.

The first two models showcase the general design strategy and

programming technique of using pointers. The neuromuscular

model in Section 2.1 provides an introduction to pointers in the

NMODL language and the complex syntax required to connect

two separate NMODL programs. The half-center oscillator system

in Section 2.2 is a closed-loop neuromechanical model that

demonstrates the capability of connecting pointers to both state

variables and parameter variables. The complexity of programming

with pointers is further addressed by presenting a Python

implementation of these models (see Section 2.3).

The remaining models provide realistic examples of a modular

design approach while highlighting important considerations

for both neural and biomechanical modeling. We present a

neurophysiological, closed-loop model of respiratory control

that uses a prominent feature in NEURON for implicit current

management (see Section 2.4). In addition to the separation

of neural and biomechanical components, this model also

demonstrates the use of pointers when using separate NMODL

programs for different transmembrane currents. The oscillator

model of Section 2.5 serves as an exercise for the reader

to understand the basic issues of non-smooth dynamics,

which are important in many biomechanical models. Lastly,

a neuromechanical, closed-loop model of feeding behavior for

Aplysia californica (see Section 2.6) demonstrates a realistic,

advanced application of non-smooth dynamics. To ensure that

the pointers are not affecting stability, the user should always

check that halving the step size has little or no effect on results, as

discussed above in Section 2.1. We would point out, however, that

this would be an appropriate practice to ensure convergence even

if one were not using pointers (Brocke et al., 2016).

A limitation to this work is that all biomechanical and

physics modeling must be done within the NMODL programming

language. There are currently very few biomechanical models

available that have been created using NMODL. Additionally, some

techniques found in physical modeling platforms are not easily

implemented using NMODL. However, such lack of support is

a common limitation among neuronal modeling platforms, and

physical modeling platforms present a similar limitation in that

they will likewise not be practical for neuronal modeling.

Although we have taken the first steps toward showing

how NEURON can be integrated with biomechanical

Frontiers inComputationalNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fncom.2023.1143323
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Fietkiewicz et al. 10.3389/fncom.2023.1143323

modeling, it will ultimately be important to create a unified

framework that can both do high quality neuronal network

simulations and biomechanics simulations. It is technically

possible to do this using NMODL, but other approaches

may be more effective and efficient, and should be a focus of

future work.

Parameter sensitivity analysis is an important aspect of model

building and validation. Several of the models we reproduce

from the literature, specifically Diekman et al.’s closed loop

respiratory control model and Shaw et al.’s Aplysia feeding

control model, are taken from papers that did include detailed

parameter sensitivity studies. There exists a Python package,

Uncertainpy, that is already integrated with NEURON, that is

designed specifically for parametric sensitivity analysis (Tennøe

et al., 2018).

Despite these limitations, the framework presented here

provides a first step toward integrating neural dynamics, as

implemented in NEURON, with biomechanics. An important next

step would be to interface NEURON with a physics engine in

order to facilitate more detailed representations of biomechanical

systems. In future work, it will be crucial to establish a convenient

framework for specifying neuro-mechanical transfer functions, and

also to optimize the choice and parameterization of numerical

integrators to handle the combined neural and (possibly non-

smooth) biomechanical simulators.

4. Methods

The following software versions were used: NEURON 8.2.0 and

Python 3.10.5. For the timing analysis in Section 2.5, the processor

was a 1.6 GHz Intel Core i5 running Mac OS version 12.6, and the

results were consistent across multiple simulation lengths. Code

for all of the models is available at https://github.com/fietkiewicz/

PointerBuilder.
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