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Introduction: Given some exemplars, few-shot object counting aims to count

the corresponding class objects in query images. However, when there are many

target objects or background interference in the query image, some target objects

may have occlusion and overlap, which causes a decrease in counting accuracy.

Methods: To overcome the problem, we propose a novel Hough matching

feature enhancement network. First, we extract the image feature with a fixed

convolutional network and refine it through local self-attention. And we design

an exemplar feature aggregation module to enhance the commonality of the

exemplar feature. Then, we build a Hough space to vote for candidate object

regions. The Hough matching outputs reliable similarity maps between exemplars

and the query image. Finally, we augment the query feature with exemplar features

according to the similarity maps, and we use a cascade structure to further

enhance the query feature.

Results: Experiment results on FSC-147 show that our network performs best

compared to the existing methods, and the mean absolute counting error on the

test set improves from 14.32 to 12.74.

Discussion: Ablation experiments demonstrate that Hough matching helps to

achieve more accurate counting compared with previous matching methods.

KEYWORDS

few-shot, object counting, Hough matching, feature enhancement, exemplar feature

aggregation, self-attention

1. Introduction

Object counting (Zhang et al., 2017), which aims to count the number of objects of

interest in images or videos, has become a research hotspot in computer vision.Most existing

object counting methods require the target object of the test data to appear in the training

stage. In class-specific object counting, such as people (Liu et al., 2021; Zhang et al., 2021),

car (Hsieh et al., 2017), or cell counting (Xue et al., 2016), the classes in both the training and

test sets are unique and identical. Therefore, a well-learned model can only handle a certain

category that has been covered in the training set and is unable to count other categories,

which limits the application of the countingmodel. The cost of themanualmark is expensive,

and the number of available samples is rare in some classes.

Given some images, the human can easily generalize novel concepts and search the same

class objects in query images, even if the objects vary in shape, illumination, scale, and so on.

Inspired by the human’s ability to quickly generalize new concepts, few-shot object counting

(FSC) (Lu et al., 2018), which can count the novel classes that are not present in the training

stage, is proposed to solve the generalization obstacle. Specifically, when the user specifies

random exemplars, FSC only counts the corresponding sample class objects in query images.

During training, only the base classes (seen) are used, and inference is performed on the

novel classes (unseen). In this way, few-shot counting can apply the experience learned in

the base classes to the novel classes.
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FSC is a challenging problem that still needs further study.

Generally, existing methods works in two stages: feature extracting

and matching. They extract the features of the query image and

samples, and similarity-matching results are used as an essential

basis to infer the object counts of the query image. Existing

methods most use convolutional neural networks (CNN) as feature

extractor and design their matching network. GMN (Lu et al.,

2018) concatenate the query feature and features on the channel

dimension, but the similarity maps is ignored. FamNet (Ranjan

et al., 2021) maps the exemplars and query images to the similarity

space, and generate a density map from it. However, only using

the similarity map to infer the density map is not accurate, and

the query feature is not fully utilized. BMNet+ concatenate the

similarity map and the query feature into the counter, while the

border of the density map is blurred when the objects are dense.

SAFECount (You et al., 2023) improves the counting accuracy by

means of feature enhancement, but the effect is not ideal when the

object is occluded.

With the development of the deep neural network, CNN have

made impressive progress in robust feature representation for

establishing correspondences. Feature matching usually adopts the

result of the convolution of query features and sample features.

However, it remains challenging for correspondent matching in the

presence of intra-class variations, which refers to the variations of

the different instances of the same class. And spatial matching with

a geometric constraint is still effective when facing blur, occlusion,

illumination changes, and so on. It can reduce the number of

uncertain candidate regions with reliable inference and is adopted

by many methods (Cho et al., 2015; Han, 2017; Min et al., 2020).

Hough transform has long been used as geometric verification

for rigid object matching (Hough, 1962). Ballard (1981)

summarizes the main idea of the Hough transform as voting

in parameter space with R-table, whereby the detection of arbitrary

objects is achieved. Hough matching has been widely applied

in various tasks such as object detection (Gall and Lempitsky,

2013; Milletari et al., 2017), 3D vision (Knopp et al., 2011), and

pose estimation (Kehl et al., 2016). Recent works (Han, 2017;

Min et al., 2019) have developed the idea of Hough transform

to conduct non-rigid matching in point-to-point semantic

correspondence, but object-to-object matching remains to be

explored.

In this work, we propose a Hough matching feature

enhancement network for FSC, which learns a flexible non-rigid

matching kernel to increase the reliability of matching results.

We use a local self-attention module to improve the quality of

the query feature tensor. Exemplar feature aggregation is applied

to enhance the commonality of exemplar feature tensors. The

Hough matching creates the original similarity space of candidate

matches and evaluates them in a convolutional manner. The

convolutional way makes the output pay attention to each position

with its surrounding context and equivariant to translation. To

further pull close the objects that are similar to samples, the

sample features would be fused into query features according

to the weight of the Hough matching result. And we use a

cascade structure to connect the same network in series, which

can pull the samples and targets closer and push the samples and

background away.

Our contribution can be summarized as follows:

• We introduce the local self-attention module to optimize

the semantics of feature vectors by incorporating contextual

information.

• We extract the common feature of all exemplars and add it to

each exemplar to enhance the commonality of samples.

• We propose an object-to-object Hough matching module that

votes in the Hough space, which optimizes the similarity map

in the form of convolutions.

This article is presented as follows. Section 2 introduces the

related work. The architecture of the Hough matching feature

enhancement network (HMFENet) is presented in Section 3.

Section 4 offers the evaluation results compared with previous

methods and gives ablation studies. Finally, a brief conclusion is

made in Section 5.

2. Related work

2.1. Class-specific object counting

Class-specific object counting only counts for specific

categories, such as vehicles (Hsieh et al., 2017), people (Liu et al.,

2021; Song et al., 2021; Zhang et al., 2021), and animals (Arteta

et al., 2016). And crowd counting is closely related to human

society and has a wide range of uses in many fields, so this counting

category has been widely studied. According to the accumulated

methods, object counting can mainly be divided into detection-

based counting and regression-based counting. The former relies

on the target detector to obtain object location through target

detection and can count the number of target objects at the same

time. In recent years, target detection algorithms have developed

rapidly. Algorithms such as YOLO (Redmon et al., 2016),

RetinaNet (Hsieh et al., 2017), and CenterNet (Duan et al., 2019)

have continuously improved the accuracy of target classification

and positioning. However, target detection is not specially designed

for the counting field. It needs to train detectors for different types

of objects, and the training needs far more annotation information

than the latter. In addition, its performance is not satisfactory

when the objects are dense, occluded, overlapped, and so on.

Regression-based counting (Ma et al., 2019) learns maps from

extracted image features to per-pixel density values based on

ground-truth density maps. It only needs a small amount of

annotation information during training. When annotating the

dataset, it only needs to mark 1 in the center of each target object

and use a Gaussian kernel to convolve the countingmap to generate

a density map. This type of annotation is more efficient and less

labor-intensive than rectangular box annotation.Mostmethods pay

attention to designing effective network architectures (Zhang et al.,

2016), multi-scale framework (Zeng et al., 2017), or self-attention

(Jiang et al., 2020). Compared with few-shot counting, class-specific

object counting lacks the feature matching stage.

2.2. Few-shot object counting

The purpose of few-shot object counting (FSC) is to bridge

the knowledge gap between the base class and the novel class and
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strengthen the generalization performance of the counting models.

Given K exemplars, the model must find and count objects of the

same category as the exemplars in the query image. Thus, the task is

also called K-shot FSC. With the development of few-shot learning,

few-shot object detection (FSOD) received attention, which is the

extension of FSC. It can detect the locations of the novel class

objects, and specify its category when given several objects of

different novel classes. However, FSC still has an advantage over

FSOD in terms of data annotation costs.

Lu et al. (2018) first proposes a generic counting model for

FSC, which uses a sharing convolutional neural network to extract

the query and exemplar feature maps and concatenate them to

regress the object count. Recent works consider making full use of

similarity maps. Yang et al. (2021) designs a multi-scale matching

network and gets similarity maps by using the exemplar feature

map as kernel to convolve the query feature map. Ranjan et al.

(2021) also model the similarity map by means of convolution and

send the similarity map to the regress head. However, the query

feature is not fully utilized, and the boundary of the density map

is fuzzy. Shi et al. (2022) uses self-attention to narrow the distance

between the samples and the target objects and then concatenate

the similarity map to regress head. But when the objects are dense

and the light is dim, the boundary of the density map is not clear,

and the accuracy of the count value is low. You et al. (2023) adopted

feature enhancement guided by similarity maps, which refines the

query feature tensor and then regress it to obtain a density map.

When the objects are occluded and overlapped, the effect will also

decrease.

However, these methods of obtaining similarity maps through

convolution need to be improved, especially in the face of severe

deformation and occlusion. Inspired by the successful application

of point-to-point Hough matching (Min et al., 2020), we propose

object-to-object Hough matching in FSC. In this work, our Hough

matching module is an effective method when facing non-rigid

deformation.

3. Methods

In this section, we introduce our network HMFENet for FSC,

which use Hough matching to get the similarity map between

the exemplars IE and the query image IQ. First of all, we use

CNN as our backbone to extract the image feature and refine it

through local self-attention (LSA). And we design an exemplar

feature aggregation (EFA) module to enhance the commonality of

the exemplar feature. Second, the learnable Hough matching (HM)

module outputs reliable similarity maps. Then, we augment the

query feature with exemplar features according to the similarity

maps, and use a cascade structure to further enhance the query

feature. Finally, we send the refined query tensor to the counter

module, which outputs the density map. We can simply sum the

density map to get the final number of objects. Figure 1 illustrates

our overall architecture.

3.1. Local self-attention

Given a feature tensor of query image X, the local self-attention

(LSA) module optimizes each feature point Xij ∈ R based on the

context information. We extract a local region feature tensor with

spatial extend r × r surrounding Xij. As common self-attention

framework (Ramachandran et al., 2019; Zhao et al., 2020; Vaswani

et al., 2021), our local self-attention conducts on queries (q), keys

(k), and values (v) with an input feature map X, and output a

optimized version X̃, which is the same shape as X.

Let C,Hq, and Wq represent the channel, height, width of

query tensor, respectively. For any position ij, we select its r × r

neighborhood to operate the self-attention. We collect the feature

vectors of the neighborhood locations in ij, and neighborhood

feature tensor X′ ∈ R
C×Hq×Wq×r×r can be obtained. Then, we

feed the feature map X into the query transformation function

Fq, and feed the neighborhood feature tensor X′ into the key and

value transformation functions Fk,Fv, as shown in Figure 2. Our

transformation functions are implemented with independent 1×1

convolutions followed by ReLU activations. The local self-attention

in each feature point can be described as the following equation:

Qij = Xij + Conv

(
Fv

(
X′
ij

)
SoftMax

(
Fq

(
Xij

)T
Fk

(
X′
ij

))T)
.

(1)

where X′
ij is the neighborhood feature tensor in the location ij of

input feature tensor X, Fq

(
Xij

)
∈ R

C′

is ijth query, Fk

(
X′
ij

)
∈

R
C′×r×r andFv

(
X′
ij

)
∈ R

C′×r×r is ijth key and value, and Conv are

conducted by 1× 1 convolutions.

3.2. Exemplar feature aggregation

In previous methods (Shi et al., 2022; You et al., 2023), the

exemplar features from multiple shots are usually used to calculate

correlation tensor independently, and the commonality of multiple

exemplar features is underutilized. Therefore, we build an exemplar

feature aggregation (EFA) module, which leverages the features

from every exemplar to enhance the commonality.

Let φ
(
si
)
, i = 1, · · · , k represent the k-shot exemplar features,

and exemplar feature aggregation can be expressed as a weighted

average of the features:

Ei = φ(si)+

k∑

j=1

(φ(sj)⊗ Cj), (2)

Where ⊗ is element-wise multiplication and Cj is correspondent

coefficient. Ei is the i
th optimized exemplar feature and we use E to

represent all optimized exemplar features.

Cj = SoftMax
(
MLP

(
f j

))
, (3)

Where f j is the output of exemplar commonality extractor:

f j = F(Conv
(
φ

(
sj
))
,
1

k

k∑

i=1

Conv
(
φ

(
si
))
, (4)

and the function F is represented as followed:

F(A,B) = Conv(Cat(A,B))+ Cat(Conv(A), Conv(B)) (5)

Where Conv is convolution, and Cat is the channel concatenation.

After that, we perform Hough matching and

feature enhancement.
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FIGURE 1

Illustration of the Hough matching feature enhancement network.

FIGURE 2

An example of local self-attention with r = 3.

3.3. Hough matching

The Hough transform is a powerful method for geometric

object detection, which votes for candidate target objects in a

parameter space, also called Hough space. The traditional Hough

matching builds reliable correspondences by geometric voting from

candidate matching regions, and then target objects are detected by

identifying the locations of local maxima in Hough space. However,

traditional Hough matching is weak to background noise and gets

unsatisfied performance in the face of non-rigid matching. So,

we propose a learnable Hough matching module to deal with the

non-rigid object-to-object matching problem.

To alleviate the computational burden, we use max-pooling

to reflect the importance of exemplar feature information. The

exemplar features’ size reduces to 3× 3 in height and width. Given

the query and exemplar feature tensors, we use shared convolution

kernels and layer normalization to make the exemplar feature and

the query feature subject to the same distribution. We construct

the Hough space of geometric transformation by computing all

possible 4D correlation tensors:

Ci = RELU(Ei · Q), (6)

Where Ci ∈ R
He×We×Hq×Wq . He and We are the height and

width of the exemplar feature after max-pooling. RELU can simply

suppress negative matching to zero.

We use a convolutional Hough matching kernel to accumulate

the matching votes.

vi(h) = b+
∑

(x,x′)∈Ei×Q

Ci

(
x, x′

)
kernel

(∥∥(
x
′ − x

)
− h

∥∥)
, (7)
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Where ‖ · ‖ is a distance function that computes the distances

with the center of kernel, h is an offset in Hough space, and b is

a learnable bias.

We merge the dimensions He and We of correlation tensors

into one dimension, and then the kernel is implemented with 3D

convolution over the correlation tensors. We design the kernel size

as 3. The kernel computes the similarity maps between x
′ − x,

observed matching offset, and the given offset h in the Hough

space. It is hoped to learn a voting weight for each candidate match

based on the offset caused by the matching result. We consider that

the matching results are more correlated with the distance to the

kernel center and less correlated with the position direction of the

parameters. Therefore, we use a position-sensitive isotropic kernel

to share the training parameters according to the position direction.

We use the Hough matching results of the exemplar central

feature points as object matching map Sc ∈ R
k×Hq×Wq and

normalize it as follows:

S =
exp (Sc)

max
(
exp (Sc) , dim = (2, 3)

) ⊗
exp (Sc)

sum
(
exp (Sc) , dim = 1

)

∈ R
k×Hq×Wq . (8)

3.4. Feature enhancement

Recall the prior work by Ranjan et al. (2021). Although the

similarity map reflects the matching confidence, its information in

representing the target objects in image is less than the combination

of query feature tensor and similarity map. We introduce the

feature enhancement module and the cascade structure to fully

use the similarity map S, query feature tensor, and exemplar

feature tensors.

Specifically, guided by the weight of the corresponding position

of the similarity map, we integrate the exemplar features into the

query tensor. In this way, the model will focus on areas similar

to the exemplar in the query image. The similarity weight feature

aggregation is implemented with convolution as follows:

Q′ =

k∑

i=1

Conv
(
S, kernel = Ei

)
∈ R

C×Hq×Wq , (9)

Then, Q′ goes through two convolution layers and is added to

the query tensor Q in the form of residuals. Finally, we apply layer

normalization to the output.

Q′′ = layernorm
(
Q+ Conv

(
Q′

))
∈ R

C×Hq×Wq . (10)

3.5. Cascade and counter

The final outputQ′′ is the same shape as the input query tensor.

Thus, we can use the cascade structure to stack the same module.

Specifically, we can replace Q with Q′′ and concatenate an identical

network structure except for the backbone. If the exemplar images

are from the query image, we extract the exemplar features fromQ′′,

otherwise use the original exemplar feature tensors. In this part, we

cascade two times for further feature enhancement.

TABLE 1 Composition of counter.

Layer Kernel In Out Followed by

Conv 3× 3 256 64 2× Upsampling

Conv 3× 3 64 32 2× Upsampling

Conv 1× 1 32 1 -

Following prior works (Lu et al., 2018; Shi et al., 2022; You

et al., 2023), the counter is composed of several convolution layers

and bilinear upsampling layers. The composition of counter is

presented in Table 1, and each convolution layer is activated with

the Leaky ReLU function. When the number of channels is reduced

to 1, the height and width of the tensor are also restored to the

resized image size, and the final output is the density map. We

only need to sum the density map, and the value of counting can

be obtained.

3.6. Loss function

The loss function is an essential part of deep learning. Most

datasets use the center positions of target objects as annotations.

It is difficult to obtain the position directly. Previous method (Shi

et al., 2022; You et al., 2023) use adaptive Gaussian kernel to

generate the ground-truth density map, but it is difficult to solve

the object distortion caused by perspective effect. Here, we use a

gaussian smoothing with a fixed size of 16 and a standard deviation

of 3.5 to generate the ground-truth density map Dgt . Following

previous methods (Lu et al., 2018; Shi et al., 2022; You et al., 2023),

we use the mean squared error (MSE) loss function.

L =
1

H ×W

∥∥Dpr − Dgt

∥∥2
2
. (11)

Where H and W represent the height/width of the query image

after resizing, respectively, and Dpr is the density map output by

the model.

4. Experiment

Here, we conduct the experiments on public datasets and

validate the advantage of our model compared with other methods.

Then, we analyze the influence of our modules. Although our

model is designed for FSC, we also show the generality of ourmodel

on the class-specific dataset, a car counting dataset.

4.1. Implement detail

We use ResNet-18 (He et al., 2016) that pre-trained on

ImageNet (Deng et al., 2009) as our backbone, which is also called

feature extractor. The parameters of the backbone are fixed and do

not participate in training. Given a query image, we resize the image

size to 512×512 with bilinear interpolation. The outputs of the first

three residual blocks of ResNet-18 are adjusted to the same size, and

the shape of query tensor C × Hq ×Wq is set as 256 × 128 × 128.
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We get the exemplar feature from the query feature when exemplar

images are in the query image. And then, we resize the size of the

exemplar tensor to 256× 3× 3 with max-pooling.

In local self-attentionmodule, we set the neighborhood area r as

3, and the C′ is 1,024. The Conv in equation 1 is conducted by 1× 1

convolutions, and the number of channels drop from 1,024 to 256.

In EFAmodule, the input and output of the number of convolution

channels are both 256. In feature enhancement module, the two

convolution layers are performed by 3 × 3 convolutions. The

channel first go up to 1,024 and go down to 256 in the second

convolution layer.

We adopt Adam (Kingma and Ba, 2014) as our optimizer, and

the model is trained for 150 epochs with an initial learning rate of

2e − 5. The learning rate drops to 5e − 6 at the 80th epoch. Our

model occupies about 11G on NVIDIA GeForce RTX 2080Ti for

training. In addition, we use gamma transformation and horizontal

flip during the training stage to realize data augmentation.

4.2. Dataset and metric

The FSC-147 (Ranjan et al., 2021) dataset is the first and

only large-scale dataset for few-shot counting. It contains 6,135

images from 147 classes, and each image has randomly selected

three exemplars annotated by the bounding box to show the target

objects. There are different cross-validation methods, such as k-

fold cross-validation and jackknife test, which are generally used

to develop deep learning model (Arif et al., 2018, 2020, 2021; Ge

et al., 2021, 2022a,b; Sikander et al., 2022). According to the division

method of the original dataset (Ranjan et al., 2021), we divide the

dataset into training set, validation set, and test set. It should be

noted that to validate the generality of FSC, the classes in training,

validation, and test sets have no intersection. The training set has

89 categories, while the validation set and test set both own disjoint

29 categories, and the average of target objects is 59.

Mean Absolute Error (MAE) and Root Mean Squared Error

(RMSE) are two standard metrics adopted by most counting

methods, and we use them to evaluate the performance of

our network.

MAE =
1

Ni

Ni∑

i=1

∣∣∣Ci − C
gt
i

∣∣∣ , (12)

RMSE =

√√√√ 1

Ni

Ni∑

i=1

(
Ci − C

gt
i

)2
. (13)

Where Ni is the number of the query image. Ci and C
gt
i is the

predicted and ground-truth count value of the ith query image.

4.3. Quantitative results

In this section, we evaluate our HMFENet model on the FSC-

147 and compare it with other existing methods. As shown in

Table 2, our results exceed the baseline SAFEcount and reach a new

state-of-the-art. Ourmethod outperforms SAFEcount by 2.18MAE

and 2.3 RMSE on the validation set. It also excels the SAFEcount

by 1.58 MAE and 0.91 RMSE on the test set, which has 14.3% and

11.1% improvement on two MAE metrics, respectively. Figure 3

shows the qualitative results on the FSC-147 dataset.

4.4. Ablation study

To fully prove the effectiveness of our module, we conduct

thorough ablation studies, as shown in Table 3. In ablation studies

without Hough matching, we use convolution between query

and exemplar tensors to build similarity maps. We can make

the following arguments. The local self-attention effectively (LSA)

aggregates the neighborhood information of feature vectors and

strengthens the semantic information of the query tensor. EFA

enhances the commonality of multiple exemplars and is helped to

the improvement of model performance. The cascade structure is

helpful for feature enhancement. Hough matching builds a reliable

matching map, which makes a significant improvement.

4.5. Experiment on class-specific counting

CARPK (Hsieh et al., 2017) is a class-specific car counting

dataset, which marks all target objects with the bounding box. The

dataset owns 1,448 images of parking cars with a bird view.

Our method aims at the problem of FSC, but to verify the

model’s generality, we also carry out experiments in class-specific

counting. Our model is first pre-trained on FSC-147 and then fine-

tuned on the CARPK dataset. We randomly selected five exemplars

in the query image in the fine-tuning stage. As shown in Table 4,

our model is still better than theirs compared with few-shot object

detection and other FSC methods.

4.6. Discussion

In the prior section, we compared our method to the existing

methods. In Table 2, we have observed that our method sets a new

state-of-art on the standard dataset FSC-147. Figure 3 shows that

our model still performs quite well in the face of dense objects and a

large number of overlapping occlusion phenomena. The boundary

of the density map is clear and close to the real density map.

We use local self-attention (LSA) to optimize the tensor of

the query image, which distinguishes the background from the

target object based on the context information. The exemplar

feature is a key link in FSC, but due to light changes, shape,

and even color differences, there may be large changes between

exemplars. To improve the common feature of exemplars and

reduce the unimportant characteristics, we propose an exemplar

feature aggregation module (EFA) to enhance the commonality

of exemplar features. The Hough matching is the important part

of our study, which builds accurate matching in the face of

severely deformed and occluded objects. The ablation studies show

our modules are useful, and the results get improved on the

FSC-147 dataset.

Although our approach is focused on few-shot object counting,

related experiments are also performed on class-specific object
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TABLE 2 Results on FSC-147 dataset.

Methods Backbone Val MAE Val RMSE Test MAE Test RMSE

FR (Kang et al., 2019) YOLOv2 45.45 112.53 41.64 141.04

FSOD (Fan et al., 2020) ResNet50 36.36 115.00 32.53 140.65

GMN (Lu et al., 2018) ResNet50 29.66 89.81 26.52 124.57

MAML (Finn et al., 2017) ResNet50 25.54 79.44 24.90 112.68

FamNet (Ranjan et al., 2021) ResNet50 24.32 70.94 22.56 101.54

FamNet+ (Ranjan et al., 2021) ResNet50 23.75 69.07 22.08 99.54

CFOCNet (Yang et al., 2021) ResNet50 21.19 61.41 22.10 112.71

BMNet+ (Shi et al., 2022) ResNet50 15.74 58.53 14.62 91.83

SAFECount (You et al., 2023) ResNet18 15.28 47.20 14.32 85.54

HMFENet (our) ResNet18 13.10 44.90 12.74 84.63

FIGURE 3

The visualization results on the FSC-147 dataset. From left to right, we sequentially place the visualization results of ground-truth density maps (GT),

the predicted density maps output by BMNet+ (Shi et al., 2022), and the predicted density maps of our network HMFENet.

TABLE 3 Ablation study on FSC-147 dataset.

No. LSA EFA Cascade HM Val MAE Val RMSE Test MAE Test RMSE

1 ✗ ✗ ✗ ✗ 16.57 54.38 16.43 95.71

2 X ✗ ✗ ✗ 16.04 54.26 15.71 94.46

3 X X ✗ ✗ 15.42 53.18 15.10 91.27

4 X X X ✗ 14.10 48.58 14.04 89.67

5 X X X X 13.10 44.90 12.74 84.63
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TABLE 4 Results on CARPK dataset.

Methods Type Method MAE RMSE

YOLO (Redmon et al., 2016) Detection Generic 48.89 57.55

Faster-RCNN (Ren et al., 2015) Detection Generic 115.00 32.53

S-RPN (Lin et al., 2017) Detection Generic 24.32 37.62

RetinaNet (Hsieh et al., 2017) Detection Generic 16.62 22.30

LPN (Lin et al., 2017) Detection Generic 23.80 36.79

One look (Mundhenk et al., 2016) Detection Specific 59.46 66.84

IEP count (Stahl et al., 2018) Detection Specific 51.83 -

PDEM (Goldman et al., 2019) Detection Specific 6.77 8.52

GMN (Lu et al., 2018) Regression Generic 7.48 9.90

FamNet+ (Ranjan et al., 2021) Regression Generic 18.19 33.66

BMNet+ (Shi et al., 2022) Regression Generic 5.76 7.83

SAFEcount (You et al., 2023) Regression Generic 5.33 7.04

HMFENet (our) Regression Generic 5.17 7.03

counting. Experiments show that our method still outperforms

other methods on the CARPK dataset.

5. Conclusion

For FSC, the key point is how to shorten the distance between

the exemplars and objects of the same class in the query image

and push away the objects of different classes. Establishing reliable

similarity maps is an important part. First, we refine the query

tensor by local self-attention and enhance the commonality of

exemplar feature tensors by exemplar feature aggregation module,

which significantly improves the robustness of counting accuracy.

Then, we apply the Hough matching module to replace the

traditional convolution. And the experiment results show that the

performance of matching has been improved. Finally, we use a

feature enhancement module to integrate the exemplar features

into query features, which can pull the features between the

exemplar and target instances closer and get clear borders within

dense objects. Experiment results demonstrate that our HMFENet

reaches a new sate-of-art on the standard dataset FSC-147 and

performs best on the class-specific dataset CAPRK.
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