
TYPE Original Research

PUBLISHED 30 August 2023

DOI 10.3389/fncom.2023.1204445

OPEN ACCESS

EDITED BY

Si Wu,

Peking University, China

REVIEWED BY

Laith Abualigah,

Amman Arab University, Jordan

Saghir Alfasly,

Mayo Clinic, United States

*CORRESPONDENCE

Chibiao Liu

lcbsmc@163.com

RECEIVED 12 April 2023

ACCEPTED 03 August 2023

PUBLISHED 30 August 2023

CITATION

Gezawa AS, Liu C, Jia H, Nanehkaran YA,

Almutairi MS and Chiroma H (2023) An

improved fused feature residual network for 3D

point cloud data.

Front. Comput. Neurosci. 17:1204445.

doi: 10.3389/fncom.2023.1204445

COPYRIGHT

© 2023 Gezawa, Liu, Jia, Nanehkaran, Almutairi

and Chiroma. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

An improved fused feature
residual network for 3D point
cloud data

Abubakar Sulaiman Gezawa1, Chibiao Liu1*, Heming Jia1,

Y. A. Nanehkaran2, Mubarak S. Almutairi3 and Haruna Chiroma4

1College of Information Engineering, Fujian Key Lab of Agriculture IOT Application, Sanming University,

Sanming, Fujian, China, 2Department of Software Engineering, School of Information Engineering,

Yancheng Teachers University, Yancheng, Jiangsu, China, 3College of Computer Science and

Engineering, University of Hafr Al-Batin, Hafar Al Batin, Saudi Arabia, 4College of Computer Science and

Engineering Technology, Applied College, University of Hafr Al-Batin, Hafar Al Batin, Saudi Arabia

Point clouds have evolved into one of the most important data formats for

3D representation. It is becoming more popular as a result of the increasing

a�ordability of acquisition equipment and growing usage in a variety of fields.

Volumetric grid-based approaches are among the most successful models

for processing point clouds because they fully preserve data granularity while

additionally making use of point dependency. However, using lower order local

estimate functions to close 3D objects, such as the piece-wise constant function,

necessitated the use of a high-resolution grid in order to capture detailed features

that demanded vast computational resources. This study proposes an improved

fused feature network as well as a comprehensive framework for solving shape

classification and segmentation tasks using a two-branch technique and feature

learning. We begin by designing a feature encoding network with two distinct

building blocks: layer skips within, batch normalization (BN), and rectified linear

units (ReLU) in between. The purpose of using layer skips is to have fewer layers to

propagate across, which will speed up the learning process and lower the e�ect

of gradients vanishing. Furthermore, we develop a robust grid feature extraction

module that consists of multiple convolution blocks accompanied by max-

pooling to represent a hierarchical representation and extract features from an

input grid. We overcome the grid size constraints by sampling a constant number

of points in each grid using a simple K-points nearest neighbor (KNN) search,

which aids in learning approximation functions in higher order. The proposed

method outperforms or is comparable to state-of-the-art approaches in point

cloud segmentation and classification tasks. In addition, a study of ablation is

presented to show the e�ectiveness of the proposed method.

KEYWORDS

point clouds, part segmentation, classification, shape features, 3D objects recognition

1. Introduction

Three-dimensional (3D) data are a great asset in the computer vision field since it

contains detailed information on the whole geometry of detected objects and scenes. With

the availability of massive 3D datasets and processing power, it is now possible to apply deep

learning to learn specific tasks on 3D data such as segmentation with classification (Varga

et al., 2020; Ergün and Sahillioglu, 2023; Qi et al., 2023), recognition, and correspondence

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1204445
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2023.1204445&domain=pdf&date_stamp=2023-08-30
mailto:lcbsmc@163.com
https://doi.org/10.3389/fncom.2023.1204445
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1204445/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

(Long et al., 2021). There are several categories of 3D data

representations including point cloud, voxel, mesh, multi views,

octree, and many others. A comprehensive overview of point

clouds and other 3D data representations may be found in the

study by Bello et al. (2020) and Gezawa et al. (2020). Point

cloud data processing employs a variety of approaches. Following

dispatching a point cloud to a voxel grid that is quantized

spatially in the grid space, volumetric models use a volumetric

convolution to compute (Maturana and Scherer, 2015; Choy et al.,

2016). Volumetric approaches correlate points with grid positions

by using grids as data structuring technique and convolutional

kernels in 3D to get data from nearby voxels. Although grid

data structures are efficient, to maintain the granularity of the

data position, a high voxel resolution is essential. The amount

of processing and memory used grows in a cubical relationship

with the voxel resolution since large point clouds are expensive

to process. Furthermore, most point clouds contain ∼90% empty

voxels (Zhou and Tuzel, 2018), processing no data could use a

lot of computing power. Point-based models are another type of

point cloud data processing paradigm. Unlike volumetric models,

point-based models offer effective computation but have poor

data organization. For instance, PointNet (Charles et al., 2017)

aggregates the data in the network’s final stage using the point cloud

without quantization, as a result the precise locations of the data

are preserved. However, the cost of computation rises in lockstep

with the point number. Subsequent studies (Qi et al., 2017; Wang

et al., 2018; Yifan et al., 2018; Qiangeng et al., 2019; Wang Y. et al.,

2019) aggregate information using a downsampling approach at

each layer. Graph convolutional networks (GCN) have been used

in the network layer to generate a local graph for each point cluster

(Simonovsky and Komodakis, 2017; Kuangen et al., 2019; Wang L.

et al., 2019; Li et al., 2023) that can be regarded as a variant of the

PointNet++ design (Qi et al., 2017). This architecture, however, is

costly in terms of data structuring [e.g., Random Point Sampling

(RPS)]. As reported by Zhijian et al. (2019), data structuring costs

account for up to 88% of the entire computational cost in three

common point-based models (Li Y. et al., 2018; Yifan et al., 2018;

Wang Y. et al., 2019). Furthermore, SO-Net (Li J. et al., 2018)

employs the self-organizing map (SOM; Kohonen, 1998) to create

a set of points used to model a point cloud’s spatial pattern. Even

though SO-Net considers a point cloud’s regional correlation, SOM

is trained independently. As a result, SOM’s spatial modeling and

a specific point cloud task are no longer coupled. DGCB-Net (Tian

et al., 2020) uses cutting-edge convolutional layers built by weight-

shared multiple-layer perceptrons (MLPs), to automatically extract

local features from the point cloud graph structure. A feature

aggregation is formed by concatenating the features received from

all edge convolutional layers. Rather than stacking multiple layers

deep, the DGCB-Net adopts a strategy to flatly extend point cloud

feature aggregation.

In this study, we utilize deep learning to develop an approach

that manage enormous 3D object datasets without compromising

shape resolution. The majority of handcrafted 3D features are

limited to low 3D resolutions. For example, Chiotellis et al.

(2016) and Zhou and Tuzel (2018) require each 3D model in

the datasets to be down-sampled to 20,000 faces with Meshlab

before they can be fed into the system. Additionally, a method

is provided that can handle structural variations in 3D objects

without the need for data pre-processing. Many machine learning

algorithms, such as the support vector machine (SVM), are effective

when the datasets are small and well-curated, which implies

that the data have been carefully pre-processed and requires

human intervention. To address these challenges, this study offers

an improved fused feature network, an end-to-end framework

that solves shape classification and segmentation tasks using a

two-branch technique with feature representation learning. To

efficiently simplify the network, we start by developing a feature

encoding network with two independent building blocks and layer

skips with batch normalization and ReLU in between. Because there

are few layers through which to propagate, using the layer skips

speeds up learning and lessens the effect of gradients vanishing.

Figure 1 presents the entire network structure of the approach. In

addition, we create a detail grid feature extraction module, which

comprises various convolution blocks accompanied by a max-

pooling to represent a hierarchical representation of several feature

representations and extracts features from the input grid. Max-

pooling is used in each of the pooling layers, resulting in each spatial

dimension having a smaller grid and helps to manage overfitting

by gradually lowering the representation’s spatial dimension, the

parameters in the network, and the amount of processing. This

module includes a regular-structured enclosing volumetric grid

that helps capture details and features hierarchically. To extract

features of high-resolution inputs, this module is utilized in

conjunction with the feature encoding network. To pull through

the limitation of the grid size, the local region in every grid sampled

a constant number of points using a simple KNN search which

aids in learning approximation functions in higher order to better

characterize the details of the features.

Our major contributions are as follows:

• We design an effective module named detail grid feature

extraction (DGFE)module. This module aids 3D convolutions

to hierarchically capture global information and reduces the

grid size in each spatial dimension as well as managing

overfitting by gradually lowering the spatial dimension of the

representationmaking it viable for high-resolution 3D objects.

• We design a feature encoding network that uses two

different building blocks with layer skips containing batch

normalization and ReLU in between, resulting in fewer layers

in the early training phase which helps speed learning and

reduces the effect of gradients vanishing since there are few

layers through which to propagate.

• We built a network using the modules that have been

proposed, which achieves a notable balance of accuracy

and speed.

2. Related work

2.1. 3D learning using voxel-based methods

To build on the advance of CNN models on images (He et al.,

2016a; Huang et al., 2017), Voxnet and its revisions (Maturana and

Scherer, 2015; Wang and Posner, 2015; Wu et al., 2015; Brock et al.,

2016) start by converting a point cloud to a grid occupancy and then

used convolution in a volumetric form. To overcome the problem

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

FIGURE 1

The complete architecture of the proposed method. The network is divided into three branches. The feature encoding network extract features from

the input grid in (A). The DGFE module exploits the detailed shape characteristics in (B). The feature fusion unit which has two consecutive

convolutional layers, fuses the features from the two branches to produce a feature with improved contextual representation by exploiting both local

and global shape structures in (C). See also Section 3.5.

of rising memory usage due to cubical expansion, OctNet creates

structures like a tree for non-empty voxels to avoid computing in

space. While the volumetric approach is effective at structuring

data, it suffers from poor computational effectiveness and data

granularity loss. Transformers have lately been incorporated into

the model designs of many 3D vision approaches in response to

the success of transformer-based designs in the two-dimensional

(2D) domain. The transformer has improved previous 3D learning

techniques because of its ability to read remote input and provide

task-specific inductive biases. The point-voxel transformer for

single-stage 3D detection (PVT-SSD) proposed by Yang et al. (2023)

uses input-dependent query initialization and voxel-based sparse

convolutions for strong feature encoding. The PVT-SSD overcame

the drawbacks of both point clouds and voxels by combining their

advantages. To reduce farthest point sampling (FPS) runtime, they

used sparse convolutions to transform points into a limited number

of voxels rather than directly sampling them. They also sampled

non-empty voxels. The voxel features were adaptively blended with

the point features to make up for the difficulty of quantization.

2.2. 3D learning using point cloud-based
methods

Charles et al. (2017); Qi et al. (2017) pioneered the use of

point-based models which used pooling to aggregate the point

features to achieve the permutation invariant. To better capture

local characteristics, methods such as kernel correlation (Atzmon

et al., 2018; Wu et al., 2019) and extended convolutions (Thomas

et al., 2019) are proposed. To resolve the ambiguity, the local point

order is predicted by PointCNN (Li Y. et al., 2018) while RSNet

(Huang et al., 2018) sequentially consumes points from various

directions. In methods based on points, the cost of computation

grows linearly with the points input. The cost of structuring

data, nevertheless, turned out to be a performance bottleneck

for large inputs. Recently, a dynamic sparse voxel transformer

(DSVT) was presented by Wang et al. (2023) in an effort to

widen the uses of transformers so that they may serve as a solid

foundation for outdoor 3D perception just as they do for 2D

vision. A number of local regions are split up into smaller ones in

each window using DSVT based on sparsity, and each window’s

attributes are then computed fully in parallel. Another recent

point cloud classification framework named point content-based

transformer (PointConT) was introduced by Liu et al. (2023), and

it employs local self-attention in the space of features rather than

the 3D space. One of the main advantages of PointConT is that

it takes advantage of the locality of points in the feature space by

clustering sampled points with similar features into the same class

and computing self-attention within each class, allowing for an

efficient trade-off between collecting long-range dependencies and

computational complexity.

2.3. Strategies for point data structuring

Themajority of point-basedmethods (Qi et al., 2017; Li Y. et al.,

2018; Bello et al., 2021; Gezawa et al., 2021) employ FPS (Eldar et al.,

1997) to sample uniformly distributed group centers. However, it

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

does not account for the subsequent processing of the sampled

points whichmay result in suboptimal performance. Random point

sampling (RPS) has the advantage of having a minimal downtime.

It is indeed, nevertheless, sensitive to variation in density. The

KNN search we used for sampling the local region in each grid cell

combines sampling and neighbor querying in a single step, making

it faster than RPS.

SO-Net (Li J. et al., 2018), on the other hand, creates a

self-organizing map. To split the spaces, KDNet (Klokov and

Lempitsky, 2017) employs kd-tree. Gumble subset sampling is

used instead of FPS by Yang et al. (2019). To create super points,

Landrieu and Simonovsky (2018) employs a clustering algorithm.

The majority of these approaches are either too slow or necessitate

structure preprocessing. VoxelNet (Le and Duan, 2018; Zhou

and Tuzel, 2018), for example, blends point-based and volumetric

approaches by performing voxel convolution and employing the

study by Charles et al. (2017) inside each voxel. Similar concepts

are used by the fast model (Zhijian et al., 2019), whereas Lu et al.

(2022) made use of ball query with graph convolution layers.

However, the number of points is not steadily decreased over all

layers. Our DGFE module, however, utilized max-pooling in each

of the pooling layers, resulting in each spatial dimension having a

smaller grid allowing it to be used for high-resolution 3D objects.

Apart from those features, the local region in every grid sampled

a constant number of points using a simple KNN search which

aids in learning approximation functions in higher order to better

characterize the detailed features.

3. The proposed method

In this section, the KNN search for local region sampling is

first introduced. Following that, we propose the feature encoding

network that serves as the basis of the enhanced fused feature

network. The split-transform-merge paradigm, which is based

on the residual learning framework, is one of the primary

building block we employ to design our feature encoding network

(Figure 1A). One of the primary benefits of employing the residual

network is its simplicity in training networks with many layers

without raising the training error percentage. It also aids in solving

the vanishing gradient problem by applying identity mapping.

To compensate for structural changes in 3D objects, our feature

encoding network employs two different building blocks [feature

encoding block (FEB) unit A and feature encoding block (FEB)

unit B], with layer skips in between. We begin with 3x3x3

convolutions twice, followed by 1x1x1 convolutions with a stride

in each convolution to accommodate both small and large datasets

without possible overfitting and to lower the spatial dimension

of the representation. Then, we introduce the detail grid feature

extraction module and finally the feature fusion unit. The complete

framework is presented Figure 1.

3.1. KNN search for local region sampling

Point clouds are typically represented as raw coordinates of

points in 3D space. Here, we will go over how our model extracts

features from 3D objects when given a point cloud of number of

FIGURE 2

Building blocks of the feature encoding network with two di�erent

layer skips. (A) Feature encoding block (FEB unit A) (B) Feature

encoding block (FEB unit B).

points (N) as input. When provided with an input of N × 3 set

of point clouds, the object is then subdivided into equal-sized 3D

voxels, such as 64 × 64 × 64, 16 × 16 × 16 or 8 × 8 × 8. Using

KNN, K points will be sampled from each grid cell. To avoid extra

computation, those with empty points will be padded with zeros.

In contrast to standard KNN, in which the search area consists of

all points, it just needs to search among non-empty voxels in our

situation, making the querymuch faster. Unlike VoxNet (Maturana

and Scherer, 2015) which represents the 3D structure using an

occupancy grid, we build a grid from point clouds and designate

the grid’s key feature to the points that are inside each grid. Some

grids, on the other hand, may contain a different point number.

This implies that we need a grid that will share kernels in 3D

convolution. Moreover, for addressing this constraint, we utilized a

sampling strategy that ensures each grid has an equal point number.

In particular, if there are beyond K points in the grid, we use the

KNN sampling strategy to choose K points from the total points. K

points are sampled with substitution when the points inside a grid

are below K. Consequently, each grid will have the same number

of points, allowing us to encode the grid feature so that each grid

feature has the same feature size vector which enables us to extract

hierarchical features of the object using 3D convolutional kernels.

3.2. Feature encoding network

We concentrate on developing a robust network for shape

classification and segmentation that achieves a notable balance of

accuracy and speed. The feature encoding network is one of the key

blocks that we create by making use of the split-transform-merge

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

FIGURE 3

Detail grid feature extraction module (DGFE Module). This module extracts features from the input grid using many convolution blocks. Max-pooling

is used in each of the pooling layers, resulting in each spatial dimension having a smaller grid and helps to manage overfitting by gradually lowering

the representation’s spatial dimension, the parameters in the network, and the amount of processing.

FIGURE 4

Illustration of the detailed design of the feature fusion unit, which

consists of two consecutive 3x3x3 convolutions with BN and ReLU

in between, as well as a stride in each convolution to help manage

overfitting.

paradigm, inspired by the residual learning framework design in

the study by Szegedy et al. (2015), He et al. (2016a,b), and Elhassan

et al. (2021) and leveraging its powerful representational ability.

These networks are scalable structures that bundle building units

with the same linked shape which are referred to as residual units

or blocks. The original blocks in the study by He et al. (2016b)

compute as follows:

Oi = h (Ii) + f
(

Ii,Weightsi
)

, (1)

Ii+1 = f (Oi) . (2)

In this case, Ii represents the i-th block’s input feature.

Weightsi =
{

Weightsi, k | 1 ≤ k ≤ K
}

contains biases and weights

connected to block i-th. K stands for total layers in a block.

f signifies the block function, such as a pile of convolutional

layers of two 3x3 in Equation 1. The operation following element-

wise addition is represented by the function f , which is ReLU in

Equation 1. The h function is designated as an identity mapping:

h (Ii) = Ii. Similarly, if function f is identity mapping, Ii+1 ≡ Oi.

Putting Equation 2 into Equation 1 yields:

Ii+1 = Ii + f
(

Ii,Weightsi
)

. (3)

To efficiently accelerate training and reduce the number

of parameters, the feature encoding network uses two separate

construction blocks, such as Feature encoding block (FEB unit

A) and feature encoding block (FEB unit B), with layer skips

containing batch normalization (BN) and ReLU in between. The

BN and ReLU are regarded as the weight layers’ pre-activation,

according to He et al. (2016b). We make some minor changes

here by using the ReLu with BN and Conv before the addition of

operation. We start with 3x3x3 convolutions twice, followed by

1x1x1 convolutions, and then we apply the BN and ReLu before

the addition. We use a stride in each convolution to help manage

overfitting by gradually reducing the spatial dimension of the

representation. The feature encoding network’s design is shown in

Figure 2.

3.3. Detail grid feature extraction module

To represent numerous hierarchical feature representations,

the detail grid feature extraction module employs several

convolution blocks and max-pooling and extracts features from the

input grid, as shown in Figure 3. Max-pooling is used in each of the

pooling layers, resulting in each spatial dimension having a smaller

grid and helps to manage overfitting by gradually lowering the

representation’s spatial dimension, the parameters in the network,

and the amount of processing. BN (Ioffe and Szegedy, 2015) can be

done to any set of network activations using:

y = g(Hu+ p) (4)

where H and p are model parameters that have been learned, and

g(.) denotes a non-linearity being ReLU or sigmoid. By normalizing

z = Hu + p, the BN transform can be introduced right before

the non-linearity. Since z is normalized, y = g(Hu + p) can be

replaced with

y = g(BN(Hu)) (5)

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

where the BN (Ioffe and Szegedy, 2015) is used separately

for each dimension of z = Hu, with a distinct set of learned

parameters for each dimension. We utilized a 3× 3× 3 kernel with

stride 1 convolution and a ReLU (Nair and Hinton, 2010) in each

convolution layer. The initial block employs 32-filter convolutions,

which are then doubled in subsequent blocks. This module offers

a regular-structured embedding volumetric grid that supports 3D

convolutions in hierarchically capturing global information. To

extract features of high-resolution inputs, this module is utilized

in conjunction with the feature encoding network. To keep local

fine details in early encoder layers, at the same spatial resolution,

we connect the encoder network’s encoded features to equivalent

features extracted from the detail grid feature extraction module.

3.4. Feature fusion unit

The feature fusion unit is made up of two consecutive

convolutional layers. We used 3 × 3 × 3 convolutions twice, with

BN and ReLU in between, and a stride in each convolution to

help manage overfitting. The proposed DGFE module and the

encoding network outputs are fused using a cross-product in the

feature fusion unit, as shown in Figure 4, to produce a feature with

improved contextual representation.

3.5. Network overview

We built a 3D convolutional network with fixed points inside

each grid cell, which aids in the learning of local approximation

functions in high-order that better capture local shape features.

Figure 1 presents a diagram of the proposed architecture. The

network is made up of two major modules. A feature encoding

network that serves as the foundation for extracting features

from the input grid, as shown in Figure 1A in Section 3.2, and

detail grid feature extraction (DGFE) module which comprises

various convolution blocks accompanied with an operation of max-

pooling to help in representing several relational features and

pull out features from the input (Section 3.3). We hierarchically

combine these two modules to form the proposed improved fused

feature network. The proposed DGFE module and the encoding

network outputs are fused in the feature fusion unit containing two

consecutive convolutional layers (Figure 1C) to produce a feature

with improved contextual representation by utilizing both local and

global shape structures.

The point cloud is first normalized within the unit box. In each

grid, the coordinates of the points are piled as features. accordingly,

given the appropriate x, y, and z coordinates, a K-point grid has

features 3K. In theory, by dividing the sum of points (P) by its grid

cells, K can be approximated. To acquire classification scores, the

resulting fused feature can be categorized using two fully connected

layers. Finally, one additional fully connected layer is added, along

with a softmax, which aids in regressing the likelihood in every

group. The whole layer’s nodes correspond to the set of categories

of objects inside the dataset. To generate the segmentation, the

segmentation network decodes the retrieved features. To create

the output, this network upsamples and combines the features.

For every cell inside the grid, this network produces K+1 labels,

as for K points in that cell equivalent to K labels and one more

label level cell. Obtaining ground truth labels of object components,

we chose its greater label among the labels of points within

every cell. Unoccupied Cells are tagged "no label." Before actually

acquiring the object part, we perform a deconvolution operation

by concatenating the feature obtained from the feature fusion

unit, with the feature retrieved out of each block of the feature

encoding network.

4. Experiments

In this section, a number of datasets including ModelNet10

and ModelNet40 (Wu et al., 2015) for object classification and

part segmentation on ShapeNetPart (Yi et al., 2016) were used

to assess the performance of the proposed network. We discuss

the dataset’s specifics and the evaluation metrics in Section 4.1.

The implementation protocol discussion presented in Section 4.2.

In Sections 4.3, 4.4, and 4.5, we discuss some experimental

results from applying the proposed network to classify shapes on

ModelNet, measure precision-recall on ModelNet10, and segment

parts on ShapeNetPart. In Section 4.6, we demonstrate the

advantages of the proposed method by conducting a good set of

ablation experimental tests to evaluate various setup adjustments.

4.1. Datasets and evaluation metrics

ModelNet dataset: This is indeed a notable dataset. It

comprises two datasets with CAD models in 10 and 40 categories,

respectively. ModelNet10 is made up of 4,899 object instances

including 2,468 training samples and 909 testing samples.

ModelNet40 is made up of 12,311 object instances, 9,843 of which

are in the training set and 3,991 samples in the testing set. For object

classification on the ModelNet dataset, we employed accuracy as

the assessment metric.

ShapeNetPart dataset: There are 16,881 shapes in this dataset,

divided into 16 categories and annotated with a combined amount

of 50 components. A considerable share of shape categories is

partitioned into 2–5 segments. We, then, used mean intersection

over union (mIoU) for evaluation. For every part shape within the

object category, we calculate the union of prediction and ground

truth. The mIoU was computed using Equation 6 as follows:

mIoU =
X

X + G− P
(6)

where G, P, and X denote the number of ground truth points,

predicted positive points, and true positive points, respectively. The

mIoU is obtained by taking the average of each class’s IoU.

4.2. Implementation protocol

In Python, the proposed method was implemented using the

Tensorflow deep learning library. Each experiment is conducted on

an Nvidia Geforce Titan GTX GPU, CUDA 10.1, and CuDNN 7.1

with RAM of 12 GB. For the classification task, we test with various

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

parameters setup including different grid sizes and K values. Each

point’s location is jittered with a standard deviation of 0.02. The

batch size is 32, and batch normalization is used for all layers. For

both the segmentation and classification tasks, we used the cross-

entropy loss to improve the discrimination of the class features. We

utilized an initial learning rate of 10−4 and employ Adam optimizer

(Kingma and Ba, 2015).

Loss function: Over the years, a wide range of loss functions

have been proposed to perform 3D shape analysis tasks.

For example, the cross-entropy loss was already been utilized

successfully in many shape analysis tasks. Although the network

can be trained using cross-entropy loss alone, we employ a

combination of Shape loss (Wei et al., 2020) and modified cross-

entropy loss (Huang et al., 2019) to make the class features more

discriminatory. The Shape Loss is given as follows:

Lshape = Ls
(

C(S),M
)

(7)

where M is the shapes’s class label, Ls is a cross-entropy loss based

on shape feature S, and C is a classifier.

Moreover, the cross-entropy loss is given as follows:

Lcross−entropy =
1

n

∑

y

(

zlogQ+ (1− z)log(1− Q)
)

(8)

For each sample, Q ∈ [0, 1] is the likelihood of the network

output and z represents the class ground truth. To minimize the

weight of easily categorized samples, the cross-entropy function

can be reshaped by inserting a hyperparameter that aids in

weight balancing.

Lcross−entropy =
1

n

∑

y

[

z(1− Q)γ logQ+ (1− Q)Qγ log(1− Q)
]

(9)

Once a sample is successfully identified, Q → 1, the factor

(1 − Q) → 0; Alternatively, when Q is small, the factor (1 − Q)

approaches 1. Our total loss is the combination of this two losses

as follows:

Ltotal = Lshape + Lcross−entropy (10)

4.3. Classification on ModelNet

We use the PointNet (Charles et al., 2017) convention to

prepare the data. Input points are set to 1,024 by default.

Furthermore, we improve performance by incorporating more

points and surface normal. To analyze various models to varying

degrees of speed and accuracy, the network is trained with varying

settings to balance speed and performance (Section 4.6). The

variants are in different grid sizes and K values.

4.3.1. Classification on ModelNet10
Comparison: The proposed improved fused feature residual

network approach was compared with a number of state-of-

the-art methods, as shown in Table 1. The proposed method

TABLE 1 Object classification accuracy (%) on ModelNet10.

Method Input Acc (%)

VoxNet (Maturana and Scherer, 2015) Volume 92.0

3DShapeNet (Wu et al., 2015) Volume 83.5

3DGAN (Wu et al., 2016) Volume 91.0

VSL (Liu et al., 2018) Volume 91.0

BV-CNNs (Ma et al., 2017) Volume 92.3

VRN (Brock et al., 2016) Volume 97.1

PolyNet (Yavartanoo et al., 2021) Mesh 94.9

DeepPano (Shi et al., 2015) Image 85.4

OrthographicNet (Kasaei, 2019) Image 88.5

PANORAMA-NN (Sfikas et al., 2017) Image 91.1

SeqViews2SeqLabels (Han et al., 2019) Image 94.8

Geometry-image (Sinha et al., 2016) Image 88.4

Gan Classifier (Varga et al., 2020) Image 89.2

GPSP-DWRN (Long et al., 2021) Image 92.4

G3DNet (Dominguez et al., 2018) Point 93.1

OctNet (Riegler et al., 2017) Point 90.4

ECC (Simonovsky and Komodakis, 2017) Point 90.0

DGCB-Net (Tian et al., 2020) Point 94.6

VACWGAN-GP (Ergün and Sahillioglu, 2023) Point 91.7

(Ours) Point 95.6

The bold values used to differentiate our results from the rest of the other methods.

outperforms the majority of previous voxel-based techniques in

terms of "overall accuracy" including VoxNet (Maturana and

Scherer, 2015), 3DShapeNets (Wu et al., 2015), 3DGAN (Wu

et al., 2016), VSL (Liu et al., 2018), and BV-CNN’s (Ma et al.,

2017). Although VRN (Brock et al., 2016), which combines many

networks, outperforms our method in ModelNet classification,

their network structure is quite complex, with each network being

trained separately and taking many days to complete, making

them unsuitable for large datasets. When compared with point

cloud-based methods, the proposed method outperforms many of

them, including Dominguez et al. (2018), OctNet (Riegler et al.,

2017), ECC (Simonovsky and Komodakis, 2017), DGCB-Net (Tian

et al., 2020), and VACWGAN-GP (Ergün and Sahillioglu, 2023).

The DGFE module helps 3D convolutions hierarchically acquire

global information, allowing the network to capture the contextual

neighborhood of points. Despite using viewpoints in a predefined

sequence, as opposed to any random views by DeepPano (Shi et al.,

2015), Gan classifier (Varga et al., 2020), GPSP-DWRN (Long et al.,

2021), OrthographicNet (Kasaei, 2019), PANORAMA-NN (Sfikas

et al., 2017), and SeqViews2SeqLabels (Han et al., 2019) both of

which are multi-view techniques, the method outperforms these

approaches, making it suitable for high resolution input. The

proposed method also outperforms PolyNet (Yavartanoo et al.,

2021), a mesh-based 3D representation network that combined

the features in a much smaller dimension using PolyShape’s multi-

resolution structure.

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

TABLE 2 Object classification accuracy (%) on ModelNet40.

Method Input Acc (%)

VoxNet (Maturana and Scherer, 2015) Volume 83.0

3DShapeNet (Wu et al., 2015) Volume 77.0

3DGAN (Wu et al., 2016) Volume 83.3

VSL (Liu et al., 2018) Volume 84.5

BV-CNNs (Ma et al., 2017) Volume 85.4

VRN (Brock et al., 2016) Volume 95.5

NormalNet (Wang et al., 2019a) Volume 88.6

DeepNN (Gao et al., 2022) Mesh 91.0

PolyNet (Yavartanoo et al., 2021) Mesh 82.8

GIFT (Bai et al., 2016) Image 83.1

DeepPano (Shi et al., 2015) Image 77.6

OrthographicNet (Kasaei, 2019) Image 88.5

SeqViews2SeqLabels (Han et al., 2019) Image 93.0

Geometry-image (Sinha et al., 2016) Image 83.9

PointNet (Charles et al., 2017) Point 89.2

PointConT (Liu et al., 2023) Points 93.5

RECON (Qi et al., 2023) Point 93.9

Pointwise (Hua et al., 2018) Point 86.1

NPCEM (Song et al., 2020) Point 89.4

ECC (Simonovsky and Komodakis, 2017) Point 83.2

DGCB-Net (Tian et al., 2020) Point 92.9

3DCTN (Lu et al., 2022) Point 91.2

VACWGAN-GP (Ergün and Sahillioglu, 2023) Point 81.3

(Ours) Point 93.1

The bold values used to differentiate our results from the rest of the other methods.

4.3.2. Classification on ModelNet40
Comparison: We further tested the effectiveness and

applicability of the proposed approach using the ModelNet40

dataset. Table 2 compares the classification accuracy of the

proposed method to that of alternative scalable 3D representations

techniques on the ModelNet40 datasets. As observed, the proposed

method performs better than VoxNet (Maturana and Scherer,

2015), 3DGAN (Wu et al., 2016), 3DShapeNets (Wu et al.,

2015), NormalNet, VACWGAN-GP (Wang et al., 2019a; Ergün

and Sahillioglu, 2023), DPRNet (Arshad et al., 2019), Pointwise

(Hua et al., 2018), BV-CNN’s (Ma et al., 2017), NPCEM (Song

et al., 2020), ECC (Simonovsky and Komodakis, 2017), PointNet

(Charles et al., 2017), Geometry image (Sinha et al., 2016), VSL

(Liu et al., 2018), GIFT (Bai et al., 2016), FPNN (Li et al., 2016),

DGCB-Net (Tian et al., 2020), and DeepNN (Gao et al., 2022) that

utilized mesh 3D data. The recent RECON (Qi et al., 2023) and

PointConT (Liu et al., 2023) slightly outperformed our technique,

which could be attributed to their usage of transformers and pre-

train models. The improved fused feature residual network offers

a significant advantage over the bulk of voxel and point cloud-

based approaches, as shown in Table 2. The proposed method

TABLE 3 ModelNet40 per-class classification comparison between

PointNet, Pointwise, DPRNet, and (ours).

Methods Ours PointNet Pointwise DPRNet

Avg. class 87.4 86.2 81.4 81.9

Airplane 100 100 100 100

Bathtub 90.0 80.0 82.0 76.0

Bed 94.0 94.0 93.0 95.0

Bench 80.0 75.0 68.4 80.0

Bookshelf 88.0 93.0 91.8 85.0

Bottle 98.0 94.0 93.9 95.0

Bowl 95.0 100 95.0 95.0

Car 99.0 97.9 95.6 91.0

Chair 97.0 96.0 96.0 97.0

Cone 100 100 80.0 90.0

Cup 90.0 70.0 60.0 70.0

Curtain 85.0 90.0 80.0 80.0

Desk 77.0 79.0 76.7 86.0

Door 92.0 95.0 75.0 85.0

Dresser 74.0 65.1 67.4 60.5

Flowerpot 44.6 30.0 10.0 25.0

Glassbox 91.0 94.0 80.8 86.0

Guiter 99.0 100 98.0 100

Keyboard 100 100 100 100

Lamp 87.0 90.0 83.3 80.0

Laptop 86.0 100 95.0 100

Mental 87.0 96.0 93.9 93.0

Monitor 71.0 95.0 92.9 96.0

Nightstand 65.0 82.6 70.2 70.9

Person 90.0 85.0 89.5 90.0

Piano 91.0 88.8 84.5 83.0

Plant 91.0 73.0 78.8 83.0

Radio 88.0 70.0 65.0 55.0

Range hood 96.0 91.0 88.9 89.9

Sink 85.0 80.0 65.0 70.0

Sofa 93.0 96.0 96.0 93.0

Stairs 90.0 85.0 80.0 75.0

Stool 90.0 90.0 83.3 70.0

Table 98.0 88.0 90.9 77.0

Tent 85.0 95.0 90.0 90.0

Toilet 98.0 99.0 94.9 95.0

TV stand 80.0 87.0 84.5 89.0

Vase 83.0 78.8 81.3 80.0

Wardrobe 65.0 60.0 30.0 20.0

Xbox 90.0 70.0 75.0 80.0

The bold values used to differentiate our results from the rest of the other methods.

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

performs below VRN (Brock et al., 2016), which makes usage of

24 rotating replicas for training and voting when compared with

non-voxel-based approaches. Additionally, the proposed method

outperformed PolyNet (Yavartanoo et al., 2021), a mesh-based

3D representation network that integrated the features in a much

fewer dimension using PolyShape’s multi-resolution structure. It is

also worth noting that the improved fused feature residual network

proposed already has a high level of accuracy, with a score of above

90%. This may be attributed to the fact that our feature encoding

network together with the DGFE module, directly extracts features

from the input grid and represents an organized structure of

numerous feature representations.

4.3.3. ModelNet40 per-class classification
accuracy comparison

Table 3 and Figure 5 compared the per-class accuracies of the

proposedmethod to PointNet (Charles et al., 2017), Pointwise (Hua

et al., 2018), and DPRNet (Arshad et al., 2019) on ModelNet40

dataset. As shown in Table 3 and Figure 5, using residual learning

and extracting detail features improves per class classification

accuracy. The proposed method outperforms PointNet, Pointwise,

and DPRNet in key classes such as bathhub, car, bottle dresser,

flowerpot, cup, and radio. In terms of average class performance,

the method outperformed PointNet (1.2%), Pointwise (6%), and

DPRNet (5.5%). Table 3 illustrates it.

4.4. Precision-recall on ModelNet10

Precision is a metric that assesses the accuracy of predictions,

i.e., the percentage of correct predictions. It determines how many

of the model’s predictions were actually right. The precision was

computed using Equation 11 as follows:

P =
TP

TP + FP
(11)

where TP is true positive while FP is false positive (predicted as

positive but was incorrect). In the case of recall, it determines how

well all of the positives are found which is given as follows:

R =
TP

TP + FN
(12)

where FN is false negatives (unable to predict the presence of

an object). The mAP is calculated as the average precision of all

classes in the dataset while the F1-score is the harmonic mean

of the precision and recall. We used these metrics to assess the

efficacy and robustness of the proposed method. We used a grid

size of 32 × 32 × 32 and kept the value of K at 8. As shown in

Figure 6, the model can learn all 10 object class categories with

high precision and recall on the ModelNet10 dataset, with 100%

precision on bathtub and chair and 100% recall on bed and toilet.

We can also observe that the four classes with the lowest precision

and recall (desk, table, nightstand, and dresser) are highly similar

which makes them difficult to distinguish even by a human expert.

As shown in Figure 6, we observed that the proposed approach

successfully generated results with (1) more than 90% precision

on the bed, monitor, sofa, table, and toilet and more than 80% on

the remaining classes, (2) 90% or higher recall of bathtub, chair,

monitor, sofa, and table with more than 80% on the desk, dresser,

and nightstand, and (3) 90% or higher F1-score of the bathtub, bed,

chair, monitor, sofa, toilet, and table with more than 80% on the

desk, dresser, and nightstand. This demonstrates that our model

can learn discriminative features from 3D shapes directly across

several classes.

To calculate the mAP, we perform several experiments, one

of which involved using 16 × 16 × 16 voxel size combined

with sampling 8 points per grid. The model was trained using

ModelNet10 from scratch, which achieved a 90.2% mAP score.

We, then, reduced the learning rate by half (0.5−5) and retrained

the model. The effect of fine-tuning improves the mAP to 90.7%.

Another experiment was using a 32 × 32 × 32 grid size with

the same points per grid. We train the model using the same

procedure in the first experiment. We achieved 92.5% with 0.1−4

learning rate, and after reducing the learning rate to half and

retraining the model, the result improves to 93.3%. With mAP

scores of 93.3%, our model surpasses 3DShapeNets (Wu et al.,

2015), PANORAMA-ENN (Sfikas et al., 2017), DeepPano (Shi et al.,

2015), PolyNet (Yavartanoo et al., 2021), Multimodal (Chen et al.,

2021), SeqViews2SeqLabels (Han et al., 2019), Geometry image

(Sinha et al., 2016), and GIFT (Bai et al., 2016) on the ModelNet10

dataset, as shown in Table 4. Even while SeqViews2SeqLabels (Han

et al., 2019) has the advantage of pre-existing 2D networks that

have been pre-trained on big datasets such as ImageNet1K, we

achieved a highermean average preciousmAPwith 1.9%margin on

ModelNet10. To further illustrate the effectiveness of the improved

fused feature network, Figure 7 shows the confusion matrix. The

confusion matrix was normalized to 100%. We can see that most

objects from all classes are recognized correctly.

4.5. Part segmentation on ShapeNetPart

Part segmentation seems to be more difficult than classification

tasks and is regarded as every-point classification. Given a

triangular mesh or point cloud representation of a 3D object, the

purpose of part segmentation is to give each point or triangle

face a part category which makes it more challenging than object

classification because of the fine-grained and dense predictions.We

used the metric procedure from PointNet++ (Qi et al., 2017). For

every part shape within the object category, we calculate the union

of prediction and ground truth. Figure 8 shows some ShapeNetPart

dataset segmentation results from our method. As observed, in

most cases, the proposed method results are visually appealing.

Comparison: The segmentation performance of the proposed

method is compared with that of various deep learning methods, as

shown in Table 5. AlthoughOCNN and RS-Net (Huang et al., 2018)

exceed ours in terms of mIoU of all shapes, the improved fused

feature residual network outperforms OCNN in specific categories,

such as bag, cap, rocket, lamp, and motorbike, and achieves

comparable results in the remaining categories. While OCNN has

the best IoU, it also uses a conditional dense random field to rectify

their network output which serve as a post-processing step, whereas

our approach has no similar strategy.

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

FIGURE 5

ModelNet40 per-class classification accuracy comparisons between PointNet, Pointwise, DPRNet, and (proposed).

FIGURE 6

Precision, recall, and F1-score on ModelNet10.

4.6. Ablation experiments

Here, we conduct some ablation experimental tests to assess

various setup modifications and highlight the benefits of the

improved fused feature network. The experiments were carried out

using the ModelNet10 (Wu et al., 2015) dataset.

4.6.1. E�ects of extracted features in the DGFE
module

We present an ablation test on ModelNet10 classification to

demonstrate the impact of the DGFE module’s extracted features.

Specifically, we experimented with many variables, including

different grid sizes and K values. In the first settings, using a grid

size of 16 × 16 × 16 and increasing the value of K from 2 to 8, the

classification accuracy increased from 88.1% with K = 2 to 90.5%

with K= 8. In the second attempt, we used a grid size of 32×32×32

and kept the values of K between 2 and 8, and the classification

accuracy increased from 90.1% with K = 2 to 91.8% with K =

TABLE 4 Mean average precision mAP (%) on ModelNet10.

Method mAP (%)

3DShapeNet (Wu et al., 2015) 68.3

DeepPano (Shi et al., 2015) 84.1

PANORAMA-ENN (Sfikas et al., 2017) 93.2

SeqViews2SeqLabels (Han et al., 2019) 91.4

Geometry-image (Sinha et al., 2016) 88.4

GIFT (Bai et al., 2016) 91.1

PolyNet (Yavartanoo et al., 2021) 84.6

(Ours) (16× 16× 16− grid) 90.7

(Ours) (32× 32× 32− grid) 93.3

The bold values used to differentiate our results from the rest of the other methods.

8. We end up using the later attempt to set the DVFE module in

our approach which yields the best model result of 95.6%. Figure 9

displays the results. It shows how the proposed DGFE module

encourages correlation among different point cloud regions and is

useful for modeling the entire point cloud spatial distribution.

4.6.2. E�ects of feature encoding network
This section analyzes the significance of the encoding branch

in the proposed approach. After removing the encoding branch,

the network is trained using only the DVFE module and KNN

search, to sample the local region in each grid cell. We, then,

repeated the tests using the same configuration as the previous

ablation experiment, with a grid size of 16x16x16 and K = 2. The

classification accuracy was 90.1% with K = 2 and 91.1% with K

= 8. The classification accuracy improved from 91.3% with K =

2 to 92.4% with K = 8 when utilizing a grid size of 32 × 32 ×

32. The results are shown in Figure 9. The model design aids in

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

FIGURE 7

Confusion matrix on ModelNet10.

the efficient encoding of features from the input grid and DVFE

module. The output features are combined to complement one

another. Figure 9 demonstrates the accuracy achieved by inserting

the feature encoding network into the whole network, which

results in boosting the classification accuracy. The next experiments

investigate the sensitivities of the feature encoding units which

consist of two units (Feature Encoding Block FEB Unit A and

Feature Encoding Block FEB Unit B) with layer skips containing

BN and ReLU in between. In each unit, we start with 3 × 3 ×

3 convolutions twice, followed by 1 × 1 × 1 convolutions. The

main difference between the units is in the application of BN, a

regularly used technique to speed up and stabilize the learning

process of deep neural networks, and Relu, which has the advantage

of allowing complicated correlations in the data to be learned.

To test how resilient our approaches are to changes of this type,

we swapped the units in different orders. With a 32 × 32 × 32

grid size and K = 8, we apply four possible combinations, such

as ABAB, BABA, AABB, and BBAA. We train the model from

the scratch. As shown in Table 6, the classification accuracy is

fairly stable across the different combinations. The combination of

ABAB has the highest accuracy and the lowest total log loss, with

AABB coming in second. Although the two other combinations,

BABA and BBAA, have lower accuracy, their overall performance

is generally stable. The above result seems to indicate that, in

line with He et al. (2016a), adding BN after addition forces skip

connections to perturb the output, which is problematic. The main

advantage of applying BN before addition here is that it speeds

up training and allows a wider range of learning rates without

sacrificing training convergence.

4.6.3. Time complexity
Table 7 compares the average testing time for classification

and segmentation with other similar methods. TensorFlow 1.1

is used to record forward time using Nvidia Geforce Titan

GTX GPU. The proposed method requires less testing time than

many other methods, such as (Leng et al., 2016; Charles et al.,

2017; Huang et al., 2018), DGCNN (Wang Y. et al., 2019),

SpecGCN (Wang et al., 2018), and 3D-UNet (Cicek et al., 2016),

because of its strong data closeness and consistency. Because

zeros are padded to empty voxel, the proposed voxelization and

sampling approaches both include random memory accesses,

which help to decrease unnecessary computation. As observed,

using the same voxel resolution of 323, the proposed improved

fused feature residual network is faster than the 3DCNN (Leng

et al., 2016) method and still outperforms it in terms of

mIoU, as shown in Table 5. Another advantage of this strategy

is that the same number of points is kept in each grid cell

while still being able to describe neighborhood information.

Now lets analyze the approach to the PointNet++ (Qi et al.,

2017), set abstraction module. If we have a batch of 2,048

points with 64-channel characteristics, the technique can model

the entire point cloud, but the SA module must aggressively

downsample the input, resulting in information loss. The proposed

method does not necessitate dynamic kernel computing, which

is typically rather expensive. Even though RSNet (Huang et al.,

2018) outperformed ours in terms of Mean IoU by 0.7%, the

proposed improved fused feature residual network is much

faster and requires less memory consumption, as shown in

Table 7.

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

FIGURE 8

On the ShapeNet-part dataset, we compared the visual results of our object part segmentation with groundthruth.

4.6.4. E�ects of neighborhood query
In this section, we experiment with ball query and sift query,

two other popular neighbor queryingmethods to sample local areas

and experiment with general search radius. For all experiments, we

use a 32× 32× 32 grid size with a K= 8 value on the ModelNet10

dataset. Table 8 shows that KNN is more effective for our strategy.

The sift query is the most inefficient method when compared with

the KNN and ball query.

5. Conclusion and future work

In this study, we proposed the detail grid feature extraction

(DGFE) module which is a highly efficient module. This

module assists 3D convolutions in hierarchically capturing global

information, reducing the grid size in each spatial dimension

and managing overfitting by gradually lowering the spatial

dimension of the representation, making it practical for high-

resolution 3D objects. Furthermore, we design a feature encoding

network that uses two different building blocks with layer

skips containing batch normalization and non-linearity ReLU

in between, resulting in fewer layers in the early training

phase which helps speed learning and reduces the effect of

gradients vanishing since there are few layers through which

to propagate. The outputs of the two modules are fused in

the feature fusion unit to produce a feature with improved

contextual representation by utilizing both local and global shape

structures. We built a network called improved fused feature

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

TABLE 5 Segmentation results of di�erent methods on ShapeNet-part dataset (Yi et al., 2016).

Methods (Ours) P.Net ShapeNet KD-Net MRTNet 3DCNN RS-Net O-CNN

mIoU 84.2 83.7 81.4 77.2 83.0 79.4 84.9 85.9

Airplane 83.8 83.4 81 79.9 81.0 75.1 82.7 85.5

Bag 88.9 78.7 78.4 71.2 76.7 72.8 86.4 87.1

Cap 91.9 82.5 77.7 80.9 87.0 73.3 84.1 84.7

Car 72 74.9 75.7 68.8 73.8 70.0 78.2 77.0

Chair 88 89.6 87.6 88.0 89.1 87.2 90.4 91.1

Earphone 47.0 73.0 61.9 72.4 67.6 63.5 69.3 85.1

Guitar 86.8 91.5 92 88.9 90.6 88.4 91.4 91.9

Knife 86.7 85.9 85.4 86.4 85.4 79.6 87.0 87.4

Lamp 89.8 80.8 82.5 79.8 80.6 74.4 83.5 83.3

Laptop 60.8 95.3 95.7 94.9 95.1 93.9 95.4 95.4

Motorbike 93.7 65.2 70.6 55.8 64.4 58.7 66.0 56.9

Mug 94.4 93.0 91.9 86.5 91.8 91.8 92.6 96.2

Pistol 80 81.2 85.9 79.3 79.7 76.4 81.8 81.6

Rocket 86.1 57.9 53.1 50.4 57.0 51.2 56.1 53.5

Skateboard 70.1 72.8 69.8 71.1 69.1 65.3 75.8 74.1

Table 74.1 80.6 75.3 80.2 80.6 77.1 82.2 84.4

The bold values used to differentiate our results from the rest of the other methods.

FIGURE 9

To highlight the influence of both the DGFE module and the feature encoding network, a ModelNet10 classification ablation test is presented. We

experimented with some variables including di�erent grid sizes and K values. (A) Shows how the feature encoding network performs with

16× 16× 16 and 32× 32× 32 grid sizes and di�erent values of K; (B) demonstrates the performance of the DGFE module’s e�ects of extracted

features on 16× 16× 16 and 32× 32× 32 grid sizes with 2, 3, 6, and 8 K values.

residual network using the modules that have been proposed,

which achieve a notable balance of accuracy and speed. In both

ModelNet10 and ModelNet40 datasets, the proposed improved

fused feature residual network offers a significant advantage over

the bulk of voxel and point cloud-based approaches, as shown

in Tables 1, 2. Due to its scalability and efficiency, the proposed

method can be used in extracting large-scale features of high-

resolution inputs.

Although our method performs well with normal datasets, we

note that when noise is added to the datasets, the performance

drops, for example, whenGaussian noise is added to the 3Dmodels,

the performance decreases despite applying different parameters.

In future, instead of directly sampling points, we will use sparse

convolutions to convert them to a small number of voxels and

sample non-empty voxels to ensure that precise point positions

are retained.

In addition, numerous mechanisms for attention employed in

transformer approaches are adaptable and offer a high potential

for future advances. We think cutting-edge outcomes can be

attained by extending generic point cloud processing innovation

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

TABLE 6 Di�erent combinations of feature encoding units on

ModelNet10.

FEB unit Acc (%) Logloss

ABAB 95.6 2.22

BABA 93.8 2.38

AABB 94.54 2.25

BBAA 93.94 2.32

TABLE 7 Average testing time of our method with others on ModelNet40.

Method Classification
(ms)

Segmentation
(ms)

PointNet++ (Qi et al., 2017) 163 -

3DCNN (Leng et al., 2016) 49 137

SpecGCN (Wang et al., 2018) 11254 -

DGCNN (Wang Y. et al., 2019) 52 87.8

3D-UNet (Cicek et al., 2016) - 682.1

RSNet (Huang et al., 2018) - 74.6

(Ours) 28 19

The bold values used to differentiate our results from the rest of the other methods.

TABLE 8 E�ects of neighborhood query on ModelNet10 classification.

Sift query Ball query KNN

r = 0.1 r = 0.2 r = 0.1 r = 0.2

90.8% 91.0% 92.6% 93.0% 95.6%

to transformer techniques. For instance, one possible option we

are looking at is by swapping out the feature extraction module

in our network design for one that is transformer/attention-based.

Instead of just depending on transformers to extract features,

we can conduct local feature extraction using non-transformer-

based approaches and then couple it with a transformer for global

feature interaction which will lead to the extraction of more fine

grain features.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

AG: conceptualization of this study, methodology, writing—

original draft preparation, and software. CL: conceptualization,

software, supervision, resources, project administration, and

funding acquisition. HJ, YN, and MA: data curation, writing—

reviewing and editing, and software. HC: data curation, software,

and supervision. All authors contributed to the article and

approved the submitted version.

Funding

This study was supported by the Fujian Province University

Key Lab for the Analysis and Application of Industry Big

Data, Fujian Key Lab of Agriculture IOT Application, and IOT

Application Engineering Research Center of Fujian Province

Colleges and Universities.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Arshad, S., Shahzad, M., Riaz, Q., and Fraz, M. (2019). DPRNet: deep
3D point based residual network for semantic segmentation and classification
of 3D point clouds. IEEE Access 7, 68892–68904. doi: 10.1109/ACCESS.2019.29
18862

Atzmon, M., Maron, H., and Lipman, Y. (2018). Point convolutional
neural networks by extension operators. ACM Trans. Graph. 37, 1–12.
doi: 10.1145/3197517.3201301

Bai, S., Bai, X., Zhou, Z., Zhang, Z., and Latecki, L. J. (2016).“GIFT: A
real-time and scalable 3D shape search engine,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV: IEEE), 5023–5032.
doi: 10.1109/CVPR.2016.543

Bello, S. A., Wang, C., Wambugu, N. M., and Adam, J. M. (2021). FFpointNet: local
and global fused feature for 3D point clouds analysis. Neurocomputing 461, 55–62.
doi: 10.1016/j.neucom.2021.07.044

Bello, Saifullahi, A., Yu, S., Wang, C., Adam, Jibril, M., and Li, J. (2020). Review:
deep learning on 3D point clouds. Remot. Sens. 12, 11. doi: 10.3390/rs12111729

Brock, A., Lim, T., Ritchie, J., and Weston, N. (2016). Generative and
discriminative voxel modeling with convolutional neural networks. ArXiv.
doi: 10.48550/arXiv.1608.04236

Charles, R., Su, H., Kaichun, M., and Guibas, L. (2017). “PointNet: Deep learning
on point sets for 3D classification and segmentation,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI: IEEE), 77–85.
doi: 10.1109/CVPR.2017.16

Chen, Z., Jing, L., Liang, Y., Tian, Y., and Li, B. (2021). Multimodal semi-supervised
learning for 3D objects. ArXiv. doi: 10.48550/arXiv.2110.11601

Chiotellis, I., Triebel, R., Windheuser, T., and Cremers, D. (2016). “Non-rigid 3D
shape retrieval via large margin nearest neighbor embedding,” in European Conference
on Computer Vision (ECCV) (Amsterdam). doi: 10.1007/978-3-319-46475-6_21

Frontiers inComputationalNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://doi.org/10.1109/ACCESS.2019.2918862
https://doi.org/10.1145/3197517.3201301
https://doi.org/10.1109/CVPR.2016.543
https://doi.org/10.1016/j.neucom.2021.07.044
https://doi.org/10.3390/rs12111729
https://doi.org/10.48550/arXiv.1608.04236
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.48550/arXiv.2110.11601
https://doi.org/10.1007/978-3-319-46475-6_21
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

Choy, C., Danfei, X., JunYoung, G., Kevin, C., and Savarese, S. (2016). “3D-R2N2:
A unified approach for single and multi-view 3D object reconstruction,” in European
Conference on Computer Vision (ECCV) (Amsterdam).

Cicek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O. (2016).
3D U-Net: Learning dense volumetric segmentation from sparse annotation. ArXiv.
doi: 10.48550/arXiv.1606.06650

Dominguez, M., Dhamdhere, R., Petkar, A., Jain, S., Sah, S., and Ptucha, R. (2018).
“General-purpose deep point cloud feature extractor,” in 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV) (Lake Tahoe, NV: IEEE), 1972–1981.
doi: 10.1109/WACV.2018.00218

Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y. (1997). The farthest point
strategy for progressive image sampling. IEEE Trans. Image Process. 9, 1305–1315.
doi: 10.1109/83.623193

Elhassan, M. A., Huang, C., Yang, C., and Munea, T. L. (2021). DSANet: dilated
spatial attention for real-time semantic segmentation in urban street scenes. Expert
Syst. Appl. 183, 115090. doi: 10.1016/j.eswa.2021.115090

Ergün, O., and Sahillioglu, Y. (2023). 3D point cloud classification with
ACGAN-3D and VACWGAN-GP. Turk. J. Electr. Eng. Comput. Sci. 31, 381–395.
doi: 10.55730/1300-0632.3990

Gao, M., Ruan, N., Shi, J., and Zhou, W. (2022). Deep neural network for 3D shape
classification based on mesh feature. Sensors 22, 187040. doi: 10.3390/s22187040

Gezawa, A. S., Bello, Z. A., Wang, Q., and Yunqi, L. (2021). A voxelized point clouds
representation for object classification and segmentation on 3D data. J. Supercomput.
21, 1–22. doi: 10.1007/s11227-021-03899-x

Gezawa, Sulaiman, A., Zhang, Y., Wang, Q., and Lei, Y. (2020). A review on deep
learning approaches for 3D data representations in retrieval and classifications. IEEE
Access 8, 57566–57593. doi: 10.1109/ACCESS.2020.2982196

Han, Z., Shang, M., Liu, Z., Vong, C.-M., Liu, Y.-S., Zwicker, M., et al.
(2019). SeqViews2SeqLabels: learning 3D global features via aggregating
sequential views by RNN with attention. IEEE Trans. Image Process. 28, 658–672.
doi: 10.1109/TIP.2018.2868426

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Las Vegas, NV: IEEE), 770–778. doi: 10.1109/CVPR.2016.90

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual
networks. ArXiv. doi: 10.48550/arXiv.1603.05027

Hua, B.-S., Tran, M.-K., and Yueng, S.-K. (2018). “Pointwise convolutional neural
networks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(Salt Lake City, UT: IEEE), 984–993. doi: 10.1109/CVPR.2018.00109

Huang, F., Xu, C., Tu, X., and Li, S. (2019). Weight loss for point clouds
classification. J. Phys. 1229, e012045. doi: 10.1088/1742-6596/1229/1/012045

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017). “Densely
connected convolutional networks,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (Honolulu, HI: IEEE), 2261–2269.
doi: 10.1109/CVPR.2017.243

Huang, Q., Wang, W., and Neumann, U. (2018). “Recurrent slice networks
for 3D segmentation of point clouds,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (Salt Lake City, UT: IEEE), 2626–2635.
doi: 10.1109/CVPR.2018.00278

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network
training by reducing internal covariate shift. ArXiv. doi: 10.48550/arXiv.1502.03167

Kasaei, H. (2019). OrthographicNet: a deep learning approach for 3d object
recognition in open-ended domains. ArXiv. doi: 10.48550/arXiv.1902.03057

Kingma, D. P., and Ba, J. (2015). Adam: amethod for stochastic optimization.CoRR.
doi: 10.48550/arXiv.1412.6980

Klokov, R., and Lempitsky, V. (2017). “Escape from cells: Deep Kd-networks for
the recognition of 3D point cloud models,” in 2017 IEEE International Conference on
Computer Vision (ICCV) (Venice: IEEE), 863–872. doi: 10.1109/ICCV.2017.99

Kohonen, T. (1998). The self-organizing map. Neurocomputing 21, 1–6.
doi: 10.1016/S0925-2312(98)00030-7

Kuangen, Z., Ming, H., Wang, J., de Silva, C. W., and Fu, C. (2019). Linked
dynamic graph CNN: learning on point cloud via linking hierarchical features. ArXiv.
doi: 10.48550/arXiv.1904.10014

Landrieu, L., and Simonovsky, M. (2018). “Large-scale point cloud semantic
segmentation with superpoint graphs,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (Salt Lake City, UT: IEEE), 4558–4567.
doi: 10.1109/CVPR.2018.00479

Le, T., and Duan, Y. (2018). “PointGrid: A deep network for 3D shape
understanding,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (Salt Lake City, UT: IEEE), 9204–9214. doi: 10.1109/CVPR.2018.00959

Leng, B., Liu, Y., Yu, K., Zhang, X., and Xiong, Z. (2016). 3D object
understanding with 3D convolutional neural networks. Inf. Sci. 366, 188–201.
doi: 10.1016/j.ins.2015.08.007

Li, G., Muller, M., Qian, G., Delgadillo, I. C., Abualshour, A., Thabet, A., et al. (2023).
DeepGCNs: making GCNs go as deep as CNNs. IEEE Trans. Pattern Anal. Mach. Intell.
45, 6923–6939. doi: 10.1109/TPAMI.2021.3074057

Li, J., Chen, B. M., and Lee, G. H. (2018). “SO-Net: Self-organizing network for
point cloud analysis,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (Salt Lake City, UT: IEEE), 9397–9406. doi: 10.1109/CVPR.2018.00979

Li, Y., Bu, R., Sun,M.,Wu,W., Di, X., and Chen, B. (2018). “PointCNN: convolution
on x-transformed points,” in Proceedings of the 32nd International Conference onNeural
Information Processing Systems (NIPS’18) (Red Hook, NY: Curran Associates Inc),
828–838.

Li, Y., Pirk, S., Su, H., Qi, C., and Guibas, L. (2016). FPNN: field probing neural
networks for 3D data. ArXiv. doi: 10.48550/arXiv.1605.06240

Liu, S., Giles, L., and Ororbia, A. (2018). “Learning a hierarchical latent-variable
model of 3D shapes,” in 2018 International Conference on 3DVision (Verona), 542–551.
doi: 10.1109/3DV.2018.00068

Liu, Y., Wang, B., Lv, Y., Li, L., and Wang, F. (2023). Point cloud
classification using content-based transformer via clustering in feature space. ArXiv.
doi: 10.48550/arXiv.2303.04599

Long, H., Lee, S.-H., and Kwon, K.-R. (2021). A deep learning method for 3D object
classification and retrieval using the global point signature plus and deep wide residual
network. Sensors 21, 82644. doi: 10.3390/s21082644

Lu, D., Xie, Q., Gao, K., Xu, L., and Li, J. (2022). 3DCTN: 3D convolution-
transformer network for point cloud classification. IEEE Trans. Intell. Transport. Syst.
23, 24854–24865. doi: 10.1109/TITS.2022.3198836

Ma, C., An, W., Lei, Y., and Guo, Y. (2017). “BV-CNNS: binary volumetric
convolutional networks for 3D object recognition,” in British Machine Vision
Conference 2017, BMVC 2017 (London: BMVA Press).

Maturana, D., and Scherer, S. (2015). “VoxNet: A 3D Convolutional Neural
Network for real-time object recognition,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (Hamburg: IEEE), 922–928.
doi: 10.1109/IROS.2015.7353481

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted
Boltzmann machines,” in Proceedings of the 27th International Conference on
International Conference on Machine Learning (Madison, WI: Omnipress),
807–814.

Qi, C., Yi, L., Hao, S., and Guibas, L. (2017). “Pointnet++ : deep hierarchical feature
learning on point sets in a metric space,” in Proceedings of the 31st International
Conference onNeural Information Processing Systems (NIPS’17) (RedHook, NY: Curran
Associates Inc), 5105–5114.

Qi, Z., Dong, R., Fan, G., Ge, Z., Zhang, X., Ma, K., et al. (2023). Contrast with
reconstruct: contrastive 3D representation learning guided by generative pretraining.
ArXiv. doi: 10.48550/arXiv.2302.02318

Qiangeng, X., Weiyue, W., Duygu, C., Mech, R., and Neumann, U. (2019). “DISN:
deep implicit surface network for high-quality single-view 3D reconstruction,” in
Proceedings of the 33rd International Conference on Neural Information Processing
Systems (Red Hook, NY: Curran Associates Inc), 492–502.

Riegler, G., Ulusoy, A. O., and Geiger, A. (2017). “OctNet: Learning deep
3D representations at high resolutions,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (Honolulu, HI: IEEE), 6620–6629.
doi: 10.1109/CVPR.2017.701

Sfikas, K., Theoharis, T., Pratikakis, I. (2017). “Exploiting the PANORAMA
representation for convolutional neural network classification and retrieval,” in
Proceedings of the Workshop on 3D Object Retrieval (3Dor ’17) (Goslar: Eurographics
Association), 1-7. doi: 10.2312/3dor.20171045

Shi, B., Bai, S., Zhou, Z., and Bai, X. (2015). DeepPano: deep panoramic
representation for 3-D shape recognition. IEEE Sign. Process. Lett. 22, 2339–2343.
doi: 10.1109/LSP.2015.2480802

Simonovsky, M., and Komodakis, N. (2017). “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI: IEEE), 29–38.
doi: 10.1109/CVPR.2017.11

Sinha, A., Bai, J., and Ramani, K. (2016). “Deep learning 3D shape surfaces using
geometry images,” in European Conference on Computer Vision (ECCV) (Amsterdam).

Song, Y., Gao, L., Li, X., and Shen, W. (2020). A novel point cloud encoding method
based on local information for 3D classification and segmentation. Sensors 20, 92501.
doi: 10.3390/s20092501

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et
al. (2015). “Going deeper with convolutions,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Boston, MA: IEEE), 1–9.
doi: 10.1109/CVPR.2015.7298594

Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B., Goulette, F., and Guibas,
L. (2019). “KPConv: Flexible and deformable convolution for point clouds,” in 2019
IEEE/CVF International Conference on Computer Vision (ICCV) (Seoul: IEEE), 6410–
6419. doi: 10.1109/ICCV.2019.00651

Frontiers inComputationalNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://doi.org/10.48550/arXiv.1606.06650
https://doi.org/10.1109/WACV.2018.00218
https://doi.org/10.1109/83.623193
https://doi.org/10.1016/j.eswa.2021.115090
https://doi.org/10.55730/1300-0632.3990
https://doi.org/10.3390/s22187040
https://doi.org/10.1007/s11227-021-03899-x
https://doi.org/10.1109/ACCESS.2020.2982196
https://doi.org/10.1109/TIP.2018.2868426
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1603.05027
https://doi.org/10.1109/CVPR.2018.00109
https://doi.org/10.1088/1742-6596/1229/1/012045
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2018.00278
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.48550/arXiv.1902.03057
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/ICCV.2017.99
https://doi.org/10.1016/S0925-2312(98)00030-7
https://doi.org/10.48550/arXiv.1904.10014
https://doi.org/10.1109/CVPR.2018.00479
https://doi.org/10.1109/CVPR.2018.00959
https://doi.org/10.1016/j.ins.2015.08.007
https://doi.org/10.1109/TPAMI.2021.3074057
https://doi.org/10.1109/CVPR.2018.00979
https://doi.org/10.48550/arXiv.1605.06240
https://doi.org/10.1109/3DV.2018.00068
https://doi.org/10.48550/arXiv.2303.04599
https://doi.org/10.3390/s21082644
https://doi.org/10.1109/TITS.2022.3198836
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.48550/arXiv.2302.02318
https://doi.org/10.1109/CVPR.2017.701
https://doi.org/10.2312/3dor.20171045
https://doi.org/10.1109/LSP.2015.2480802
https://doi.org/10.1109/CVPR.2017.11
https://doi.org/10.3390/s20092501
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/ICCV.2019.00651
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gezawa et al. 10.3389/fncom.2023.1204445

Tian, Y., Chen, L., Song, W., Sung, Y., and Woo, S. (2020). DGCB-Net: dynamic
graph convolutional broad network for 3D object recognition in point cloud. Remote.
Sens. 13, 66. doi: 10.3390/rs13010066

Varga, M., Jadlovský, J., and Jadlovska, S. (2020). Generative enhancement
of 3D image classifiers. Appl. Sci. 2020, 10217433. doi: 10.3390/app1021
7433

Wang, C., Cheng, M., Sohel, F., Bennamoun, M., and Li, J. (2019a). NormalNet:
a voxel-based CNN for 3D object classification and retrieval. Neurocomputing 323,
139–147. doi: 10.1016/j.neucom.2018.09.075

Wang, C., Samari, B., and Siddiqi, K. (2018). “Local spectral graph convolution
for point set feature learning,” in Computer Vision – ECCV 2018: 15th European
Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part IV (Berlin;
Heidelberg: Springer-Verlag), 56–71. doi: 10.1007/978-3-030-01225-0_4

Wang, D. Z., and Posner, I. (2015). “Voting for voting in online point cloud object
detection,” in Robotics: Science and Systems (Rome), 10–15607.

Wang, H., Shi, C., Shi, S., Lei, M., Wang, S., He, D., et al. (2023). DSVT: dynamic
sparse voxel transformer with rotated sets. ArXiv. doi: 10.48550/arXiv.2301.06051

Wang, L., Huang, Y., Hou, Y., Zhang, S., and Shan, J. (2019). “Graph attention
convolution for point cloud semantic segmentation,” in 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (Long Beach, CA: IEEE), 10288–
10297. doi: 10.1109/CVPR.2019.01054

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M.
(2019). Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 38, 1–12.
doi: 10.1145/3326362

Wei, X., Yu, R., and Sun, J. (2020). “View-GCN: View-based graph convolutional
network for 3D shape analysis,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (Seattle, WA: IEEE), 1847–1856.
doi: 10.1109/CVPR42600.2020.00192

Wu, J., Zhang, C., Xue, T., Freeman, B., and Tenenbaum, J. (2016). “Learning a
probabilistic latent space of object shapes via 3D generative-adversarial modeling,”
in Proceedings of the 30th International Conference on Neural Information Processing
Systems (NIPS’16) (Red Hook, NY: Curran Associates Inc), 82–90.

Wu, W., Qi, Z., and Fuxin, L. (2019). “PointConv: Deep convolutional
networks on 3D point clouds,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (Long Beach, CA: IEEE), 9613–9622.
doi: 10.1109/CVPR.2019.00985

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., et al. (2015). “3D
ShapeNets: A deep representation for volumetric shapes,” in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (Boston, MA: IEEE), 1912–1920.
doi: 10.1109/CVPR.2015.7298801

Yang, H., Wang, W., Chen, M., Lin, B., He, T., Chen, H., et al. (2023).
PVT-SSD: single-stage 3d object detector with point-voxel transformer. ArXiv.
doi: 10.48550/arXiv.2305.06621

Yang, J., Zhang, Q., Ni, B., Li, L., Liu, J., Zhou, M., et al. (2019). “Modeling
point clouds with self-attention and gumbel subset sampling,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (Long Beach, CA:
IEEE), 3318–3327, doi: 10.1109/CVPR.2019.00344

Yavartanoo, M., Hung, S.-H., Neshatavar, R., Zhang, Y., and Lee, K. M. (2021).
“PolyNet: Polynomial neural network for 3D shape recognition with polyshape
representation,” in 2021 International Conference on 3D Vision (3DV) (London),
1014–1023, doi: 10.1109/3DV53792.2021.00109

Yi, L., Kim, V. G., Ceylan, D., Shen, I.-C., Yan, M., Su, H., et al. (2016). A scalable
active framework for region annotation in 3D shape collections. ACM Trans. Graph.
35, 1–12. doi: 10.1145/2980179.2980238

Yifan, X., Tianqi, F., Mingye, X., Long, Z., and Qiao, Y. (2018). “SpiderCNN:
deep learning on point sets with parameterized convolutional filters,” in European
Conference on Computer Vision (ECCV) (Munich).

Zhijian, L., Haotian, T., Yujun, L., and Song, H. (2019). “Point-voxel CNN for
efficient 3D deep learning,” in Proceedings of the 33rd International Conference on
Neural Information Processing Systems (Red Hook, NY: Curran Associates Inc), 965–
975.

Zhou, Y., and Tuzel, O. (2018). “VoxelNet: End-to-end learning for point
cloud based 3D object detection,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (Salt Lake City, UT: IEEE), 4490–4499.
doi: 10.1109/CVPR.2018.00472

Frontiers inComputationalNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fncom.2023.1204445
https://doi.org/10.3390/rs13010066
https://doi.org/10.3390/app10217433
https://doi.org/10.1016/j.neucom.2018.09.075
https://doi.org/10.1007/978-3-030-01225-0_4
https://doi.org/10.48550/arXiv.2301.06051
https://doi.org/10.1109/CVPR.2019.01054
https://doi.org/10.1145/3326362
https://doi.org/10.1109/CVPR42600.2020.00192
https://doi.org/10.1109/CVPR.2019.00985
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.48550/arXiv.2305.06621
https://doi.org/10.1109/CVPR.2019.00344
https://doi.org/10.1109/3DV53792.2021.00109
https://doi.org/10.1145/2980179.2980238
https://doi.org/10.1109/CVPR.2018.00472
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	An improved fused feature residual network for 3D point cloud data
	1. Introduction
	2. Related work
	2.1. 3D learning using voxel-based methods
	2.2. 3D learning using point cloud-based methods
	2.3. Strategies for point data structuring 

	3. The proposed method
	3.1. KNN search for local region sampling
	3.2. Feature encoding network
	3.3. Detail grid feature extraction module
	3.4. Feature fusion unit
	3.5. Network overview

	4. Experiments
	4.1. Datasets and evaluation metrics
	4.2. Implementation protocol
	4.3. Classification on ModelNet
	4.3.1. Classification on ModelNet10
	4.3.2. Classification on ModelNet40
	4.3.3. ModelNet40 per-class classification accuracy comparison

	4.4. Precision-recall on ModelNet10
	4.5. Part segmentation on ShapeNetPart
	4.6. Ablation experiments
	4.6.1. Effects of extracted features in the DGFE module
	4.6.2. Effects of feature encoding network
	4.6.3. Time complexity
	4.6.4. Effects of neighborhood query


	5. Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


