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This article presents a comprehensive analysis of spiking neural networks (SNNs)

and their mathematical models for simulating the behavior of neurons through

the generation of spikes. The study explores various models, including LIF

and NLIF, for constructing SNNs and investigates their potential applications in

di�erent domains. However, implementation poses several challenges, including

identifying the most appropriate model for classification tasks that demand

high accuracy and low-performance loss. To address this issue, this research

study compares the performance, behavior, and spike generation of multiple

SNN models using consistent inputs and neurons. The findings of the study

provide valuable insights into the benefits and challenges of SNNs and their

models, emphasizing the significance of comparing multiple models to identify

the most e�ective one. Moreover, the study quantifies the number of spiking

operations required by each model to process the same inputs and produce

equivalent outputs, enabling a thorough assessment of computational e�ciency.

The findings provide valuable insights into the benefits and limitations of SNNs and

their models. The research underscores the significance of comparing di�erent

models to make informed decisions in practical applications. Additionally, the

results reveal essential variations in biological plausibility and computational

e�ciency among the models, further emphasizing the importance of selecting

themost suitable model for a given task. Overall, this study contributes to a deeper

understanding of SNNs and o�ers practical guidelines for using their potential in

real-world scenarios.

KEYWORDS
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biological plausibility, computational model, neural network

1. Introduction

Artificial General Intelligence (AGI) strives to emulate human-like intelligence in

machines, encompassing the ability to perform a wide array of cognitive tasks with high

precision, robustness, and efficiency (Goertzel, 2014). As the pursuit of AGI continues,

researchers have been exploring innovative brain-inspired approaches to achieve these

ambitious goals. In this context, several representative studies have emerged, showcasing

promising advancements in brain-inspired intelligence and their potential to outperform

state-of-the-art artificial intelligence systems (Mehonic et al., 2020). These groundbreaking

works have garnered significant attention in the field, as they lay the foundation for

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1215824
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2023.1215824&domain=pdf&date_stamp=2023-08-24
mailto:sanaullah@hsbi.de
https://doi.org/10.3389/fncom.2023.1215824
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1215824/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Sanaullah et al. 10.3389/fncom.2023.1215824

high-level intelligence, accuracy, robustness, and energy efficiency.

Therefore, some representative studies exemplify the state-of-the-

art efforts in brain-inspired artificial intelligence, offering valuable

and inspiring new directions for achieving AGIwith unprecedented

capabilities (Stimberg et al., 2019; Sanaullah et al., 2022a,b). By

combining the principles of neuroscience with advanced machine

learning techniques, such as SNNs, these novel approaches hold

the potential to revolutionize the field and drive AGI toward

realization.

SNNs are a type of neural network model that has gained

considerable attention in recent years due to their ability to simulate

the behavior of biological neurons in the brain (Ghosh-Dastidar

and Adeli, 2009b; Sanaullah et al., 2023a). SNNs are characterized

by their discrete time steps, where the neurons generate spikes

when the input reaches a certain threshold (Tavanaei et al.,

2019; Sanaullah et al., 2020). This is similar to how biological

neurons work, where they communicate with each other through

the generation of action potentials or spikes (Tavanaei et al.,

2019).

To build an SNN, amathematical model of the spiking behavior

of neurons is required. Several models have been developed,

each with its own advantages and limitations. One of the most

commonly used models is the leaky integrate-and-fire (LIF) model

(Brunel and Van Rossum, 2007), which models the behavior of

neurons as a leaky capacitor that charges and discharges over time.

The Adaptive Exponential (AdEx) model (Gerstner and Brette,

2009), is another popular model that includes an exponential term

to account for the adaptation of neuron firing rates over time.

The Non-linear Integrate-and-Fire (NLIF) model (Jolivet et al.,

2004), is a more complex model that includes non-linearity in

the integration process. Other SNN models include the Integrate-

and-Fire with Spike Frequency Adaptation (IF − SFA) model

(Gigante et al., 2007), which incorporates a feedback mechanism

that adjusts the neuron’s firing rate based on its recent activity,

the Theta Neuron model (McKennoch et al., 2009), which models

the theta rhythm observed in the brain, the Hodgkin-Huxley

(HH) model (Häusser, 2000), which is a biophysical model that

includes multiple ion channels to capture the complex behavior

of neurons, and the Quadratic-Integrate-and-Fire (QIF) model

(Brunel and Latham, 2003), which is a more general model that

allows for different types of threshold functions. Another widely

used model in SNNs is the Izhikevich model (Izhikevich, 2004,

2007), which offers a balance between computational efficiency and

biological plausibility. This model introduces a two-variable system

that captures the dynamics of the neuron’s membrane potential

and recovery variable. The IZH model can replicate a wide range

of spiking patterns observed in real neurons, making it suitable

for various computational tasks. Additionally, the Spike Response

Model (SRM; Gerstner, 2008), is another significant model in

SNNs. The SRM focuses on capturing the post-spike response

characteristics of neurons, which include the refractory period and

the shape of the post-spike potential. By considering these response

dynamics, the SRM provides a more detailed description of neuron

behavior and enables the modeling of temporal effects in neural

computations. Therefore, each of these models offers its own set

of advantages and limitations, providing researchers and engineers

with a diverse toolbox to simulate and understand the behavior of

spiking neurons.

In addition to the challenges of selecting the most suitable SNN

model, another challenge associated with SNNs is the need for

specialized simulators to simulate the spiking behavior of neurons.

One popular simulator used for SNNs is the Neural Engineering

Framework (NEF; Stewart, 2012; Sanaullah et al., 2023b), which is

a mathematical framework for designing and implementing neural

models that are based on the principles of neuroscience. Despite

the potential benefits of SNNs, there are still several challenges

associated with their implementation. One of the most significant

challenges is choosing the most appropriate SNNmodel for a given

task (Stimberg et al., 2019; Sanaullah et al., 2022a,b).

This is particularly important for classification tasks, where

accuracy and performance loss are critical. Another challenge is

the computational complexity of simulating SNNs, which can

require significant computational resources (Ayan et al., 2020).

Therefore, choosing the appropriate SNNmodel and addressing the

computational complexity associated with their simulation remain

significant challenges that need to be addressed to realize their full

potential.

In order to address this issue, a study was conducted to compare

the performance, behavior, and spikes generation methodology

of different SNN models using the same number of inputs and

neurons. The challenge of determining the most suitable model

was addressed by comparing the performance of different models,

and the results were analyzed to determine the most effective one.

Additionally, the study also compared the biological plausibility

of the different neuron models used in the SNNs. The biological

plausibility of a neuron model is an important factor to consider

since it determines how well the model simulates the behavior of

actual biological neurons. The study also compared the number

of spiking operations required by each model to simulate the

behavior of the same set of neurons. The results showed that the

LIF models required the least number of spiking operations, while

the HH model required the most. These findings could aid in

selecting the most appropriate SNN model based on the specific

requirements of the task, such as accuracy, biological plausibility,

and computational efficiency. Overall, this study sheds light on

the challenges and potential benefits of SNNs and their models.

It highlights the importance of comparing different models to

determine the most suitable and provides valuable insights for

researchers and practitioners working in this area.

2. Background

Artificial neural networks are computational models inspired

by the structure and function of the brain, aimed at replicating and

understanding human abilities (Bishop, 1995). Unlike traditional

artificial neural networks, which use continuous activation

functions to transmit information, SNNs use a “spike train”

representation, where the output of each neuron is a series of

discrete spikes (Ghosh-Dastidar and Adeli, 2009a,c). This allows

SNNs tomodel the precise timing and sequencing of neural activity,

making them well-suited for tasks that require the processing of

temporal patterns and spatiotemporal information (Zhang and Li,

2019). Therefore, these networks have found widespread use in

machine learning tasks such as function approximation and pattern

recognition (Le, 2013; Krizhevsky et al., 2017).
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As AGI research progresses, these works will continue to

serve as critical reference points for developing more efficient,

intelligent, and adaptive artificial intelligence systems with real-

world applications in diverse domains (Graves et al., 2008;

Sanaullah et al., 2023a). Therefore, some critical research works

have significantly contributed to the development of AGI through

brain-inspired paradigms, highlighting their key contributions and

implications for the future of artificial intelligence.

• Robust Spike-Based Continual Meta-Learning Improved by

Restricted Minimum Error Entropy Criterion by Yang et al.

(2022c): This pioneering study introduces a novel spike-

based framework that uses entropy theory for online meta-

learning in a recurrent SNN. MeMEE improves spike-

based meta-learning performance, shown through tasks

like autonomous navigation and working memory tests. It

emphasizes the integration of advanced information theory in

machine learning, offering new perspectives for spike-based

neuromorphic systems.

• Heterogeneous Ensemble-based Spike-driven Few-shot

Online Learning by Yang et al. (2022b): a novel spike-based

framework employing entropy theory for few-shot learning in

recurrent SNNs. The HESFOL model significantly enhances

the accuracy and robustness of few-shot learning tasks in

spiking patterns and the Omniglot dataset, as well as in

few-shot motor control tasks. Our study emphasizes the

application of modern entropy-based machine learning in

state-of-the-art spike-driven learning algorithms.

• SAM: A Unified Self-Adaptive Multicompartmental Spiking

Neuron Model for Learning with Working Memory

introduced by Yang et al. (2022a): a self-adaptive spiking

neuron model integrating spike-based learning with working

memory. SAM shows efficient and robust performance

across tasks like supervised learning, pattern classification,

and meta-learning, making it valuable for neuromorphic

computing in robotics and edge applications. It also offers

insights into the biological mechanisms of working memory.

• Neuromorphic Context-dependent Learning Framework with

Fault-tolerant Spike Routing (Yang et al., 2021a): This study

introduces a scalable neuromorphic fault-tolerant hardware

framework for event-based SNNs. It successfully learns

context-dependent associations despite possible hardware

faults, enhancing network throughput by 0.9–16.1%. The

proposed system enables real-time learning, decision-making,

and exploration of neuronal mechanisms in neuromorphic

networks.

Furthermore, SNNs use mathematical models to simulate the

behavior of biological neurons. These models capture the complex

behavior of neurons, including the propagation and integration

of electrical signals, as well as the refractory period during which

a neuron cannot fire a new spike (Tavanaei et al., 2019; Wang

et al., 2020). At a high level, SNNs are models of biological neural

networks that simulate the behavior of neurons in the brain using

mathematical equations. These equations capture the electrical

and chemical activity that occurs within neurons and between

them. The basic building block of an SNN is the spiking neuron,

which models the behavior of a biological neuron that fires an

action potential, or spike when it receives enough input. SNNs

also use mathematical models to describe the connectivity between

neurons. For example, a common model is the synapse model,

which describes the strength and dynamics of the connections

between neurons based on neurotransmitter release and reuptake

(Deco et al., 2008). Overall, the mathematical models used in SNNs

allow us to simulate the complex behavior of biological neural

networks and understand how they process information. These

models can also be used to develop new algorithms for machine

learning and artificial intelligence, which are inspired by the way

the brain processes information.

3. Results and discussion

Neuromorphic computing is a novel computing paradigm

known for its low power consumption and high-speed response.

Several notable research works in the field are worth mentioning.

For instance, the “Smart Traffic Navigation System for Fault-

Tolerant Edge Computing of Internet of Vehicles in Intelligent

Transportation Gateway (Yang et al., 2023)” focuses on developing

a fault-tolerant edge computing system for the Internet of Vehicle

applications in intelligent transportation. “CerebelluMorphic” is

a large-scale neuromorphic model and architecture designed for

supervised motor learning (Yang et al., 2021c). Lastly, “BiCoSS”

aims to create a large-scale cognitive brain with a multi-granular

neuromorphic architecture (Yang et al., 2021b). These innovative

works contribute to the advancement of neuromorphic computing

and demonstrate its potential in various applications, from

fault-tolerant edge computing to large-scale motor learning and

cognition systems.

SNN models are typically built using mathematical equations

that describe the behavior of spiking neurons. These equations take

into account various factors such as the input current, membrane

potential, and membrane time constant, to simulate the behavior of

biological neurons. Each SNN model has its own set of equations

that determine its behavior. In the study mentioned, different SNN

models have been investigated. These include namely LIF, NLIF,

AdEx, IF − SFA, ThNeuron, HH, QIF, IZH, and SRM models.

Each of these models is implemented using the update method,

which takes an input current and a time step and returns whether a

spike has occurred or not. The update method uses the equations

that describe the behavior of the spiking neurons to calculate

the membrane potential of each neuron at each time step. If

the membrane potential exceeds a certain threshold, a spike is

generated and propagated to the next neurons. By investigating

different SNN models, researchers can gain a better understanding

of how the brain processes information and how to design more

efficient and accurate artificial neural networks. SNN models

have potential applications in various fields, including robotics,

computer vision, and natural language processing.

Therefore, this study provides a comprehensive analysis

of SNNs and their mathematical models and contributes to

progress in the research discipline by addressing the challenges

in implementing SNNs for classification tasks that demand

high accuracy and low-performance loss using a simulational

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2023.1215824
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Sanaullah et al. 10.3389/fncom.2023.1215824

environment. The study compares the performance, behavior, and

spike generation of different SNN models using the same inputs

and neurons, providing valuable insights into the benefits and

challenges of SNNs and their models. The study also quantifies the

number of spiking operations required by eachmodel to process the

same inputs and output the same results, providing a comparative

analysis of the computational efficiency of the models.

3.1. Types of SNN models

We initialize the instance variables for each model and generate

random weights for each neuron. One of the simplest SNN models

is the LIF model, which is described by Equation 1:

τm
dV

dt
= −V(t)+ I(t) (1)

where τm is the time constant, V(t) is the membrane potential of

the neuron at time t, and I(t) is the input current at time t. The

membrane potential is updated based on the Equation 2:

V(t)← V(t)+
−V(t)+ I(t)

τm
· dt (2)

If membrane potential reaches the threshold potential Vth, the

neuron fires a spike and the membrane potential is reset to the

resting potential Vreset, which is described in Equation 3:

if V(t) ≥ Vth, then V(t)← Vreset (3)

A variation of the LIF model is the Non-Linear Integrate-

and-Fire (NLIF) model, which takes into account the non-linear

relationship between the membrane potential and the input

current. The NLIF model is described by Equation 4:

dV

dt
=
−V + I

τ
(4)

where V is the membrane potential, I is the input current, τ is

the membrane time constant, and dV
dt

represents the change in the

membrane potential over time. The membrane potential is updated

based on the Equation 5:

V(t)←

{

Vreset + α · (V(t)− Vth) & if V(t) ≥ Vth

V(t) · β & otherwise
(5)

where Vreset is the resting potential, α and β are scaling factors,

and Vth is the threshold potential. The membrane potential is

multiplied by β if it is below the threshold, which models the

leakage of current from the neuron over time. If the membrane

potential reaches the threshold potential, the neuron fires a spike

and the membrane potential is reset to the resting potential plus a

scaled depolarization of the membrane potential (as described by

Equation 6):

if V(t) ≥ Vth, then V(t)← Vreset + α · (V(t)− Vth) (6)

Another SNN model is the AdEX model, which captures the

dynamic behavior of spiking neurons more accurately than the LIF

or NLIF models. The AdExmodel is described by Equation 7:

dV

dt
=
−V + τmI − Vrheo +1T exp

(

V−Vspike

1T

)

τm
(7)

where V is the membrane potential of the neuron, I is the input

current, τm is the membrane time constant, Vrheo is the rheobase

potential,1T is the slope factor, andVspike is the threshold potential

at which the neuron fires an action potential. If V exceeds Vspike, a

spike is generated and V is reset to Vreset .

The IF − SFA model is another SNN model that incorporates

the adaptation of the firing rate of neurons in response to input

stimuli. The model is based on the LIF model with an additional

adaptation current, which modifies the membrane potential and

firing rate of the neuron over time. The IF−SFAmodel is described

by Equation 8:

τm
dV

dt
= −V(t)+ I(t)+ w(t) (8)

where τm is the time constant, V(t) is the membrane potential of

the neuron at time t, I(t) is the input current at time t, and w(t) is

the adaptation current. The membrane potential is updated based

on the following equations:

w(t) = w(t − 1)+
1

τw

(

A(V(t − 1)− Vrest)− w(t − 1)
)

1t (9)

V(t)← V(t − 1)+
−V(t − 1)+ I(t)− w(t)

τm
·1t (10)

where1t is the time step, τw is the time constant for the adaptation

current, A is the adaptation strength, and Vrest is the resting

potential of the neuron. The adaptation current w(t) is computed

based on the difference between the membrane potential and the

resting potential, and is added to the input current in Equation 8.

The membrane potential is updated based on Equation 10, where

the adaptation current is subtracted from the input current.

If the membrane potential reaches the threshold potential Vth,

the neuron fires a spike and the membrane potential is reset to

the resting potential Vrest . The adaptation current is also updated

according to Equation 11:

w(t)← w(t)+ b (11)

where b is a constant that represents the increase in the adaptation

current after a spike is generated. The increase in the adaptation

current leads to a decrease in the firing rate of the neuron over time,

allowing the neuron to adapt to the input stimulus.

The ThetaNeuron model is a more complex model that

incorporates the influence of a sinusoidal waveform, in addition

to the input current and membrane potential. The ThetaNeuron

model is described by Equation 12:

dV

dt
=
−V + Isyn + Iext + Itheta

τm
(12)
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where V is the membrane potential, Isyn is the synaptic input

current, Iext is the external input current, Itheta is the sinusoidal

input current, and τm is the membrane time constant. The

sinusoidal input current is described by Equation 13:

Itheta = Ithetamax
· sin(2π fthetat + φ) (13)

where Ithetamax
is the amplitude of the sinusoidal input current, ftheta

is the frequency of the theta rhythm, t is the time, and φ is the phase

of the theta rhythm. The membrane potential is updated based on

the Equation 14:

V(t)←
{

Vreset & if V(t) ≥ Vth V(t) & otherwise (14)

where Vreset is the resting potential and Vth is the threshold

potential. If the membrane potential reaches the threshold

potential, the neuron fires a spike and the membrane potential is

reset to the resting potential.

Furthermore, the ThetaNeuralmodel incorporates a sinusoidal

input current in addition to the synaptic and external input currents

to update the membrane potential based on Equation 12. If the

membrane potential reaches the threshold potential, the neuron

fires a spike and the membrane potential is reset to the resting

potential as described by the Equation 14. TheHH andQIF models

are fundamentally different from the LIF, NLIF, and AdEx models

because they do not use differential equations tomodel the behavior

of neurons. TheHHmodel is a biophysical model that simulates the

behavior of ion channels and currents in the neuron membrane.

It is described by a system of differential equations that represent

the time-dependent behavior of ion channels. The QIF model, on

the other hand, is a simplified model that assumes that the neuron

fires an action potential whenever its membrane potential crosses a

threshold. The QIF model is described by Equation 15:

Vi+1 = Vi +
1t

C

(

gsyn(Vsyn − Vi)+ Iext + Inoise
)

(15)

where Vi is the membrane potential of the neuron at time step i, C

is the capacitance of the neuron, gsyn is the conductance of synaptic

input, Vsyn is the reversal potential of the synaptic input, Iext is the

external current input, and Inoise is the random noise input.

Additionally, the Izhikevich (IZH) model captures the dynamics

of real neurons while being computationally efficient. It is described

by a set of ordinary differential equations that govern the behavior

of the neuron. The model consists of two main variables: the

membrane potential, denoted by v(t), and a recovery variable,

denoted by u(t). The IZH model is defined by the following

equations,

dv

dt
= 0.04v2 + 5v+ 140− u+ I (16)

du

dt
= a(bv− u) (17)

where a, b, and I are parameters that determine the behavior of

the neuron. The parameter I represents the input current to the

neuron, which can be thought of as the summation of all the

incoming currents from other neurons or external sources. The

terms 0.04v2 + 5v + 140− u and a(bv − u) describe the dynamics

of the membrane potential and the recovery variable, respectively.

So, the update process of the implemented IZH model involves

integrating these equations over time using numerical integration

methods, such as Euler’s method:

v(t +1t) = v(t)+
(

0.04v2 + 5v+ 140− u+ I
)

·1t (18)

u(t +1t) = u(t)+
(

a(bv− u)
)

·1t (19)

If the membrane potential v(t) exceeds a certain threshold,

typically set to 30.0, the neuron is considered to have fired a spike.

In that case, the membrane potential is reset to a specific value c,

and the recovery variable is incremented by a fixed value d. This

reset and increment simulate the after-spike behavior of the neuron.

Hence, the update equations after a spike are:

v(t) = c (20)

u(t) = u(t)+ d (21)

Therefore, the IZH model provides a computationally

efficient yet biologically inspired representation of spiking neuron

dynamics. By adjusting the parameters a, b, c, and d, different

spiking patterns can be replicated, allowing for the modeling of a

wide range of neuron behaviors.

In the SRM, each neuron has two variables: the membrane

potential, denoted as Vinit , and the synaptic variables, denoted

as s(t) and r(t). The membrane potential represents the electrical

potential across the neuron’s membrane, while the synaptic

variables capture the post-synaptic response to incoming spikes. It

is described by the equations:

ds

dt
= −

s

τs
+ r (22)

dr

dt
= −

r

τr
(23)

dV

dt
= −

V − input current−
∑

i wisi

τs
(24)

where τs and τr are the time constants for the synaptic and

refractory dynamics, respectively. s and r are the synaptic variables,

which decay exponentially over time. The input current represents

the external input to the neuron, and
∑

i wisi represents the

weighted sum of the incoming spikes from other neurons, where

wi is the weight associated with each connection and si is

the corresponding synaptic variable of the pre-synaptic neuron.

Therefore, the update process of the implemented SRM model
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involves integrating these equations over time using numerical

integration methods:

s(t +1t) = s(t)+
(

−
s(t)

τs
+ r(t)

)

·1t (25)

r(t +1t) = r(t)+
(

−
r(t)

τr

)

·1t (26)

V(t +1t) = V(t)+
(

−
V(t)− input current+

∑

i wisi

τs

)

·1t

(27)

Additionally, the SRM model includes a threshold potential

Vth and a reset potential Vreset. If the membrane potential reaches

or exceeds the threshold Vth, the neuron fires a spike, and the

membrane potential is reset to Vreset. The synaptic variables s and r

are also incremented by 1.0 to represent the post-synaptic response

to the spike.

However, it is possible to combine different models in a single

network, as long as the models are compatible with each other and

can be integrated seamlessly. For example, the HH model can be

used to model the behavior of individual neurons in a network,

while the QIF model can be used to model the behavior of the

network as a whole. However, it is important to note that the HH

and QIF models are much more complex and computationally

intensive than the simpler SNN models and may not be suitable

for all applications (Ma and Wu, 2007).

3.2. Dataset

Datasets play a crucial role in the development and evaluation

of machine learning models, including spiking neural networks.

They provide the necessary input for the models to learn and

make predictions, and the quality and suitability of the dataset

can significantly impact the model’s performance. There are

various types of datasets available for machine learning, including

benchmark datasets, real-world datasets, and synthetic datasets.

Each type of dataset has its advantages and disadvantages, and the

choice of dataset depends on the task at hand and the goals of

the study. The MNIST dataset and other benchmark datasets are

commonly used for evaluating machine learning models, including

spiking neural networks. However, these datasets are limited in

terms of their complexity and do not necessarily reflect the

challenges of real-world problems. In contrast, synthetic datasets

can be tailored to specific tasks and can provide a more controlled

environment for comparing different models. The synthetic dataset

used in this study was designed to have two classes that are easily

separable by a linear classifier, which allows for a straightforward

evaluation of the performance of different models. Additionally,

the synthetic dataset is more transparent in terms of the underlying

data generation process, which can help in identifying the strengths

and weaknesses of different models. For example, the MNIST

dataset is a well-known benchmark dataset for image classification

and the input images are preprocessed and normalized, the

performance of each model is expected to be similar, due to the

same parameters (tau, v_reset, v_th, alpha, n_neurons, and dt),

and the same number of neurons (n_neurons) has been used for

almost every model. Therefore, using a synthetic dataset can be a

useful tool for comparing and evaluating different spiking neural

network models, especially for tasks where real-world datasets are

not readily available or do not provide enough complexity.

A synthetic dataset used for this study was generated using

the following approach; Let nsamples = 1, 000, x1 ∼ N (0, 1),

x2 ∼ N (3, 1), X =
[

x1 x2

]

, y =
[

0nsamples
1nsamples

]

, where

0nsamples
and 1nsamples

are the vectors of length nsamples filled with

zeros and ones, respectively. To shuffle the dataset, let indices =
[

0 1 · · · 2nsamples − 1
]

, and apply a random permutation to

indices. Then, let X and y be the arrays obtained by indexing X and

y with the shuffled indices.

For example, the dataset contains a total of nsamples = 1, 000

samples, and two features, x1 and x2, were generated for each

sample using normal distributions. Specifically, x1 was sampled

from a normal distribution with a mean of 0 and a standard

deviation of 1, denoted as N (0, 1). On the other hand, x2 was

sampled from a normal distribution with a mean of 3 and a

standard deviation of 1, denoted asN (3, 1). The feature matrix for

all samples is denoted as X and is represented as follows:

X =















x
(1)
1 x

(1)
2

x
(2)
1 x

(2)
2

...
...

x
(nsamples)

1 x
(nsamples)

2















(28)

The corresponding labels for the samples were created to form

a binary classification problem. The label vector y has a length

of 2nsamples, containing nsamples zeros followed by nsamples ones. In

mathematical notation:

y =
[

0nsamples
1nsamples

]

(29)

Here, 0nsamples
represents a vector of length nsamples filled with

zeros, and 1nsamples
represents a vector of length nsamples filled with

ones. To randomize the dataset, a set of indices, denoted as indices,

is created as follows:

indices =
[

0 1 · · · 2nsamples − 1
]

(30)

This array contains consecutive integers from 0 to 2nsamples−1.

Next, a random permutation is applied to the indices array to shuffle

the dataset randomly. Finally, the feature matrix X and the label

vector y are updated based on the shuffled indices. The elements

of X and y are rearranged according to the new order provided by

the shuffled indices. As a result of this process, the synthetic dataset

with 1,000 samples, each having two features (x1 and x2) and

corresponding binary labels. This dataset can be used to train and

evaluate machine learning models for binary classification tasks.

3.3. Comparison

In this study, the performance of the different SNN neural

models was explored using classification accuracy and performance

loss as the performance metrics, where classification accuracy

measures the percentage of correctly classified samples or data
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FIGURE 1

Comparison of accuracy and error rates for di�erent neuron models.

points by a model. Therefore, we used classification accuracy

to evaluate how accurately each SNN model classified the input

data based on the comparison of predicted spikes with the true

labels. The accuracy is calculated as the mean of the element-

wise equality comparison and then multiplied by 100 to obtain a

percentage value. A higher accuracy indicates a better-performing

model in terms of its ability to correctly classify the input patterns.

Performance loss, on the other hand, quantifies the deviation

or error of the model’s predictions from the ground truth or

desired output. It provides an indication of the model’s ability to

accurately represent the input data. In this study, the performance

loss is calculated as the error rate, which demonstrates the

percentage of misclassified samples. A lower error rate indicates

a better-performing model with less deviation from the desired

output. It is important to note that the specific definitions and

measurements for classification accuracy and performance lossmay

vary depending on the context and objectives of the study. In our

case, these metrics were chosen as they are commonly used in

evaluating the performance of classification tasks and provide a

straightforward assessment of the SNN models’ capabilities.

It is important to note that, the proposed approach of

this study does not implement a typical neural network

with layers, connectivity, and learning mechanisms. Instead,

it presents a collection of different single-neuron models and

trains each model individually to classify a synthetic dataset.

Each of the defined models (e.g., LIF, NLIF, AdEx, HH,

etc.) represents a single-neuron model. These models are not

interconnected in a multi-layer network, and there is no

learning mechanism such as backpropagation or gradient descent.

Therefore, using a single-neuron model have several benefits

that make them useful for certain applications and provide clear

comparisons.

• Simplicity: Single-neuron models are relatively simple

compared to complex multi-layer neural networks. They

provide a clear and intuitive understanding of how individual

neurons respond to input stimuli and how their dynamics

influence their behavior.

• Insight into individual neuron behavior: Each model focuses

on a single neuron type and highlights specific properties and

behaviors unique to that neuron. This allows researchers to

study and compare the characteristics of different neurons in

isolation.

• Interpretability: Due to their simplicity, single-neuron

models are more interpretable. It is easier to analyze and

understand the role of individual model parameters on the

neuron’s behavior.

• Benchmarking: Single-neuron models can serve as

benchmarks for evaluating more complex neural

network models. They provide a baseline to compare

the performance of more sophisticated models in certain

tasks, especially when the task can be effectively handled by a

single neuron.

• Model selection: When faced with various neuron models,

single-neuron simulations can help select the most suitable

model for specific applications. Comparing the responses of

different models to various inputs can aid in choosing the one

that best captures the desired neuron behavior.
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• Biological plausibility: Some of the single-neuron models,

such as the Hodgkin-Huxley model, are biologically inspired

and attempt to replicate the behavior of real biological

neurons. These models help researchers explore and

understand the mechanisms underlying neural dynamics.

• Fast simulations: Since single-neuron models have fewer

parameters and computations compared to deep neural

networks, simulations can be faster and computationally

less demanding. This advantage is especially useful when

exploring a wide range of parameters or conducting large-scale

simulations.

Therefore, this study demonstrates how to simulate and

evaluate the spike responses of different single-neuron models in

response to a synthetic dataset. It does not implement a traditional

neural network with layers and learning mechanisms. Figure 1

shows the accuracy and error rates of each neural model, allowing

for a clear comparison of their performance. Among the models,

the AdEX model demonstrated the highest accuracy, achieving an

accuracy of 90.05% with an error rate of 0.10%. On the other

hand, the HH model exhibited the lowest accuracy with error rates

of 0.50 and 49.55% respectively, and the SRM model reveal the

second lowest accuracy of 49.95% with an error rate of 0.50%. The

Izhikevichmodel obtained an accuracy of 50.05% with an error rate

of 0.50%. The simplest neural model, LIF achieved an accuracy of

71.20% with an error rate of 0.32% and the NLIF model achieved

an accuracy of 66.55% with an error rate of 0.35%. However, the

IF − SFAmodel also achieved an accuracy of 84.30% with an error

rate of 0.14% and the QIF model achieved an accuracy of 70.70%

with an error rate of 0.27%. Lastly, theThetaNeuronmodel achieved

an accuracy of 58.55% with an error rate of 0.42%. Overall, the

AdEX model showed the highest accuracy, while the HH, IZH, and

SRM models had the lowest accuracy. These accuracy and error

rate values provide a quantitative assessment of the performance of

each SNNmodel, allowing for a clear understanding of their relative

capabilities in accurately classifying the input spiking patterns.

In addition to the accuracy and error rates, we wanted to

understand how well each SNN model performed compared to

the others. To do this, we used a metric called “performance

loss.” Performance loss measures how much a particular SNN

model’s accuracy deviates from the accuracy of the best model on

the dataset. In Table 1, you can see the performance loss of each

model relative to the best model. Let’s take the LIF model as the

reference. The LIF model displayed a performance loss of –45.63%

when compared to the ThetaNeuronmodel, indicating it performed

45.63% worse than the latter. In contrast, the LIF model had a

performance loss of –9.36% relative toNLIF, meaning it performed

9.36% worse than NLIF. However, when comparing LIF to AdEx, it

showed a performance loss of 20.08%, suggesting that it performed

20.08% better than AdEx.

Similarly, the HH model exhibited a performance loss of

–40.27% compared to LIF, indicating it performed 40.27% worse

than LIF. The Izhikevich model had a performance loss of –

44.76% relative to LIF, while the SRM model and the IF − SFA

model had performance losses of –44.90 and –44.32% respectively,

both compared to LIF. However, when comparing LIF to QIF,

the performance loss was only 0.14%, suggesting that their

performance was quite similar. Moving on to NLIF, it displayed

a performance loss of –33.17% relative to ThetaNeuron, implying

it performed 33.17% worse than ThetaNeuron. The performance

loss of NLIF compared to HH and Izhikevich was –40.27 and –

44.76% respectively, indicating its worse performance in both cases.

Similarly, NLIF had a performance loss of –44.90 and –44.32%

when compared to SRM and IF−SFA respectively. However, similar

to LIF, NLIF showed a negligible performance loss of 0.14% when

compared to QIF.

Lastly, let’s considerAdEx, which served as the referencemodel.

It displayed a substantial performance loss of –82.21% compared

to ThetaNeuron and –75.51% compared to HH. Furthermore,

its performance loss relative to Izhikevich, SRM, and IF − SFA

was –81.12, –81.30, and –80.58% respectively. Surprisingly, AdEx

showed a relatively lower performance loss of –24.95% when

compared to QIF, indicating a better performance than QIF. This

detailed analysis provides valuable realization into how each SNN

model performed relative to the best model, helping us understand

their strengths and weaknesses in the context of this dataset.

On the other hand, when we take the LIF model as the

reference, we find that the NLIF model had a performance loss

of –6.99%, which means it actually performed slightly better than

LIF. The HH model had a performance loss of 29.28% relative

to LIF, the IF − SFA model had a performance loss of 15.31%,

and the QIF model had a performance gain of 0.70%, indicating

it performed slightly better than LIF. The ThetaNeuron model had

a performance loss of 20.01%.

These performance loss values demonstrate how much

each SNN model deviates or misclassifies compared to the

reference model mentioned. Negative values mean a smaller

deviation, indicating better performance compared to the reference

model. Positive values indicate a larger deviation, meaning

worse performance compared to the reference model. Therefore,

performance loss allows for a direct comparison of different

SNN models relative to a selected reference model. Instead of

focusing solely on absolute accuracy values, this metric provides

insights into how well each model performs concerning a chosen

benchmark, helping to identify the most suitable model for a

particular task. Thus, measuring performance loss offers a valuable

and efficient way to compare and evaluate the relative performance

of different SNN models. It also complements traditional accuracy

metrics and provides essential information for model selection,

optimization, and understanding of the behavior of SNNs in

practical applications.

3.3.1. Network topology and training algorithm
To compare the intrinsic properties of different neural models

and to ensure a fair comparison, as a result, we used a common

network topology and synaptic weight configuration for all models.

The network topology refers to the arrangement of neurons and

their connections in the network. In our case, we used a consistent

topology with 1,000 neurons. However, it’s important to note

that the choice of network topology can significantly impact the

performance of SNN models. Different network structures, such

as random (Polk and Boudreaux, 1973), small-world (Fell and

Wagner, 2000), or scale-free (Goh et al., 2002) networks, can
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TABLE 1 Performance loss of di�erent SNN models.

Performance loss of each model relative to other models (%)

Model LIF NLIF AdEX HH Izh SRM IFSFA QIF Th.Nu.

LIF X –45.63 –9.36 20.08 –40.27 –44.76 –44.90 –44.32 0.14

NLIF –9.36 X 20.08 –40.27 –44.76 –44.90 –44.32 0.14 –33.17

AdEx –25.12 –36.83 X –75.51 –81.12 –81.30 –80.58 –24.95 –82.21

HH 28.71 22.04 43.02 X –3.20 –3.30 –2.89 28.81 –3.82

Izhikevich 30.92 24.45 44.79 3.10 X –0.10 0.30 31.01 –0.60

SRM 30.99 24.53 44.84 3.19 0.10 X 0.40 31.08 –0.50

IFSFA 30.71 24.23 44.62 2.81 –0.30 –0.40 X 30.81 –0.90

QIF –0.14 –9.51 19.97 –40.46 –44.96 –45.10 –44.52 X –45.83

ThetaNeuron 31.33 24.91 45.12 3.68 0.60 0.50 0.90 31.43 X

The table illustrates the classification accuracy of various single-neuron models, including LIF, NLIF, AdEx, HH, IZH, SRM, IF − SFA, QIF, and ThetaNeuron, on a synthetic dataset. The

performance loss is calculated as the difference in accuracy between each model and the best-performing model among them. Lower performance loss values indicate better classification

performance for a given model compared to others. This analysis provides insights into the diverse spiking behaviors and relative strengths of the different SNN models in the context of the

classification task. X is used to indicate the model in a row that was compared with other models.

exhibit different dynamical behaviors and information processing

capabilities. Optimizing the network topology based on the

specific requirements of a given task or problem can enhance the

performance of SNN models. Similarly, synaptic weights represent

the strength of connections between neurons. In our study, we

used randomweights for each model. However, the optimization of

synaptic weights is crucial for achieving desired network behavior.

Adjusting the synaptic weights can modulate the influence of one

neuron on another and control the overall dynamics of the network.

Techniques such as Hebbian learning (Kosko, 1986), spike-timing-

dependent plasticity (STDP; Dan and Poo, 2004), or other learning

rules can be employed to optimize the synaptic weights based

on specific learning objectives or data patterns. Therefore, in this

study, we focused on comparing the intrinsic properties of different

SNN models, the optimization of network topology and synaptic

weights is an important aspect that could be explored in future

studies. By fine-tuning these parameters, it is possible to further

enhance the performance and capabilities of SNN models, making

them more suitable for specific applications or tasks.

Furthermore, the primary focus of this research study was

specifically focused on comparing the behavior and performance

of different SNN neural models without involving specific training

algorithms. This choice allowed us to evaluate the inherent

characteristics of each model in a controlled setting. Therefore, by

executing the SNNmodels with the same inputs and analyzing their

spike generation patterns, we aimed to gain a deep understanding

of the fundamental properties of each model, such as their

spike response dynamics and computational capabilities. This

approach enabled researchers and developers to compare how each

model processed and encoded information in the form of spiking

activity. Furthermore, the theoretical basis for these performance

measurements lies in the goal of accurately representing and

classifying input patterns within the context of SNNs. Classification

accuracy and performance loss provide quantitative measures to

assess how well and accurately a model captures and interprets the

information contained in the input spiking patterns.

However, it’s important to note that training algorithms play a

crucial role in optimizing SNNmodels for specific tasks or learning

objectives. Different training algorithms can be employed to adjust

the synaptic weights and optimize the network’s performance.

But the choice of training algorithm can significantly impact

the performance and capabilities of SNN models. Some models

may perform better than others when subjected to a specific

training algorithm, while their performance may differ when

another algorithm is used. Thus, the selection of a suitable training

algorithm depends on the specific task at hand and the desired

learning objectives. Therefore, future research can explore the

impact of different training algorithms on the performance of

the compared SNN models. To provide a more comprehensive

analysis by evaluating the models’ performance under various

training scenarios, researchers can gain a deeper understanding of

the interplay between model architectures and learning algorithms,

ultimately leading to more informed design choices for specific

applications or tasks.

3.3.2. Spiking activity
The spiking activity of each neural model is crucial because

it reflects the dynamic behavior of neurons in SNNs. Unlike

traditional artificial neural networks, which rely on continuous

activation functions, SNNs operate based on the generation of

discrete spikes. Understanding the spiking activity of different

neural models provides insights into their temporal characteristics,

spike patterns, firing rates, and the information processing

capabilities of the networks. Therefore, in this study, we investigate

different SNN models and these models are used to simulate

spiking activity in neurons under different conditions. For example,

the LIF and NLIF models use a simple leaky integrate-and-fire

approach to generate spikes based on the input current, while

the AdEx model includes an adaptation current that changes over

time. The HH model is based on the Hodgkin-Huxley equations

and includes voltage-gated ion channels that contribute to spike
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generation. Each of these models is characterized by a set of

parameters that define the behavior of the neuron. For example,

the membrane time constant, membrane resistance, and spike

threshold are important parameters for the LIF and NLIF models.

The AdExmodel includes additional parameters for the adaptation

current, such as the time constant and the subthreshold and spike-

triggered conductances. TheHHmodel includes parameters for the

maximum conductances of different ion channels, their reversal

potentials, and the gating variables that control their activation and

inactivation.

Furthermore, we visualized the spiking activity of the neurons

in each SNN model over time duration of each time interval in a

simulation or numerical computation. For example, Huxley neuron

model, the time step determines how frequently the state variables

of the system (e.g., membrane potential and gating variables) are

updated based on the differential equations. Figure 2, shows the

spiking activity of each neural model in response to an input

current pulse, and Table 2, represents the parameter values used

for each model spiking activity comparison. The input current

pulse (depicted by the horizontal bar) is applied to all the models

at the same time points. As the input current is integrated by

each model, their respective membrane potentials rise. Once the

threshold potential is reached, each neuron generates a spike, and

the membrane potential is reset to its resting potential (Vreset). A

refractory period is applied to simulate the temporary inactivity

of the neurons after spiking. Different models may exhibit various

spiking patterns, response times, and numbers of spikes depending

on their unique dynamics and parameters. The combined Figure 2

allows for a direct visual comparison of how each model responds

to the same input current pulse.

In general, the visualization of spiking activity over time is a

commonly used technique for analyzing and comparing different

SNN models. For example, the LIF model is a simplified version of

the NLIF model, where there is no subthreshold adaptation.

LIF neural model:

The differential equation used in generating spike activity

for the membrane potential Vlif in the LIF model is given by

Equation 31:

dV =
−Vlif [i− 1]+ (Rm ∗ I[i− 1])/gleak

τ
(31)

Where dV is the change in membrane potential and Vlif [i], is

the membrane potential at the time step i. Rm is the membrane

resistance. I[i − 1] is the input current at the time step i − 1. gleak
is the leak conductance and τ is the membrane time constant. So,

if the membrane potential Vlif [i] crosses the spike threshold Vth, a

spike is generated (Spikeslif [i] = 1), and the membrane potential is

reset to Vreset .

NLIF neural model:

The NLIF model is an extension of the classical LIF model

with subthreshold adaptation. It includes a nonlinearity in the

update of the membrane potential. The differential equation used

in generating spike activity for the membrane potential Vnlif in the

NLIF model is given by Equation 32:

dV =
−Vnlif [i− 1]+ Rm∗I[i−1]

gleak
+ Vnlif [i−1]2

τ
(32)

Where the variables have the samemeaning as in the LIFmodel.

Accordingly, If the membrane potential Vnlif [i] crosses the spike

threshold Vth, a spike is generated (Spikesnlif [i] = 0.7), and the

membrane potential is reset to Vreset .

AdEx neural model:

The AdEx model is a more biologically detailed model that

includes adaptive exponential conductances. It captures the spike-

frequency adaptation phenomenon. The differential equations for

the membrane potential Vadex and the adaptation variable wadex in

the AdExmodel are given by these equations,

dV =
−Vadex[i− 1]+ Rm∗I[i−1]

gleak
+ wadex[i− 1] ∗ exp(

Vadex[i−1]−Vth
τ

)

τ
(33)

Vadex[i] = Vadex[i− 1]+ dV ∗ dt (34)

dw =
a ∗ (Vadex[i− 1]− Vreset)− wadex[i− 1]

τw
(35)

wadex[i] = wadex[i− 1]+ dw ∗ dt (36)

Here, dV is the change in membrane potential, Vadex[i] is

the membrane potential, and wadex is the adaptation variable

at time step i. Rm is the membrane resistance and τw is the

adaptation time constant. Where a is the subthreshold adaptation

conductance and b is the spike-triggered adaptation increment. If

the membrane potential Vadex[i] crosses the spike threshold th, a

spike is generated (Spikesadex[i] = 0.9), and both the membrane

potential and the adaptation variable are reset accordingly. These

models demonstrate different levels of complexity in simulating

the behavior of neurons. Because the NLIF model introduces

a nonlinear update of the membrane potential, the LIF model

simplifies it to linear, and the AdEx model adds spike-frequency

adaptation to capture more biological realism.

HH neural model:

The HH model is a biophysical model that describes the

behavior of excitable cells, such as neurons. It is based on the

dynamics of ion channels and membrane currents. The HH model

includes four state variables, V (membrane potential), n (activation

variable for potassium), m (activation variable for sodium), and

h(inactivation variable for sodium). So, the differential equations

used for the calculation of spiking activity for the state variables in

the HH model by the following equations,

dn

dt
= αn(V) ∗ (1− n)− βn(V) ∗ n (37)

dm

dt
= αm(V) ∗ (1−m)− βm(V) ∗m (38)

dh

dt
= αh(V) ∗ (1− h)− βh(V) ∗ h (39)
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FIGURE 2

Spiking activity of di�erent SNN models in response to an input current pulse. Each line or curve represents the membrane potential of a specific

neuron model, while the red “x” markers indicate the occurrences of spikes. Each model exhibits unique dynamics, producing distinct patterns of

spiking activity.
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Where V is the membrane potential. n, m, and h are

gating variables representing the probabilities of the corresponding

ion channels being open. [αn(V), βn(V)], [αm(V), βm(V)], and

[αh(V),βh(V)] are voltage-dependent rate functions that control

the opening and closing of the ion channels. And the ionic currents

in the HH model are described by:

INa = gNa ∗m3 ∗ h(V − ENa) (40)

IK = gK ∗ n4(V − EK) (41)

IL = gL(V − EL) (42)

Here INa, IK , and IL represent sodium current, potassium

current, and leak current respectively. where gNa, gK , and gL are

the maximum conductances of the corresponding ion channels and

ENa, EK , and EL are the reversal potentials for sodium, potassium,

and the leak conductance, respectively.

Thus, the total membrane current Im is the sum of the

ionic currents and the input current I divided by the membrane

capacitance Cm:

Im =
I + INa + IK + IL

Cm
(43)

If the membrane potential V crosses the spike threshold th, a

spike is generated (Spikeshh[i] = 1, and the membrane potential

is reset to Vreset . The gating variables n, m, and h are also updated

using the rate functions accordingly. Therefore, the HH model is

more biophysically detailed than the previously explained neuron

models, as it considers the dynamics of multiple ion channels and

their interactions in generating action potentials.

IFSFA neural model:

The IFSFA model is designed to capture the phenomenon of

neurons firing at different frequencies depending on the input

current and their previous spiking activity. The IFSFA model

includes two state variables, Vifsfa (membrane potential) and Uifsfa

(adaptation variable). Following equations are used to calculate the

spiking activity of the IFSFAmodel.

dVifsfa

dt
=

Rm(0.04 ∗ V2
ifsfa
+ 140− Uifsfa + 1)

Cm
(44)

dUifsfa

dt
= a(K ∗ (Vifsfa − Vr)− Uifsfa) (45)

Where Vr is the resting membrane potential, K is a sensitivity

parameter of the membrane potential, and a is the subthreshold

adaptation conductance. The rest of the variables have the same

meaning as defined above. The adaptation variable Vifsfa is used

to implement spike-frequency adaptation. When the membrane

potential Vifsfa crosses the threshold Vpeak, a spike is generated

(Spikesifsfa[i] = 1), and the membrane potential is reset to a lower

value C Additionally, the adaptation variable Uifsfa is increased by

the after-spike reset value d. So, If the membrane potential Vifsfa

falls below the resting membrane potential Vr , it is reset to Vr to

prevent it from becoming negative. Overall, the IFSFA model is a

simple yet effective way to incorporate spike-frequency adaptation

into the integrate-and-fire neuron model to better mimic certain

aspects of real neuron behavior.

QIF neural model:

The QIF model incorporates a quadratic term to capture the

nonlinearity of the neuron’s behavior near the spike threshold. That

includes three main components: the membrane potential Vqif , the

spike threshold Vth, and the reset potential Vreset . Below described

equation is used for calculating the spiking activity of the QIF

model based on Table 2 shown values,

dVqif

dt
=
−Vqif +

√
Cm ∗

√
I

τref
(46)

The quadratic term,
√
Cm ∗

√
I, introduces nonlinearity to

the model. The membrane potential Vqif approaches the spike

threshold more rapidly as the input current I increases. When

the membrane potential Vqif crosses the spike threshold Vth, a

spike is generated (Spikesqif [i] = 1), and the membrane potential

is reset to Vreset . Additionally, a refractory period is initiated to

prevent immediate spiking after a spike. The refractory period is

represented by the variable refqif , which is initialized to zero and

is set to
τref
dt

when a spike occurs. During the refractory period,

the membrane potential remains at the reset potential. So, If the

refractory period refqif is greater than zero, the membrane potential

is held at the reset potential Vreset until the refractory period ends.

Thus, it is a model that provides a simple yet effective way to

introduce nonlinearity near the spike threshold, which allows it to

capture certain behaviors of spiking neurons more accurately.

ThetaNeuron neural model:

The ThetaNeuron model incorporates a threshold potential θ

to generate spikes. It is designed to represent neurons that exhibit

spiking activity when the membrane potential reaches a specific

threshold. It includes two main components: the membrane

potential Vθ and the threshold potential θ . Therefore, to calculate

the spiking activity of theThetaNeuronmodel based on Equation 47

and using the values shown in Table 2 for demonstration, the

generated plot can be observed in Figure 2.

dVtheta

dt
=
−(Vtheta − Vr)+ g(θ − Vtheta)+ I

τ
(47)

The ThetaNeuron model equation includes three terms that

affect the change in membrane potential:

1. −(Vtheta − Vr): This term represents the difference between the

membrane potential Vtheta and the reset potential Vr . It drives

the membrane potential back toward the reset potential after a

spike.

2. g(θ − Vtheta: This term represents the input conductance g

multiplied by the difference between the threshold potential

θ and the current membrane potential Vtheta. When the

membrane potential approaches the threshold potential, this
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TABLE 2 Parameter values employed for each model.

Parameter values used for each-model

Parameters LIF NLIF AdEX HH Izh SRM IFSFA QIF Th.Nu.

Time step 0.1 0.1 0.1 1.5 0.1 0.5 0.1 0.1 0.1

Time constant 10 10 10 X 20 10 X X 20

Membrane resistance 1.0 1.0 1.0 X 10 5.0 1.0 X X

Threshold value 1.0 1.0 1.0 –66 –60 –60 35 1.0 –50

Reset membrane potential (MP) 0.0 0.0 0.0 0.0 –90 –90 –60 0.0 –70

Initial potential 0.5 0.5 0.5 –65 –90 –90 –90 0.5 –70

Refractory period X X X X 10 1.0 X 2 X

Leak conductance 0.1 0.1 0.1 0.3 X 0.01 X X X

Adaptation time constant 30 30 30 X X X 200 X X

Adaptation conductance 0.001 0.001 0.001 X X X 0.01 X X

Adaptation increment 0.01 0.01 0.01 X X X –0.1 X X

Membrane capacitance X X X 1.0 X 5.0 100 0.1 X

Sodium conductance X X X 120 X X X X X

Potassium conductance X X X 36 X X X X X

Sodium reversal X X X 50 X X X X X

Potassium reversal X X X –82 X X X X X

Leak reversal X X X –84.4 X X X X X

Recovery variable (RV) X X X X 0.02 X X X X

Sensitivity (RV/MP) X X X X 0.2 X 0.7 X X

After-spike reset X X X X –95 X –50 X X

After-spike reset (RV/AV) X X X X 6.0 X 100 X X

Input conductance X X X X X 1.5 X X 1.5

Synaptic time constant X X X X X 5.0 X X X

Synaptic reversal potential X X X X X 0.01 X X X

Synaptic weight X X X X X 0.09 X X X

term drives the potential toward the threshold, potentially

leading to a spike.

3. I: This term represents the input current at the time step i − 1.

It provides external input to the neuron and can influence the

neuron’s spiking behavior.

Therefore, the ThetaNeuron model is a useful model for

simulating neurons that fire action potentials when the membrane

potential reaches a specific threshold. It is commonly used in neural

network simulations and can be adapted to capture various firing

patterns by adjusting the model’s parameters.

Izhikevich neural model:

The Izhikevich model is a two-dimensional simplified neuron

model proposed by Eugene M. Izhikevich. It captures the

spiking behavior of neurons with a reduced set of variables and

equations. The Izhikevich model includes two main components:

the membrane potential Vizh and the recovery variable u. The

following differential equations are used for the calculation of

spiking activity for the membrane potential Vizh and the recovery

variable u in the Izhikevichmodel are given by:

dVizh

dt
=

Rm(0.04 ∗ V2
izh
+ 5 ∗ Vizh + 140− u+ I)

τ
(48)

du

dt
= a(b ∗ Vizh − u) (49)

Where a is the recovery variable time scale, b is the sensitivity

of the recovery variable, and I is the input current at time step i−1.

The first Equation 48 represents the evolution of the membrane

potentialVizh based on the input current I and the recovery variable

u. The second Equation 49 represents the evolution of the recovery

variable u based on the membrane potential Vizh and its own

dynamics. Therefore, the variable in_refractory_period is used to
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implement a refractory period after a spike. If in_refractory_period

is greater than zero, the neuron is in a refractory period, and

the membrane potential remains at the reset potential until the

refractory period ends. This refractory period is implemented to

prevent immediate spiking after a spike. Overall, the Izhikevich

neuron model is widely used in computational neuroscience and

artificial neural networks due to its simplicity and versatility in

capturing various neuron behaviors.

SRM neural model:

The SRM model incorporates synaptic dynamics to simulate

post-synaptic responses following spikes. It models the dynamics

of the membrane potential Vsrm and the post-synaptic response

variable s to simulate the neuron’s spiking behavior and synaptic

interactions. We used the following equations for generating the

spiking activity of the SRM model using parametric values shown

in Table 2:

ds

dt
=

(−s+ A ∗ spikessrm)
τs

(50)

dVsrm

dt
=
−(Vsrm − Vr)+ g(θ − Vsrm)+ s ∗ A(Es − Vsrm)+ I

τ ∗ Cm
(51)

Where τs is the synaptic time constant, A is the synaptic

weight representing the strength of the synapse, θ is the threshold

potential, gL is the leak conductance, Es is the synaptic reversal

potential, and V0 is the initial potential (set to a value higher than

θ for spiking). The rest of the variables have the same meaning

as defined above. Therefore, the first Equation 50 represents the

dynamics of the post-synaptic response variable s, which captures

the synaptic conductance changes following spikes from other

neurons. It decays toward zero with a time constant τs and is

updated based on the occurrence of spikes from the neuron

(spikessrm).

The second Equation 51 represents the dynamics of the

membrane potential Vsrm based on the input current I, the

synaptic conductance s, and the leak conductance gL. The term

(s ∗ A(Es − Vsrm) contributes to the synaptic current. When

the membrane potential Vsrm crosses the threshold θ , a spike

is generated (spikessrm[i] = 1), and the membrane potential is

reset to the reset potential Vr . Additionally, to model the leak

conductance, the equation−Vsrm+V0 is integrated over time, and

the leak conductance gL is applied every τref time steps. Because of

that, the SRM neuron model is a valuable tool for computational

neuroscience and neural network simulations that involve synaptic

interactions.

Thus, by simulating the spiking activity of various neural

network models, researchers can gain a clear understanding of the

mechanisms underlying neural computation and communication.

For instance, they can investigate how different input patterns

affect the firing rate and temporal precision of spike trains or how

different neuromodulators or pharmacological agents impact the

behavior of ion channels and other membrane proteins. Such study

and analysis help researchers and developers to understand how

different models simulate the behavior of biological neurons. It

allows for the exploration of various coding schemes, spike-timing-

dependent plasticity, and other mechanisms that play a significant

role in information processing in the brain. Additionally, studying

the spiking activity can provide insights into the computational

efficiency and resource requirements of different models, aiding in

the selection of the most suitable model for specific applications.

By examining the spiking activity of each neural model, researchers

can gain a deeper understanding of how these models perform

and behave, ultimately leading to advancements in SNNs and

their applications.

3.3.3. Computational complexity
Each neuron model is a mathematical description of how

neurons work, and each model has its own set of equations that are

used to simulate the behavior of neurons. These equations involve

mathematical operations such as addition, multiplication, and

exponentiation, which are computationally expensive. Therefore,

analyzing the computational complexity of each model is updating

the neuron state at every time step, but their implementations are

different. For example, the LIF model uses a simple thresholding

rule, while the NLIF model uses a non-linear function to update

the neuron state. Thus, analyzing the computational complexity of

each model, e.g., by counting the number of operations required to

update the neuron state in one time step, and comparing them.

In our study, the num_ops attribute is used to track the

number of operations required to initialize and update each model.

Initialization refers to the process of setting up the model with the

appropriate parameters and data structures while updating refers

to the process of updating the model based on new input data.

By adding up the number of operations required for initialization

and updates, the proposed algorithm is able to estimate the total

computational complexity of each model. This can be useful

for comparing the relative efficiency of different models and for

identifying bottlenecks in the training process.

Based on our study results, here’s a detailed analysis of the

computational complexity of each neuron model:

1. LIF model

• Mathematical description: The LIF model updates the

neuron’s membrane potential (v) over time based on the

input current (I) and a time constant (τ ).

• Update rule: dv
dt

= (−v+I)
tau .

• Computational complexity: The LIF model involves one

multiplication, one subtraction, and one comparison in

each update. Therefore, it requires 3, 003 operations to

update the neuron state in a one-time step.

2. NLIF model

• Mathematical description: TheNLIFmodel extends the LIF

model by introducing a non-linear adaptation term (w).

The membrane potential (v) and adaptation (w) variables

are updated based on the input current (I) and different

time constants (τ , τw).

• Update rule: dv
dt

=
(−v+I+(weights.T,w))

τ
and dw

dt
=

(a∗(v−vreset)−w)
τw

.

• The NLIF model involves one multiplication, one

subtraction, one comparison, two additions, and two
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multiplications for the non-linear in each update. It

requires 5, 092 operations to update the neuron state in

one-time step.

3. AdExmodel

• Mathematical description: The AdEx model includes

adaptive properties and exponential adaptation. It updates

the neuron’s membrane potential (v) and includes an

adaptation current (w) that exhibits exponential dynamics

based on the input current (I) and various model

parameters (τm, vrheo, vspike, and deltaT).

• Update rule: dv
dt

=
(−v+τm∗I−vrheo+δT∗exp(

(v−vspike)

δT
)

τm
.

• Computational complexity: The AdEx model involves one

multiplication, and four additions for the exponential

dynamics in each update. It requires 4, 305 operations to

update the neuron state in one-time step.

4. HH model

• Mathematical description: TheHHmodel is a biophysically

detailed model that describes the behavior of voltage-gated

ion channels in neurons. It updates themembrane potential

(v) and gating variables (n, m, and h) based on the input

current (I) and various model parameters (αn, βn, αm, βm,

αh, and βh).

• Update rule: The HH model involves four differential

equations for dv
dt
, dn
dt
, dm

dt
, and dh

dt
.

• Computational complexity: The HH model involves 18

additions, 15 multiplications, and three divisions in each

update. However, it requires only 45 operations to update

the neuron state in one-time step, which makes the HH

model, the least computationally expensive among the

considered models due to its simple update equations.

5. IFSFAmodel

• Mathematical description: The IF − SFA model includes

a spike-frequency adaptation mechanism and updates the

membrane potential (v) and adaptation variable (w) based

on the input current (I) and various model parameters (τm,

τw, a, b, and δT).

• Update rule: dv
dt

=
(−v+δT∗exp(

(v−vth)
δT

)+(weights.T,w)+I)

τm
and dw

dt

= (a∗(v−vreset)−w)
τw

.

• Computational complexity: The IF − SFA model involves

two multiplications, two additions, one subtraction, and

one comparison in each update. It requires 2, 260

operations to update the neuron state in one-time step.

6. QIF model

• Mathematical description: The QIF model is a quadratic

non-linearity and updates the membrane potential (v)

based on the input current (I) andmodel parameters (τ and

β).

• Update rule: dv
dt

= (−v+β∗v2+I)
τ

.

• Computational complexity: The QIF model involves one

multiplication, one addition, one comparison, and a reset

operation in each update. It requires 1, 018 operations to

update the neuron state in one-time step.

7. ThetaNeuronmodel

• Mathematical description: The ThetaNeuron model

introduces phase dynamics and oscillatory behavior to

neurons. It updates the membrane potential (v) and the

phase angle (θ) based on the input current (I) and model

parameter (τ ).

• Update rule: The ThetaNeuron model involves

trigonometric operations to update θ and calculate

the membrane potential (v).

• Computational complexity: The ThetaNeuron model

involves two multiplications and one addition for updating

the membrane potential, and one addition for the theta

phase update. It requires 3, 490 operations to update

the neuron state in one-time step. The main operations

involved are one multiplication and two additions for the

theta frequency oscillator.

8. Izhikevichmodel

• Mathematical description: The IZH model is a simplified

neuron model that aims to capture a wide range of spiking

behaviors with only two ordinary differential equations. It

updates the membrane potential (v) and a recovery variable

(u) based on the input current (I) andmodel parameters (a,

b, c, and d).

• Update rule: dv
dt

= 0.04 ∗ v2 + 5 ∗ v+ 140− u+ I and du
dt

=

a ∗ (b ∗ v− u).

• Computational complexity: The IZH model involves two

multiplications, two additions, and two subtractions in

each update. It requires 6, 094 operations to update the

neuron state in one-time step.

9. SRMmodel

• Mathematical description: The SRM model incorporates

synaptic interactions, and it updates the membrane

potential (v) and synaptic variables (s, r) based on the

input current (I), synaptic time constants (taus, taur), and

synaptic weights.

• Update rule: The SRM model involves three differential

equations for ds
dt
, dr
dt
, and dv

dt
.

• Computational complexity: The SRM model involves

three additions and two divisions for the spike response

dynamics. It requires 4, 027 operations to update the

neuron state in one-time step.

It is important to note that the provided explanation focuses

on the mathematical descriptions and the number of operations

in each update used in this study. The actual computational

complexity of a machine learning model will depend on a

wide range of factors, including the size of the data set,
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FIGURE 3

The plot illustrates the no. of spiking operations across di�erent neuron models over time. Each neuron model represents a distinct mathematical

description of how neurons function, and they vary in their computational complexity due to di�erent update rules. The y-axis represents the

number of spikes generated by each model, while the x-axis corresponds to the simulation time in arbitrary units.

the complexity of the model architecture, the optimization

algorithm used, and the hardware and software used to run

the code. Therefore, the estimates provided by this study

should be taken as rough approximations rather than precise

measurements. As each models have additional parameters and

details that can impact their overall behavior and applicability

to specific neural simulations. However, these measurements still

provide some insight into the relative computational costs of

different models, which can be helpful for choosing between

models or optimizing performance. Additionally, analyzing

the computational complexity of a model can help identify

potential bottlenecks or areas where optimization efforts may be

most effective.

Figure 3, visualize the comparison of a number of spiking

operations across models. The number of operations required

for a neuron model is an indication of how computationally

expensive it is to simulate that model. In general, the more

operations required, the longer it will take to simulate the

behavior of that model. However, it’s important to note that the

actual number of operations required for a given model can

vary depending on the specific implementation and hardware

used to run the simulation. So while the results of your study

suggest that the HH model is the most computationally

expensive, this may not be true in all cases. Additionally,

other factors such as memory usage and parallelization

may also impact the overall computational complexity of

a model.

3.3.4. Biological plausibility
Comparing the biological plausibility of different neuron

models can be a complex task, as each model makes different

assumptions and simplifications about the underlying biology.

However, some models may be considered more biologically

plausible than others, depending on their ability to capture

certain physiological phenomena. For example, the HH model

is based on the biophysical properties of ion channels and can

accurately reproduce the action potential firing of real neurons.

The AdEx model also incorporates biophysical mechanisms such

as adaptation and spike-frequency adaptation (SFA) but includes

simplifications such as a single compartment and a fixed threshold.

The QIF model is based on a simple integrate-and-fire mechanism,

while the NLIF model includes a non-linear firing-rate function.

The LIF model is one of the simplest and most widely used

models, but it ignores many biophysical details of real neurons. The

ThetaNeuronmodel is amodification of the LIFmodel that includes

a theta-frequency oscillation.

Each model in our study has its own set of parameters that

determine how the neuron behaves. For example, the LIFmodel has

parameters for the membrane time constant, reset voltage, firing

threshold, initial voltage, and number of neurons. Some of the

important parameter values can be seen in Table 3. TheNLIFmodel

has the same parameters as LIF, plus two additional parameters

for the refractory period. The AdEx model has parameters for

the membrane time constant, rheobase voltage, spike voltage,

adaptation parameter, reset voltage, initial voltage, and the number
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TABLE 3 Utilized parameter values for biological plausibility.

Parameter values used in biological plausibility

Parameters LIF NLIF AdEX HH IFSFA QIF Th.Nu. SRM IZH

Time step 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Tau (τ ) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 0.3 X

Reset potential (Vreset) 0.0 0.0 0.1 –65 0.0 0.0 0.0 0.0 X

Threshold value (Vth) 1.0 1.0 X X 1.0 1.0 1.0 1.0 0.8

Initial potential (Vinit) 0.1 0.5 0.1 –65 –0.1 –0.1 0.0 0.0 0.01

Alpha (α) X 0.5 X X X X X X X

Beta (β) X 0.5 X X X 0.5 X X X

Rheobase potential (Vrheo) X X 0.5 X X X X X X

Threshold potential (Vspike) X X 1.0 X X X X X X

Slope factor (1T ) X X 1.0 X 2.0 X X X X

Activation variable for potassium (n) X X X 0.3177 X X X X X

Activation variable for sodium (m) X X X 0.0529 X X X X X

Inactivation variable for sodium (h) X X X 0.5961 X X X X X

Adaptation time constant (τw) X X X X 100 X X X X

Adaptation conductance (a) X X X X 0.1 X X X X

Adaptation control (b) X X X X 0.01 X X X X

Synaptic time constants (τr) X X X X X X X 10 X

Recovery variable [RV] (Uinit) X X X X X X X X 0.2

Time scale RV (a) X X X X X X X X 0.02

Sensitivity RV (b) X X X X X X X X 0.2

After-spike reset MP (c) X X X X X X X X 0.1

After-spike reset RV (d) X X X X X X X X 0.06

Maximum conductances gNa X X X 120 X X X X X

Maximum conductances gK X X X 36 X X X X X

Maximum conductances gL X X X 0.3 X X X X X

Sodium rev. pot. (ENa) X X X 50 X X X X X

Potassium rev. pot. (EK ) X X X –77 X X X X X

Leak conductance rev. pot. (EL) X X X –54.4 X X X X X

No. of neurons (Nneurons) 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

of neurons. The HH model has parameters for the initial voltage

and conductances for sodium, potassium, and leak channels. Each

model also has a method called update, which takes as input the

current input to the neuron and the time step, and returns a boolean

value indicating whether the neuron has spiked in response to the

input. Finally, each model has a weight matrix that determines the

strength of the connections between neurons. The weight matrix is

initialized randomly, with values drawn from a normal distribution

with a mean of 0 and a standard deviation of 1. This random

initialization ensures that the connections between neurons are not

biased from the start. Figure 4, illustrates the biological plausibility

of each model. This analysis serves as a crucial foundation for

the subsequent exploration and understanding of these neuronal

models in the study. The detailed results and code are available in

our GitHub channel.

3.3.5. Future directions and limitations
This study contributes valuable insights into the behavior and

performance of SNNs and their mathematical models. However,

there are several future directions and limitations that should be

addressed in further research:

Future directions:

• While this study focused on simulation comparisons of

SNN models, future research should extend the investigation
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FIGURE 4

The figure illustrates the underlying biological plausibility of di�erent neural models, each having specific parameters that influence the behavior of

the neuron and highlighting how they can mimic the behavior of real neurons in response to input stimuli.

to hardware implementations. Testing these models on

neuromorphic hardware or specialized hardware accelerators

can provide a more realistic evaluation of their performance

and energy efficiency in real-world applications.

• Evaluating the robustness and generalization capabilities of

SNN models is essential for practical deployment. Future

research should investigate how these models perform on

more diverse datasets and under noisy input conditions to

ensure their reliability in real-world scenarios.

• Investigating different spike encoding strategies can optimize

information representation in SNNs. Research on efficient

spike coding schemes can lead to enhanced performance and

reduced computational overhead.

• Exploring various learning rules and synaptic plasticity

mechanisms within SNNs can facilitate adaptive learning

and memory capabilities. Incorporating online learning

algorithms can enable SNNs to continuously update their

parameters based on new data.

• Combining SNNs with traditional deep learning models or

othermachine learning techniques could harness the strengths

of both approaches, leading to more powerful and versatile

neural network architectures.

Limitations:

• The study’s comparison of SNN models was conducted using

a specific dataset (synthetic dataset), and the generalization

to other datasets may vary. Future studies should include a

broader range of datasets to ensure the models’ performance

across different scenarios.

• While SNN models aim for biological plausibility,

implementing highly realistic biological models in simulations

can be computationally demanding. Striking a balance

between biological realism and efficiency remains a challenge.

• The study may not have exhaustively explored all possible

hyperparameter settings for each SNN model. Optimizing

model hyperparameters could potentially improve the overall

performance of certain models.

• The study focused on smaller-scale SNN models,

and their performance may differ when applied to

larger networks or deep architectures. Evaluating the

scalability of the models is crucial for their application in

complex tasks.

• The precision of spike timing in SNNs can significantly impact

their performance. Further investigations into temporal

coding and precise spike timing mechanisms can enhance the

capabilities of SNNs.

However, the current study provides valuable insights into

SNN models’ performance, behavior, and spike generation, future

research should explore hardware implementations, robustness,

and spike encoding strategies. Additionally, investigating learning

rules, the hybrid approaches, and addressing the limitations of

dataset diversity, biological plausibility, model hyperparameters,

scalability, and spike timing precision can provide the way for more

advanced and practical SNN applications in various domains.
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4. Conclusion

SNNs are a powerful tool for simulating the behavior of

neurons and have the potential for diverse applications. The LIF,

AdEx, NLIF, IF − SFA, ThetaNeuron, IZH, SRM, HH, and QIF

models are popular mathematical models used for simulating

the spiking behavior of neurons in SNNs. However, selecting

the most suitable model for specific applications, especially for

classification tasks, can be challenging due to the demand for

high accuracy and low-performance loss. To address this issue, a

study was conducted to compare the performance, behavior, and

spike generation methodology of different SNN models using the

same inputs and neurons. The findings of this study offer valuable

insights for researchers and practitioners in the field, emphasizing

the importance of comparing different models to determine the

most effective one.

The findings of the study highlight the significance of

comparing multiple SNN models to identify the most effective

one for a given application and emphasize the importance

of selecting the most suitable model based on its biological

plausibility and computational efficiency. The manuscript

contributes to the research field by providing a deeper

understanding of SNNs and their mathematical models,

and by presenting a systematic approach to evaluating and

selecting the most appropriate SNN model for classification

tasks. The study’s results can inform future research on

developing more efficient and accurate SNN models, advancing

progress in the field of artificial neural networks and their

applications in various fields such as robotics, biomedicine, and

cognitive science.

Furthermore, additional research could investigate other SNN

models and compare their performance using various benchmarks

to identify the most suitable model for specific applications,

potentially saving time and resources. As SNNs continue to gain

popularity, more attention must be given to developing reliable and

efficient models. Overall, this study highlights the potential benefits

of SNNs and their models and provides valuable insights for future

research and development in this area.
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