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Introduction:Optogenetics has emerged as a promising technique formodulating
neuronal activity and holds potential for the treatment of neurological disorders
such as temporal lobe epilepsy (TLE). However, clinical translation still faces
many challenges. This in-silico study aims to enhance the understanding of
optogenetic excitability in CA1 cells and to identify strategies for improving
stimulation protocols.

Methods: Employing state-of-the-art computational models coupled with Monte
Carlo simulated light propagation, the optogenetic excitability of four CA1 cells,
two pyramidal and two interneurons, expressing ChR2(H134R) is investigated.

Results and discussion: The results demonstrate that confining the opsin to
specific neuronal membrane compartments significantly improves excitability.
An improvement is also achieved by focusing the light beam on the most
excitable cell region. Moreover, the perpendicular orientation of the optical fiber
relative to the somato-dendritic axis yields superior results. Inter-cell variability is
observed, highlighting the importance of considering neuron degeneracy when
designing optogenetic tools. Opsin confinement to the basal dendrites of the
pyramidal cells renders the neuron the most excitable. A global sensitivity analysis
identified opsin location and expression level as having the greatest impact on
simulation outcomes. The error reduction of simulation outcome due to coupling
of neuron modeling with light propagation is shown. The results promote spatial
confinement and increased opsin expression levels as important improvement
strategies. On the other hand, uncertainties in these parameters limit precise
determination of the irradiance thresholds. This study provides valuable insights
on optogenetic excitability of CA1 cells useful for the development of improved
optogenetic stimulation protocols for, for instance, TLE treatment.

KEYWORDS

optogenetics, cornu ammonis, computational modeling, NEURON, tissue activation,

sensitivity analysis

1. Introduction

Optogenetics is a technique that can be used to manipulate cellular activity with light

(Boyden et al., 2005; Deisseroth, 2011). Specific cell types are sensitized to light via the

introduction of gene constructs that encode for optogenetic actuators (Rost et al., 2017).

Opsins are light-gated ion channels, pumps or receptors that when illuminated allow hyper-

or depolarizing currents through the cell membrane (Deisseroth, 2011). The expression

of these opsins is controlled by promoters active in the target cells (Rost et al., 2017).

Consequently, when applied to the brain, optogenetics provides the possibility to target

specific neuronal populations which makes the technique highly promising to treat a variety

of neurological disorders, such as epilepsy (Carrette et al., 2015; White et al., 2020).
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Temporal lobe epilepsy (TLE) is one of the most common

forms of epilepsy. 30% of patients with TLE cannot be helped

with anti-epileptic drugs (Cela and Sjöström, 2019). Based on the

premise that temporal lobe seizures originate in the hippocampus,

inhibition of the excitatory subpopulations is a possible strategy for

TLE seizure suppression (Tønnesen and Kokaia, 2017; Walker and

Kullmann, 2020). Using the anion selective opsin halorhodopsin

(NpHR) to inhibit hippocampal pyramidal cells has resulted in

a decrease of seizure activity (Tønnesen et al., 2009; Krook-

Magnuson et al., 2013, 2015). Excitation of the inhibitory

hippocampal interneurons using cation conducting opsins, such

as channelrhodopsin-2 (ChR2) and variants, has also yielded

promising results (Krook-Magnuson et al., 2013; Ladas et al., 2015;

Assaf and Schiller, 2016; Lu et al., 2016). Furthermore, optogenetics

can be employed in studies on the initiation and propagation of

seizures, and to investigate the role different neuronal populations

play in the seizure dynamics (Krook-Magnuson et al., 2015; Cela

et al., 2019).

These studies are very promising but the development of

clinical applications using optogenetics within the brain still faces

some challenges (Cela and Sjöström, 2019; White et al., 2020). A

first challenge is having a good understanding of the optogenetic

effect, because aforementioned seizure-reduction strategies can

have ictogenic effects as well (Assaf and Schiller, 2016; Wykes

et al., 2016; Tønnesen and Kokaia, 2017). Another challenge is

bringing sufficient light into the brain. The optic frequencies

have a poor penetration in brain tissue necessitating in-vivo

implantation of the illumination source. In order to minimize

structural damage due to intrusion, the light source’s dimensions

are limited (Vandekerckhove et al., 2020). As a result only a small

volume is illuminated with a single optical fiber, which could be

insufficient for the human brain (Tønnesen and Kokaia, 2017).

Furthermore, light absorption by the brain tissue causes heating.

Therefore the light intensity should be limited in order to prevent

brain damage (Stujenske et al., 2015; Shin and Kwon, 2016; Owen

et al., 2019; Peixoto et al., 2020; Acharya et al., 2021).

To minimize stimulation power, one improvement could be

the transition to red-shifted opsins (Yizhar et al., 2011; Klapoetke

et al., 2014). (Infra)red light gets less absorbed resulting in higher

illumination volumes and less heating (Yaroslavsky et al., 2002;

Johansson, 2010; Stujenske et al., 2015; Lehtinen et al., 2022).

Another solution is increasing the efficiency such that higher

photocurrents are generated at lower irradiances. Improving single

channel conductance or altering channel kinetics are possible

strategies (Berndt et al., 2011; Yizhar et al., 2011; Mattis et al.,

2012). Another approach is enhancing membrane expression

(Gradinaru et al., 2008, 2010; Rost et al., 2017). A final strategy is

spatial confinement of the opsin to specific neuronal membrane

compartments (Rost et al., 2017, 2022; Mahn et al., 2018; Messier

et al., 2018).

Computational modeling can aid in developing a better

understanding of the optogenetic response while avoiding in-

vivo animal testing (Williams et al., 2013). In 2006, a first

mathematical description of the channel dynamics of ChR2 was

published (Nikolic et al., 2006). Since then, several studies have

been published that use this and other, more accurate and efficient

models in combination with neuron models to design in silico

experiments (Nikolic et al., 2009; Grossman et al., 2011; Schneider

et al., 2013; Williams et al., 2013; Gupta et al., 2019; Bansal

et al., 2021; Schoeters et al., 2021). These experiments allow for

easy parameter manipulation and exploration of the stimulation

parameter space. Opsin expression can be spatially constrained,

expression in different cell types can be tested, and interaction with

the 3D light intensity profile can be evaluated. This optic field can

be obtained via Monte Carlo based simulations (Wang et al., 1995)

that simultaneously can be used to investigate the effect of tissue

optical properties (Stujenske et al., 2015; Shin and Kwon, 2016;

Acharya et al., 2021).

These optical field studies have shown that the light intensity

spatial variation occurs on a neuronal scale. Studies combining

optic field simulation with optogenetic response of neurons are

scarce. Foutz et al. (2012) investigated this interaction with a

multicompartment, neocortical layer V, pyramidal model. Arlow

et al. (2013) performed a study on a myelinated axon MRG

model. They identified a complex interplay of various simulation

parameters on the activation threshold. On the other hand,

Grossman et al. (2013) showed that opsin spatial confinement has

an impact on action potential generation and propagation. This

non-uniform opsin expression has been touched upon by Foutz

et al. (2012) as well. In this study, the optogenetic excitability of

cornu ammonis (CA1) cells is investigated with the aim of gaining

insights that could help guide optogenetic experiments concerning

the suppression and initiation of seizures. The novelty is the use of

morphologically reconstructed and data-driven biophysical models

of CA1 pyramidal neurons and interneurons (Migliore et al., 2018)

that are extended to include ChR2(H134R) dynamics, and are

subsequently subjected to a Monte Carlo simulated optic field.

The effect of opsin expression level and spatial confinement on

stimulation thresholds for multiple pulse durations is determined.

Furthermore, the impact of various uncertain parameters, e.g.,

optical field properties, cell to optical fiber orientation and 3D

structural cell morphology, is quantified. Based on these results,

possible subcellular improvement strategies coupled with ideal

optical fiber positioning are identified.

2. Methods and materials

The CA1 cell models used to test the optogenetic excitability are

described below. Next, the light intensity fields determined via the

Monte Carlo (M.C.)method and the opsinmodel are elaborated on.

Finally, the methods and metrics used to analyze the optogenetic

response are explained.

2.1. Neuron models

Four models from Migliore et al. (2018) are used in this study:

two models of CA1 pyramidal cells and two CA1 interneurons

located in the stratum pyramidale, i.e., a pravalbumin positive

basket cell and a bistratified cell. All models have a different

three-dimensional structural morphology (see Figure 1A). The

cell identification number of the pyramidal cells pyr1 and pyr2
is mpg141208_B_idA and mpg141209_A_idA, respectively. The
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FIGURE 1

The simulation framework. (A) Graphical representation of the 3D reconstructed CA1 cell models used in this study: two pyramidal cells (pyr1 and
pyr2), 1 bistratified (int1) and 1 basket cell (int2). The models are adopted from Migliore et al. (2018). This reference frame is applicable throughout the
whole study, i.e., the soma is at z = 0 mm, and the somato-dendritic axis is parallel to the z-axis. As depicted, three optrode pitch setups are tested.
The color represents the di�erent opsin expression locations. (B) The light intensity profile in gray matter with µa = 0.42 mm−1, µs = 11.33 mm−1,
and g = 0.88. The irradiance at the cell, with soma 400 µm bellow the fiber, is shown in the inset. (C) The opsin current density at a voltage clamp of
−70 mV for increasing irradiance (light to dark: 10-3→10 mW/mm2) of a 1 (left) and 100 ms (right) optical pulse, indicated in gray. (Bottom) The peak
(solid) and steady state (dashed) current densities as function of irradiance for a 1 and 100 ms optical pulse in green and blue, respectively. (D) The
simulation flowchart with input and uncertain parameters.

bistratified cell (int1) has identification number 980513B and the

basket cell (int2) has number 060314AM2. Although the pyramidal

cells have a different structural morphology, they are classified

under the same morphological type (m-type, Markram et al., 2015;

Romani et al., 2022). To avoid confusion, in this manuscript we

will talk about difference in cell instead of morphology when

comparing pyr1 vs. pyr2 (int1 vs. int2). Both pyramidal cells are

continuous accommodating, while the electrical type or e-type

of the interneurons is continuous non accommodating (Petilla

convention; Ascoli et al., 2008; Romani et al., 2022). The models

include 10 active conductances: a sodium current, three types

of potassium (KDR, KM, KA), three types of calcium (CaT, CaL,

CaN), two Ca2+-dependent potassium currents (KCa, KCagk), and

a nonspecific current. Moreover, a simple calcium accumulation

mechanism is included with a single exponential decay of 100 ms.

The models were fitted to experimentally obtained voltage traces

using a genetic algorithm. For more details of the models and the

fitting procedure we refer to Migliore et al. (2018). The models

themselves can be found on modelDB (https://modeldb.science/)

under accession number 244688. The center of cell’s soma is at the

origin. The somato-dendritic axis of the neurons is aligned to the

z-axis. This somato-dendritic axis is the first principal component

determined via a principal component analysis on the 3D-positions

of all compartments except the axon. In case of the pyramidal cells,

the apical trunk is always directed in the positive z-direction.

2.2. Light field in gray matter

To activate the opsins, the neurons are subjected to light. The

light intensity field produced by an optical fiber [100 µm radius,

0.39 numerical aperture (NA); after the optrode in the study of
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TABLE 1 Parameters used in the Monte Carlo (M.C.) simulations.

Optical Default C.V. M.C. settings

µa 0.42 mm−1 0.15 nphotons 107

µs 11.33 mm−1 0.15 dr 5 µm

g 0.88 0.03 dz 5 µm

n 1.36 − r× z [0, 5]× [-4, 6] mm2

Default values and coefficient of variation (C.V.).

Acharya et al., 2021] is determined via the Monte Carlo method.

The used method is based on the direct photon flux recording

strategy of Shin and Kwon (2016). TheMonte Carlo simulations are

solved in cylindrical coordinates for a homogeneous medium as in

Stujenske et al. (2015). Because the hippocampus is predominantly

a gray matter structure, the in-vivo optical properties of gray matter

are selected. The absorption coefficient (µa) at 470 nm is obtained

by extrapolation of the data reported in Johansson (2010) via a third

order polynomial fit on the points between 480 and 550 nm. The

scattering coefficient (µs) and anisotropy factor (g) are obtained via

interpolation from Yaroslavsky et al. (2002). This is often combined

into the reduced scattering coefficient [µ′
s = µs(1 − g)]. The

refractive index (n) is 1.36. The simulations are run with 107

photons and a radial (dr) and axial discretization (dz) of 5 µm.

The result of the Monte Carlo simulation with parameters given in

Table 1 is shown in Figure 1B, with corresponding irradiance at the

neuron level given in the inset. Throughout the study three pitch

orientations with respect to the CA1 cells are tested as depicted in

Figure 1A.

2.3. ChR2(H134R) opsin

The selected opsin is a genetically engineered

Channelrhodopsin-2 (ChR2) variant: ChR2(H134R). It has

an enhanced steady-state photocurrent with a slower closing

mechanism than the wildtype ChR2. Its peak operation is at a

wavelength of 470 nm (Berndt et al., 2011; Mattis et al., 2012).

The opsin’s kinetics are modeled with the double two-state opsin

model, more specifically the RSRS-final reported in Schoeters

et al. (2021), because of its improved computational efficiency

compared to alternative four state Markov models. It consists

of two independent two-state pairs: O (opening and closing of

the channel) and R (change in conductance due to dark-light

adaptation). The transmembrane current density (mA/cm2) at a

single section is determined as follows:

iChR2 = gChR2G(V)(O(Irr,V) · R(Irr,V))(V − EChR2) (1)

G(V) =
1− 1.25 exp

(
−

V−EChR2
44.52

)

V − EChR2
(2)

dX

dt
=

X∞(Irr)− X(t)

τX(Irr,V)
(3)

τX(Irr,V) =
[
τX(Irr)

−1
+ τX(V)

−1
]−1

, with X = O,R

τO(Irr) =
0.021

1+ exp(1.55)I0.37rr

,

τO(V) =
23.14

1+ exp
(
−(V + 0.39)/13.19

)

τR(Irr) = 10

(
1−

0.56

1+ exp(−1.82)I−0.50
rr

−
0.44

1+ exp(17.82)I−3.95
rr

)

τR(V) =
99.74

1+ exp
(
−(V + 38.69)/12.02

)

O∞(Irr) =
1

1+ exp(5.45)I−0.70
rr

,

R∞(Irr) = 1−
0.77

1+ exp(16.33)I−3.62
rr

with gChR2 the specific conductance (S/cm2), G(V) the

rectification function given by Equation 2, V the membrane

potential (mV), Irr the irradiance (mW/mm2), and EChR2 = 0 mV

the equilibrium potential. The photocurrents for an optical pulse

with duration of 1 and 100 ms with increasing irradiance under

voltage clamp recording of -70 mV is shown in Figure 1C.

The opsin is spatially confined to specific neuronal membrane

compartments (in this manuscript further denoted as subcellular

region). In case of the pyramidal cells, it is located in the soma, or

distributed over the axon, basal dendrites (basal), apical dendrites

(apic), all dendrites (dend = basal ∪ apic), or all sections (allsec =

dend ∪ soma ∪ axon). In case of the interneurons, no distinction

between apical and basal dendrites is made. The different regions

are illustrated via the color code in Figure 1A. In each simulation,

gChR2 is uniformly spread over the subcellular region of interest. Its

value is calculated from a preset total maximum conductance:

Gmax = gChR2,k · Ak (4)

with Ak the total membrane surface area of a subcellular region

k. The surfaces are summarized in Table 2. Gmax are eight points

spaced evenly on a log scale between 10−1 and 101.5 µS (for the

uniform field nine additional points are included between 10−1 and

102).

Finally, the total temporal averaged current at the excitation

threshold (TAC; Williams and Entcheva, 2015) is calculated by:

TAC =
1

pd

∑

jǫk

Aj

∫ Tend

t0

iChR2,j(t) dt (5)

where pd is the pulse duration, t0 is the pulse onset time,

Tend = max(500 ms, t0 + pd + 100 ms) (to ensure to include

channel closure) and j is every compartmental segment in region

k. The pd varied over 5 points logarithmic evenly spaced between

0 and 100 ms (9 pds ǫ [10−1, 103] are used in the simulations with

uniform light field).

2.4. Analyses

The tests and metrics used to analyze the optogenetic response

are described below.
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TABLE 2 Total membrane surface area of subcellular regions in µm2.

Region pyr1 pyr2 int1 int2

Soma 699.46 417.85 778.12 1,375.16

Axon 1,640.70 1,051.43 106,424.01 25,256.23

Basal 5,930.95 10,670.46 − −

Apic 14,786.82 13,631.61 − −

Dend 20,717.77 24,170.88 21,827.34 21,949.07

All 23,057.93 25,640.17 129,029.47 48,580.46

2.4.1. Surface of fiber positions for the activation
of neurons

As metric to assess the optogenetic excitability, the surface

of fiber positions for the activation of neurons (SoFPAN) is

determined. This metric is similar to the more well-known volume

of tissue activation (VTA; Butson et al., 2007; Duffley et al.,

2019). In VTA, the frame of reference is the position of the

stimulation device, while here, the frame of reference is the stratum

pyramidale with the center of cell’s soma at origin. In other words,

SoFPAN encompasses the positions at which the optical fiber

can be located in order to activate the neuron of interest. This

is chosen because of the layered structure of the hippocampus,

constraining the cell bodies of the considered neurons to the

stratum pyramidale. Because the optical fiber is limited to the plane

shown in Figure 1A to reduce the number of simulations, only a

2D plane is explored resulting in a surface instead of a volume

being determined.

The intensity threshold (Ith) to elicit an action potential

(V>−10 mV) recorded in the soma for a given pulse duration

and fiber position is determined first. This threshold value is

the intensity at the fiber surface (Ifiber). It is obtained with a

titration process using the bisection method for seven iterations

(i.e., ci = (ai + bi)/2, with b0/a0 = 10). One hundred and

twenty-one fiber positions are evaluated with z taking on eleven

linearly spaced values in [−400, 700] µm. For a pitch of π/2, x ǫ

[−1,000, 4,000] µm with 1x = 500 µm. For the fiber pitch of 0

and π , x ǫ [0, 2,500] µm with 1x = 250 µm. For a given pulse

duration, the SoFPAN is then determined as the union of the spatial

points for which the threshold is lower than the fiber intensity (true:

Ith < Ifiber) multiplied by the discretization surface (i.e., 110×250

or 110×500 µm2 depending on the fiber pitch). A lower bound is

determined by counting only the discretization surfaces enclosed

by four true-points. In case of the upper bound, the true-false field

is dilated first with a 3 × 3 mask before the enclosed-by-four-true-

points regions are counted. For the pitches of 0 and π , the obtained

SoFPAN is multiplied by two, such that the maximal SoFPAN for

all pitches is equal to 5.5 mm2. The SoFPAN is calculated for nine

logarithmic evenly spaced fiber intensities 0.1 and 1,000mW/mm2.

If the cell’s dimensions are assumed to be negligible with respect

to the spatial variation of the intensity field, the irradiance is

uniform over the whole neuron. The cell can thus be represented

as a single point in space. The estimated SoFPAN under this

assumption is denoted as SoFPANuniform.

2.4.2. Wilcoxon signed-rank test
A single-sided, paired Wilcoxon signed-rank test is used to test

whether the results from two populations are significantly different.

For the uniform field 20 classes (cell and opsin location: 4×{all,

axon, soma, dend} + 2×{basal, apic}) are mutually compared. In

case of the M.C. field there are 42 classes
(
pitch, cell, and opsin

location: 3×
[
4×{all, axon, soma} + 2×{basal}

])
. A scoring system

is used to identify the most excitable setup. Here, a 1, 0.1, and

0.01 is given if the SoFPAN is statistically greater with p-value

below 0.001, 0.01, and 0.05, respectively. The maximum score is

consequently 41.

2.4.3. Regression
A two step fitting procedure is performed to analyze the effect

of pulse duration and expression level on the intensity threshold

as suggested by Williams and Entcheva (2015). First Lapicque’s

formulation is fit to the TAC. This gives the strength-duration

relationship like with electrical direct current stimulation (Reilly,

1998). Second a linear regression is performed with independent

variables the log10 of T̂AC (µA) and Gmax (µS).

T̂AC =
TAC0

1− exp(−pd/τTAC)
(6)

log10 Îth = aG log10 Gmax + apd log10 T̂AC+ c (7)

Here, TAC0, τTAC, aG, apd, and c are the regression parameters.

Îth and T̂AC are the estimators of the threshold intensity and total

averaged current, respectively.

2.4.4. Optimal and worst fiber position
The optimal and worst fiber positions for a given pulse duration

are defined as the z-position where the depth of activation (amount

of positions along the x-axis with Ith < Ifiber) is the highest or

the lowest, respectively. As a tie-breaker, the z-position is selected

where the average of TAC along x is, respectively, the lowest or

the highest.

2.4.5. Elementary e�ects
The inputs to the simulations can be divided into two categories

(Figure 1D). On the one hand, there are the parameters that are

known (e.g., optrode radius, NA, and pitch) or controlled by the

user (e.g., pd and Ifiber) in an optogenetic experiment. On the other

hand, there are variables that cannot be controlled and contain

some uncertainty, e.g., the tissue’s optical properties (µa, µ′
s), the

neuron’s structural morphology (cell: pyr/int1 vs. pyr/int2) and

orientation (roll, yaw), and the opsin expression [level (Gmax) and

location]. Because of the expected non-linear interactions and high

computational time (±12 h for a 121 position sweep with five pulse

durations), the elementary effects method is adopted for global

sensitivity analysis (Saltelli et al., 2019).

Six influential factors are investigated, i.e., µa, µ′
s, Gmax, cell,

opsin location, and roll. The measure used (µ∗) is the mean of the

absolute value of r = 16 elementary effects. Also, the standard

deviation of the elementary effects (σ ) is calculated to track

interactions and non-linear effects. The r repetitions are sampled
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with the radial-based design using Sobol’s numbers (Campolongo

et al., 2011). µa, µ′
s, and Gmax are normally distributed with

mean and coefficient of variation (C.V.) given in Table 1. The

mean and C.V. of Gmax are 1 µS and 0.15. The roll is uniformly

distributed between [-π , π[ radians. Cell and location are discretely

uniformly distributed, with {pyr1, pyr2} ({int1, int2}) and {all, axon,

soma, basal} ({all, axon, soma}) classes, respectively, for pyramidal

(inter-) neurons.

2.5. Software

Simulations were done with NEURON 8.0.0 (Carnevale and

Hines, 2006) and Python 3.9.12. on the HPC system with

AMD Epyc 7552 processing units, provided by the Flemish

Supercomputer Center.

3. Results

The results of this study can be subdivided into three sections.

First, there is the optogenetic response under a uniform field.

This means that all cell sections receive the same irradiance.

This facilitates the analysis of the importance of subcellular

regions, pulse durations, and expression levels. Next, the Monte

Carlo simulated light field is included. This allows us to indicate

the effect of light propagation on optogenetic excitability and

provides information on optimal or worst fiber positioning. Finally,

an elementary effects study is performed to identify the most

sensitive parameters.

3.1. The optogenetic excitability in a
uniform light field

Figure 2A depicts the intensity threshold (Ith) and temporal

averaged current (TAC) curves as function of pulse duration (pd)

of several subcellular and cell combinations. Both decrease with

increasing pd until a saturation value is reached. For the same

subcellular region (i.e., allsec), the threshold curve is shifted down

in case of pyr1 vs. int2 (blue solid vs. blue dashed-dotted line).

Staying within the same cell, it can be seen that changing the

subcellular region (all → basal or soma) can result in a downward

shift, as well. The same effects can be seen on the TAC, but less

pronounced. Increasing the expression level (Gmax) from 1 to 10µS

(blue solid line with circle markers) results in an expected decrease

of the threshold. On the other hand, the TAC remains the same.

This is highlighted in Figure 2B where the TAC is constant for all

pds for aGmax > 1µS in the allsec-pyr1 setup. A linear relationship

for Ith can be observed for Gmax ≥ 0.518 µS. No threshold could

be found for Gmax < 0.215 µS. This is because the photocurrent

saturates at high intensities (see Figure 1C) and therefore cannot

compensate for the low Gmax. At high pulse durations a decrease

in TAC is already observed at higher Gmax (< 1 µS). For the

corresponding Ith, the photocurrent is biphasic with a peak and

steady-state value. At these pulse durations (100 and 1,000 ms) the

action potential (AP) occurs during the inactivation from peak to

steady state. The occurrence of the peak is much more efficient in

eliciting an AP. A large part of the total photocurrent occurs before

the AP while this diminishes at higher Gmax with monophasic

photocurrents. Additionally, during the AP, the current drops to

zero due to channel shunting. Consequently, the net effect of

this drop on the TAC is larger here than in case of no biphasic

photocurrents (at low irradiances) or lower pulse durations, where

the AP is elicited during the deactivation phase of the photocurrent.

The Ith is determined for all pyramidal and continuous non-

accomodating interneuron models of Migliore et al. (2018), along

with virtual clones optimized using HippoUnit (Saray et al., 2021).

The result of these additional 38 pyramidal and 39 interneuron cell

models is shown in Supplementary Figure 1. Overall, for a given

subcellular opsin location, the variation is within one order of

magnitude, except when the opsin is expressed in the axon. This

observation holds for both pulse durations of 1 and 100 ms and

maximum total conductances of 1 and 10 µS. The selected cells of

this manuscript do not appear as outliers except for the axon of the

bistratified cell. Therefore, it can be concluded that the selected cells

are representative for the population.

Mutually paired Wilcoxon singed-rank tests are performed to

identify the most excitable subcellular region. The p-values of a

single-sided test are shown in Figure 2C of the threshold intensity

and TAC on the left and right, respectively. Each compared

population consists of 153 points (9 pds and 17 Gmax values).

The basal-pyr1 is the most excitable with a Ith significantly (p

< 0.001) lower than any other location-cell combination. The

same is true for the TAC. The pyramidal cells are more excitable

than the interneurons with pyr1 the most excitable (p < 0.001).

Aside from the axon in pyr2, the order of the excitability scores

is the same in both cells (see Section 2.4.2). The apical dendrites

is the least excitable subcellular region of the pyramidal cells

(p < 0.001). On average a lower Ith is required for the basket

cell than the bistratified cell (p < 0.001). Overall a significantly

lower threshold is accompanied with a significantly lower TAC.

Some exceptions exist where the TAC is significantly greater (e.g.,

all-pyr1 vs. soma-int2). The median of the relative change in

Ith of the location-cell combinations as ranked in Figure 2C is

shown in Supplementary Figure 2A. The average of the medians

is −22.76%. Therefore, the Ith drops every time on average

with 22.76% when moving from the least (axon int1) to the

most (basal pyr1) excitable location-cell combination. Optimal

subcellular expression in a cell can result in Ith drops of >75%.

Compared to no subcellular specificity (opsin over the whole cell),

Ith reductions of >60% can be achieved in the pyramidal cells,

increasing toward 83 and 92% for the basket and bistratified cell,

respectively (cf. Table 3). The full analysis of the median relative

differences of all different subcellular-cell combinations is shown in

Supplementary Figure 3A.

The two step regression is performed on each location-cell

combination separately. The combined results are shown in

Figure 2D. The variability on TAC is captured by Lapicque’s

formulation resulting in a median adjusted coefficient of

determination (R̄2TAC) value of 0.99978. The median rheobase

(TAC0) is 3.17 nA and the median time constant (τTAC) is

42.95 ms. The variability of Ith is well-explained by the two

step regression model (median R̄2tot = 0.96388). The median
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FIGURE 2

The optogenetic response under a uniform light field. (A) The intensity threshold (Ith) and corresponding total temporal averaged current (TAC, top
and bottom, respectively) as function of pulse duration. All lines shown are for a Gmax = 1 µS except the circle markers (Gmax = 10 µS). (B) The
intensity threshold and corresponding total temporal averaged current (top and bottom, respectively) as function of Gmax for allsec-pyr1. (C) The
p-value of the mutually, paired Wilcoxon signed-rank tests. Single-sided test if class at the row is lower than class in the column for the Ith (left) and
TAC (right). The color code at the top and left indicate the cell model. The cell opsin location combinations are sorted on their excitability score (see
Section 2.4.2). (D) The results of the two step regression. The goodness of fit is indicated with the adjusted R-squared measure: R̄2

TAC for the Lapicque
fit to the TAC and R̄2

tot for the linear regression fit to the threshold. Box plots are shown for R̄2-values and regression parameters, calculated for the
di�erent cell-types and opsin locations. (E) Summary of the input impedance at 0 Hz, (left) the local impedance of each section in pyr1, (right) the
summarized impedances of the four tested cells. The gray bars are 100 µm.

parameter values of Gmax and pd (aG and apd) are −1.47 and 0.53,

respectively. Even though the latter is positive, Ith decreases with

pd due to the Lapicque’s formulation. Based on these values, Gmax

has thus a stronger impact on Ith than the pd.

The input impedance of the cell’s sections, measured after

100 ms after initialization at −70 mV, are shown in Figure 2E.

The impedance is a proportionality factor on the input current

resulting in a given voltage change. Therefore, the voltage change is
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TABLE 3 Influence of subcellular opsin expression.

Ith SoFPAN

cell Best Worst % Best Worst %

pyr1 Basal Apic −81.23 Basal π /2 Axon 0 223.08

Basal All −67.63 Basal π /2 All π /2 33.33

pyr2 Axon Apic −76.03 Axon π All 0 152.78

Axon All −64.36 Axon π All π 67.42

int1 Alldend Axon −99.89 Soma π /2 Axon 0 947.62

Alldend All −91.58 Soma π /2 All π /2 100.00

int2 Soma Axon −87.28 Soma π /2 Axon 0 233.33

Soma All −82.84 Soma π /2 All π /2 87.47

Median relative change between best and worst subcellular location, and best and no subcellular specificity (all) of all pd and Gmax combinations. Excitability under a uniform light field (Ith)

and with light propagation (SoFPAN).

higher for a higher input impedance given a constant input current.

The axons have on average the highest impedance but also the

highest spread with many outliers. At the left, it can be seen that

the impedance increases from axon hillock to the synapses. The

soma has a low impedance compared to the median of the other

subcellular regions.

3.2. The optogenetic response in the Monte
Carlo light field

In this section, the cells are subjected to an intensity field

produced by a 100 µm fiber. The 3D-profile is obtained via

the Monte Carlo method in homogeneous gray matter tissue

with the default optical parameters as summarized in Table 1.

Unlike in the previous section, the irradiance at the different

neuron sections will depend now on their relative position with

respect to the fiber and its orientation. Consequently, Ith now

depends on the position in the reference frame as indicated in

Figure 1A. An example is shown in Figure 3A, with the Ith map

on the left and corresponding TAC on the right, for an allsec-

pyr1 with Gmax = 1.18 µS, pd = 10 ms, and a fiber pitch

of π/2. A hotspot is observed around [x = 0.43 mm, z =

−0.036 mm], where the threshold is the lowest. Even when the

neuron lies behind the fiber, i.e., x < 0 mm, it is still possible

to excite the cell but at higher Ith. Two islands can be observed

for the TAC with a factor two difference between minimum and

maximum. The farther away from the cell the lower the variation

in TAC.

Based on these threshold maps, the surface of fiber positions

for the activation of neurons (SoFPAN) can be estimated. This

is shown in Figure 3B for the three investigated fiber pitches.

The SoFPAN is a measure of the excitability of the subcellular

optogenetic configuration in the light field. The uncertainty caused

by the discretization on the SoFPAN is indicated by the shaded

area (see Section 2.4.1). There is a larger uncertainty at lower

intensities due to the rough simulation grid. The soma appears to

be more excitable than the opsin in all sections (red vs. blue) with

already a non-zero SoFPAN for a Ifiber of 0.1 mW/mm2. This is

true for all fiber pitches. The SoFPAN saturates due to the finite

simulation domain.

An optimal and worst z-position for each fiber pitch can be

determined, as well. The result for the two cases as above are

shown in Figures 3C, D. It can be seen that the positions vary with

increasing Ifiber. At low intensities, the optimal position is near the

subcellular region (cf. soma, red) or the most excitable region (cf.

allsec, blue), which is the basal dendrites. At higher intensities, it is

better to illuminate the whole simulation domain, explaining the

optimal positions at −0.4 and 0.7 mm for the 0 and π pitches,

respectively. Once the whole simulation field is excited, the optimal

position is completely determined by the average TAC along the x-

axis. This can be seen in the sudden changes at the highest Ifiber
(> 100 mW/mm2). In green the density distribution of all 560

combinations (pd × Gmax × loc × cell) is displayed. The optimal

position is more concentrated with a 0 or π/2 pitch. On the other

hand, the worst position is more concentrated with the π/2 and π

pitches. The optimal and worst fiber positions are most distant with

the π/2 pitch position.

The excitability of the subcellular region is summarized in

Figure 3E. The scores are based on the p-values of the single-

sided, paired Wilcoxon signed-rank test, as described in Section

2.4.2. At each pitch individually, the subcellular excitability order

remains, generally, the same as under the uniform field (cf.

Supplementary Figure 4. Only the axons appear to be susceptible

to the fiber pitch position. For instance, the axon-pyr1 combination

has an increased (decreased) excitability under the π (0) fiber pitch.

Also at pitch 0, the axon of pyr2 has a lowered excitability with a

SoFPAN significantly lower (p < 0.001) than soma-pyr1. On the

other hand, axon-int2 has a higher SoFPAN than all-int2 under

the π/2 and π pitches. Basal-pyr1 is under all pitches the most

excitable combination, with a score of 41 at pitch π/2. Overall,

pitch π/2 is significantly more excitable than π , which is in turn

more excitable than 0 (p < 0.001). The axon-pyr2, however, has a

significantly higher SoFPAN (p < 0.001) under pitch π than π/2.

The median of the relative change in SoFPAN of the location-

cell-pitch combinations according to this ranking, i.e., lowest to

highest score, is shown in Supplementary Figure 2C. The average

of medians is now 10.45%. Therefore, the SoFPAN increases every

time on average with 10.45% percent when moving from least
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FIGURE 3

The optogenetic response in a homogeneous Monte Carlo simulated light field. (A) The threshold intensities (left) of the pyr1 cell, with opsin
distributed over all sections, and corresponding total temporal averaged current (right). In the colormaps, the position of the optical fiber is varied
with respect to the soma, which is fixed at (x, z) = (0, 0). (B–D) The Surface of Fiber Positions for the Activation of Neurons, the optimal and worst
z-position for neuron activation, respectively, as function of fiber intensity. The shaded area in (B) is enclosed by the upper and lower bound. The
lines are the result of the pyr1 cell with opsin location shown in legend at the right top corner. Gmax = 1.179 µS and pd = 10 ms in (A–D). In (C, D) the
scatter plots overlay the density, averaged over all cell, location, Gmax and pd combinations. (E) Excitability score based on paired Wilcoxon
signed-rank tests. Each population consists of 360 (5 pd × 8 Gmax × 9 Ifiber values) combinations. The pitch of the fiber is illustrated by the orientation
of the fiber icon on the left and valid for the whole row. (F) Relative error of SoFPAN, if the light intensity is considered uniform over the neuron: rel.
error = (SoFPANuniform—SoFPANM.C.)/SoFPANM.C., the outliers are not shown. The errors are calculated for all the Gmax, pd, pitch, and Ifiber
combinations.

TABLE 4 Summary relative error SoFPAN Monte Carlo vs. SoFPAN uniform (all cells pooled together).

Outliers [%] +20% [%] Median Max Min IQR

Allsec 17.42 23.96 −7.8e-16 ∞ −0.59 0.12

Axon 18.60 34.60 0 ∞ −1 0.20

Basal 20.44 18.17 1.3e-15 ∞ −0.53 0.09

Soma 24.57 0.17 0 ∞ −1 5.4e-16

+20% indicates amount of simulations with a relative error above 20%.

(axon int1, pitch = 0) to most (basal pyr1, pitch = π/2) excitable

location-cell-pitch combination. The same analysis is performed

when restricted to a single pitch. The average of medians of the

relative changes in SoFPAN increase toward 56.86, 25.89, 59.18%

for a pitch = 0, π/2, and π , respectively. Matching the ideal fiber

location to the subcellular expression of a single cell can result
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in doubling of the SoFPAN compared to the worst combination.

Even a tenfold increase is observed in case of the bistratified cell.

Compared to subcellular unspecificity (all), SoFPAN increases of

33–100% can be obtained by specifying subcellular expression (cf.

Table 3). The full analysis of the median relative differences of all

different subcellular-pitch combinations for each cell separately is

shown in Supplementary Figure 3B.

The SoFPAN for a light field that is considered to be uniform

over the whole cell (SoFPANuniform, see bottom Section 2.4.1)

is calculated, as well. The relative error compared to the

SoFPAN under a Monte Carlo field, i.e., (SoFPANuniform-

SoFPANM.C.)/SoFPANM.C., is shown in Figure 3F. The errors is

calculated for all the Gmax, pd, pitch, and Ifiber combinations. The

error of the soma is negligible. The outliers are not shown. Of

these, only 0.85% produce a relative error above 5%. These results

validate the method as the soma should not depend on the M.C.

field as its section is only one point in the 3D-space. The SoFPAN

of basal dendrites gets overestimated, with 18.17% having a relative

error above 20%. In case of the pyramidal cells and with the

opsin distributed over the whole cell, the SoFPAN is predominantly

underestimated and the interquartile range (IQR) of the relative

error is 60% of the IQR for the basal dendrites. The estimation for

the axon of the int1 cell is the worst with a median relative error of

−50%. At least in one test case of each subcellular region the error

is either−100% or infinity (see Table 4).

3.3. Parameter uncertainties

There is uncertainty on various parameters used in this study.

The optical parameters depend on multiple factors, e.g., tissue

and wavelength. The absorption coefficient is extrapolated which

introduces an uncertainty, as well. Moreover, the values of gray

matter are used while different gradations exist. The effect of a

change in optical parameters on the light field in homogeneous

tissue, is illustrated in Figure 4A. On the left, the field as used in

the section above is depicted. The effect of an increased absorption

and decreased reduced scattering coefficient is shown in themiddle.

The result is a more conical field with higher degradation. A more

round field is obtained when the reduced scattering coefficient is

higher (cf. right). Also at the cell level, there are multiple sources

of uncertainty. In experimental setting, the opsin expression Gmax

will not be exactly known. Moreover, the subcellular location will

probably not be discrete as used in these simulations. Finally, the

morphology of the tested cells and its orientation (cf. roll) are fixed.

To address the impact of these uncertainties on the output, a global

sensitivity analysis is performed. The used approach is a screening

method: the Elementary Effects test.

The influence of these six parameters, i.e., cell roll, µ′
s, µa,

opsin subcellular location (loc), cell model (cell), and Gmax, on the

SoFPAN for the three fiber pitches and two cell types (pyr and int)

is investigated. For each fiber pitch and cell type, the elementary

effects test (EET) is repeated for 5 pd and 9 Ifiber combinations

(these 45 combinations correspond with 100% in Figures 4B, D).

The rank according to the µ∗-measure is summarized in Figure 4B.

For certain pd and Ifiber no differentiation could be made based on

the µ∗-measure, explaining the bar height >100% at rank 0. The

subcellular location has most frequently the highest impact on the

excitability for all six test cases. This is followed by Gmax in second

place (rank 4). The roll and µa have on average the lowest impact.

However, in case of the pyramidal cells and π fiber pitch, the roll

has occupied the highest rank for some (pd, Ifiber) combinations.

On the other hand, µ′
s is more important when the fiber pitch is 0

for the pyramidal cells. The µ∗ and σ measures of three cases of

the pyramidal cells with pd of 10 ms are shown in Figure 4C. The

circles indicate the setup where the roll has the highest rank, i.e.,

pyramidal cell with π pitch and 1 mW/mm2. It can be seen that

even though it has the highest rank, its measures are in the same

range as the other two cases. The diamonds represent the EET of a

π/2 pitch at Ifiber = 1, 000 mW/mm2. Here, the reduced scattering

coefficient has the highest impact. The non-linear and interaction

effects are higher in this case, reflected by the higher σ . For the 0-

pitch with Ifiber = 1, 000 mW/mm2 (cross), the location is ranked

highest with a clear difference in µ∗. The effect of cell appears to be

more linear than the other parameters indicated by its shift toward

lower σ values.

The same analysis is performed on the optimal position.

The rank is summarized in Figure 4D. For the interneurons, the

subcellular location stays dominant. There is, however, a clear shift

toward the optical parameters for the pyramidal cells. Here, the

reduced scattering and absorption coefficient are most often ranked

highest for the π and 0 pitch, respectively. Also, in case of the π/2

pitch, the absorption coefficient is more important for the optimal

position than it is for the SoFPAN. The cell and roll appear to have

the lowest effect. While, on the other hand, the cell is important in

case of the interneurons. The optimal position for both cell types

normalized over all simulations with allsec subcellular location of

the EET study, is shown in Figure 4E. These exclude the preset

subcellular selectivity. For the interneurons this is more smeared

out and a focus toward the stratum pyramidale is observed. On

the other hand, for the pyramidal cells there is a clear preference

for a position such that the majority of the light reaches the

stratum oriens region. At pitch π this is more smeared out due

to the possibility to retract (z more positive) the fiber at higher

intensities to illuminate a bigger region in the stratum oriens. This

is limited for the 0 pitch explaining the high peak at −0.4 mm.

4. Discussion

In this study we focused on the optogenetic excitability of

CA1 cells. We attempted to not only gain more insight into the

effect of the various stimulation and uncertain parameters but also

to identify strategies for increased optogenetic efficiency. These

insights are of interest for the development of better stimulation

protocols that can be used as treatment for TLE. A broad view is

adopted where both the excitability of pyramidal and interneurons

is investigated. Even though excitation of inhibitory neurons is

one of the two main investigated strategies as treatment of TLE,

insights in the excitability of pyramidal neurons can be of interest

as well. Like with electrical deep brain stimulation, the latter

could be used as counter-irritation (Carrette et al., 2015) with

various modes of action (Sprengers et al., 2020) that can be

tested. Moreover, stimulation of both types could be beneficial

for restoring the excitation-inhibition balance (Wykes et al.,

2016).

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2023.1229715
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Schoeters et al. 10.3389/fncom.2023.1229715

FIGURE 4

Results of the elementary e�ects study. (A) Intensity fields with di�erent optical parameters; from left to right µa = 0.42, 0.52, 0.35 mm−1 and
µ′
s = 1.36, 0.93, 2.06 mm−1. (B, D) The influential parameters on SoFPAN and optimal fiber position, respectively, ranked for 5 pds and 9 fiber

intensities (in %). The fiber pitch and cell type are shown on top and left, respectively. (C) The two measures of the elementary e�ects of three
pyramidal cell setups, i.e., pitch = π , π/2, and 0, and Ifiber = 1, 1,000, and 1,000 mW/mm2 indicated by circle, diamond and cross, respectively, for a
pd = 10 ms. The legend between (B, D) also applies on (C). (E) Normalized optimal z-position over all results with allsec subcellular location of the
elementary e�ects study.

4.1. Excitability of spatially confined opsin
expression

The results show that the optogenetic excitability of CA1 cells

depends on various parameters. The irradiance threshold ranges

over multiple order of magnitudes. As expected, an increase in

expression level (Gmax) or pulse duration (pd) results in a decrease

of the intensity threshold (Ith). There is also a clear dependence

on the subcellular region of opsin expression and variance among

different cells. There is no single explanation for the relative

excitability of the considered subcellular opsin locations, due to the

complex interplay of many non-linear relationships. By comparing

the membrane areas and impedances (cf. Table 2 and Figure 2E)

of the subcellular regions some observations can be made. For

a fixed Gmax, the specific channel conductance (gChR2) is locally

higher for regions with a lower total surface area. Thus, for the

same Ifiber, there will locally be a higher depolarizing current to

elicit an action potential (AP). This combined with the fact that

the AP is measured in the soma (therefore does not have to travel

through the cell), explains why the soma-confinement is highly

ranked in each cell. The observation concerning the locally raised

channel conductance also holds when comparing basal dendrites

with apical, all dendrites, and all sections. An argument for why

confinement to the basal dendrites is more excitable than the

soma could be found by comparing their input impedances. For a

fixed depolarizing current, a higher impedance results in a larger

membrane depolarization. Because the impedance of the basal

dendrites is significantly higher than that of the soma (log-scale in

Figure 2E) it will facilitate AP initiation. However, this contradicts

the rank of axon-pyr1. Finally, there is the channel distribution
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TABLE 5 Mean relative di�erence in Ith due to three-dimensional

structural morphology (top) or by changing channel distribution (bottom;

relative with respect to original).

All Alldend Apic Axon Basal Soma

pyr3–pyr1 −0.32 −0.31 −0.28 0.83 0.14 −0.31

pyr4–pyr2 0.29 0.23 0.47 0.92 −0.28 0.30

pyr3–pyr2 −0.53 −0.53 −0.47 3.15 −0.50 −0.56

pyr4–pyr1 1.06 0.97 1.07 −0.22 0.73 1.05

inside the cell itself. The ratio of depolarizing (e.g., Na+ and Ca2+)

and hyperpolarizing (e.g., K+) channels defines the membrane

threshold for AP initiation. This ratio is double in the axon of pyr2
compared to pyr1, motivating the low rank of axon-pyr1. These

observations are in agreement with the findings of Foutz et al.

(2012).

Confinement to the basal dendrites of pyr1 is the most

excitable, while the highest Ith is required for the axon of int1 (cf.

Figure 2C). Similar ranking is observed in the SoFPAN calculations

(cf. Figure 3E). To identify the effect of endogenous channel

distribution, the channel distributions of pyr1 were imposed on

pyr2 (pyr3) and vice versa (pyr4). The mean relative difference

of all pd and Gmax combinations is shown in Table 5. The Ith of

pyr3 drops with ∼30 and ∼50% vs. pyr1 and pyr2, respectively,

for all subcellular regions except for the axon (both cases) and for

the basal dendrites in pyr3 vs. pyr1. Contrarily, the excitability of

pyr4 drops (higher Ith), except for the basal dendrites for pyr4 vs

pyr2 or axon in pyr4 vs. pyr1. Switching 3D structural morphology

while maintaining endogenous channel distribution (top two) or

vice versa (bottom two) impacts optogenetic excitability. It is

clear that the interaction of structural morphology and channel

distribution has an impact on optogenetic excitability. The axon

subregion appears to be the most susceptible with tripled excitation

threshold of pyr3 vs. pyr2. Neuron degeneracy, i.e., the ability to

perform the same functioning whilst being structurally different or

having different ion channel distributions (Migliore et al., 2018), is

thus something that should be taken into account in determining

irradiance thresholds. This is also observed in the variability of Ith
in Supplementary Figure 1. Still, the basal dendrites region is also

the most excitable in pyr3 and pyr4. Combined with rank 1 and 2

for pyr1 and pyr2, respectively, it can be concluded that this is the

most effective subcellular target region for opsin expression in CA1

pyramidal cells.

This spatial dependence was also observed in the study of

Grossman et al. (2013). With the specific conductance (gChR2)

as metric, they determined whole cell illumination to be most

efficient, i.e., uniform opsin distribution over whole cell with a

uniform light field compared to soma, axon initial segment or apical

dendrite confinement. They determined that for a 20 ms pulse and

irradiance of 1 mW/mm2 the required gChR2 when in all sections is

only 6% of that when restricted to the soma. On the other hand,

Gmax was 60% higher. These values are in agreement with our

results where the ratio of the specific conductance of all sections

to soma targeted expression is 2–4% under the same conditions in

the pyramidal cells. However, in our study we argue that ranking

should be based onGmax, i.e., where the number of opsin complexes

is fixed. This translates toward an equal comparison of total elicited

photocurrent, while, on the other hand, for a fixed gChR2 the

total photocurrent is scaled by the surface area. As a result, the

confinement to the soma is classified here to be more excitable.

After correction for the difference in rectification function [i.e.,

G(V = −68.83 mV) = 1 in Grossman et al. (2011) vs. 0.07

in this study], the absolute values of Gmax were slightly lower

but in the same order as reported in Grossman et al. (2013). For

a Gmax of 1 µS (= 0.07 µS after correction) and with a single

channel conductance of 40–100 fS this translates toward expression

of 0.71–1.77 106 opsin complexes. Spread over the whole cell this is

±50 channels/µm2 but confined only to the soma this rises toward

>1,000 channels/µm2. This value is higher than the estimated

130 channels/µm2 based on bacteriorhodopsin expression (Nagel

et al., 1995; Foutz et al., 2012) but lower than the indirectly

estimated 4.4 104 channels/µm2 by Arlow et al. (2013). With

our tested Gmax values up to 100 µS especially when restricted

to the soma, this could pose cellular toxicity problems, if these

channel numbers would be achieved (Yizhar et al., 2011; Rost et al.,

2017, 2022). This can be avoided if single channel conductance

is increased.

The opsin is in all conditions uniformly distributed but can be

restricted to a spatial region. In-vivo this highly specific and discrete

separation is not possible. Still, by merging the opsin with signaling

and targeting constructs, localized enhancement can be obtained.

For instance, the addition of the soma-targeting motif of the soma-

and proximal dendrite-localized voltage-gated potassium-channel

Kv2.1 improves somato-dendritic expression (Rost et al., 2017;

Mahn et al., 2018). The real distribution in those cases is not

known. A normal distribution could be imposed but this would

come with two more degrees of freedom. Therefore, the spatially

restricted but uniform distribution is used. Our results encourage

localized enhancement and advances in this research direction.

A reduction of Ith with more than 64% can be achieved via

subcellular specificity. This is tempered toward, but still significant,

increases in SoFPAN of 33–100%, when light propagation is

included. Consequently, if made possible, spatial confinement of

opsins to specific membrane compartments could significantly

increase optogenetic efficiency. On the other hand, more than

76% reduction of Ith between optimal and worst subcellular

regions is possible. This is also reflected in SoFPAN, where an

ideal subcellular-pitch combination can result in a 1.5–10 fold

increase compared to the worst combination (cf. Table 3). A good

knowledge of the optogenetic interaction at the subcellular level is

therefore required in order to achieve the optimal configuration.

4.2. Optimal fiber position

Due to the finite size and discrete nature of the test grid

(121 points), the SoFPAN, and optimal and worst positions could

not be unambiguously determined. An upper and lower bound

of the SoFPAN is defined (cf. Section 2.4.1), indicating a larger

uncertainty at lower intensities. In case of the optimal fiber

position, a tie-breaker based on the TAC is introduced. From

a homeostatic point of view, it is ideal that the required result

is achieved via the lowest perturbation of normal functioning.

High/long transmembrane currents could lead to ion concentration
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imbalance. Especially when using ChR2(H134R), which has a high

H+ permeability, this can result in neuron acidification, which in

turn can result in decreased neuron functioning or unexpected

behavior (Schneider et al., 2013; Mahn et al., 2016; Vierock et al.,

2017). Therefore, the positions that generate the lowest TAC

are preferred. The results in Figure 3C show that the optimal

position is at the depth of the region of subcellular expression

or with a focus on the most excitable region (in case of opsin

distribution over the whole or majority of the cell). Overall, the

rank of excitability between uniform and M.C is unchanged field

stimulation. Subcellular excitability appears to be dominant over

spatial distribution. This spatial preference was also observed in

Foutz et al. (2012). In their L5 pyramidal model, they found the

apical tuft and soma to be most excitable.

For the π/2 pitch, the optimal and worst position are the

most stationary for increasing intensities. For the other pitches

(0 and π), either the optimal or worst position is more smeared

out while they are located more closely to each other for low

intensities. Consequently, there is a higher risk for sub-optimal

fiber positioning. Combined with the highest excitability according

to the SoFPAN (cf. Figure 3E), it can be conclude that π/2 is the

better fiber position.

4.3. Contribution of optical field simulation

This study combined simulations of light propagation and

neuronalmodeling. Light propagation is simulated using theMonte

Carlo method for a uniform medium. The hippocampus is a

predominantly gray matter structure. However, there is uncertainty

on the exact values of the optical parameters (amplified by

inter- and extra-polation). The effect of the uncertainty of these

parameters is tested using the elementary effects method. The

influence of µ′
s on the excitability is ranked in the middle, while

µa is ranked lower. On the optimal position they were ranked

much higher. The median and maximum µ∗ on SoFPAN are,

respectively 0.14 and 1.71 mm2 (0.04 and 1.19 mm2) for µ′
s (µa).

These parameters have some influence, but are subordinate to the

other uncertain parameters such as subcellular location, expression

level and cell morphology. Moreover, the need to include the

light intensity profile in the neuron simulation was addressed

by calculating the SoFPAN from excitation thresholds under

uniform illumination, as well. Deviations of more than 20% are

observed in more than 25% of the tested setups (soma excluded).

Confinement to the basal dendrites result in the lowest percentage

(18.17%) while the highest is achieved in case of the axon

subcellular expression (34.60%). Overall, investigating optogenetic

excitability under uniform field conditions provides a good initial

approximation, but, accuracy drops for larger and asymmetrical

section distributions. The latter was also observed in the strong

pitch dependence of axon excitability in the pyramidal cells.

4.4. Limitations and future work

This study focuses on single pulse excitation of CA1 cells.

The occurrence of other spiking behavior is excluded. Likewise,

when calculating the SoFPAN with high Ifiber, a cell near the fiber

end may exhibit bursting or depolarization block due to intense

irradiance (Grossman et al., 2011, 2013). Unlike with electrical

stimulation, the photocurrent saturates for high light intensities

(see Figure 1C). Therefore, extreme behavior is not expected when

short pulses are applied. Additionally, the studied ChR2(H134R)

opsin exhibits light-dark adaptation, i.e., the photocurrent is higher

for a full dark adapted neuron but decreases toward a steady state

value under prolonged illumination. The recovery time is in the

order of seconds. During pulsed stimulation, the photocurrent of

the first pulse will be higher than that of the subsequent pulses.

Therefore, higher irradiances will be required to reliably elicit

pulse-locked spiking (Foutz et al., 2012). Future work should test

the capability of eliciting reliable spiking when opsin expression

is confined to a specific subcellular region. Additionally, since

this study focuses on isolated cells that are at rest prior to

optogenetic stimulation, it is necessary to investigate if phase

locking is possible in a network setting, quantify its impact on

excitation thresholds, observe subcellular excitation’s effects on

cellular and network responses (Youssef et al., 2023), and evaluate

its influence on synaptic plasticity. Therefore, the interaction in

neuronal networks will be of interest in future work, particularly

with a focus on hyperexcitable systems such as those in temporal

lobe epilepsy. Clearly, the cell’s optogenetic excitability depends on

multiple factors. The results in Table 5 show both 3D structural

morphology and endogenous channel distribution dependencies.

Still, the individual impact and interaction effects are yet to be

determined. Obtaining a better understanding will be of interest in

future work.

The effective level of opsin expression in-vivo is uncertain.

Furthermore, to account for potential improvements in plasma

membrane expression (Rost et al., 2017; Mahn et al., 2018), Gmax is

treated as a free parameter. However, due to the presence of inward

rectification, it is unclear how the model parameter gChR2 relates

to the actual opsin expression level in-vivo. In our formulation

of G(V), all proportionality factors are absorbed by gChR2 (see

Equations 1 and 2). While in the formulation of Grossman et al.

(2011) and Williams et al. (2013), G(V = −68.83 mV) = 1 and

G(V = −76.07mV) = 1, respectively. These rectification functions

cause a reduction of gChR2 with a factor of 14.15 or 12.89 at those

specific membrane potentials, compared to our formulation in

Equation 2.

As aforementioned, there is still some uncertainty on the

tissue optical properties. Different studies have reported values

that can differ up to an order of magnitude (Yaroslavsky et al.,

2002; Gebhart et al., 2006; Johansson, 2010; Genina et al., 2019).

Furthermore, brain tissue is binary classified as either gray or

white matter, while tissue gradation is more continuous. The

impact of the uncertainty of these parameters on the optogenetic

excitability is tested in this study. However, it is investigated only

locally near the parameters’ reported means (see Table 1), while

the reduced scattering coefficient of white matter is reported to

be 7-times higher than that of gray matter (Yaroslavsky et al.,

2002). Additionally, tissue alterations due to foreign body reaction

occur. A fibrous capsule is formed around the implanted fiber as

reaction to blood-brain-barrier injury and gliosis caused by the

presence of the implanted fiber itself (Vandekerckhove et al., 2020).

In future work light propagation in a heterogeneous medium and

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2023.1229715
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Schoeters et al. 10.3389/fncom.2023.1229715

its effect on excitability could be determined. Mesh and voxel

based Monte Carlo algorithms exist that can accurately compute

the light field distribution in complex tissues (Yan and Fang,

2020). Moreover, modern deep learning algorithms can be utilized

to reduce the inherent stochastic noise of these Monte Carlo

simulations (Ardakani et al., 2022). Exploring the propagation of

light at different wavelengths, such as for the excitation of red-

shifted opsins, would also be of interest. The simulated fiber has a

flat tip with fixed diameter and numerical aperture. Fiber tapering,

flat tip patterning and alteration of the geometric properties can

result in improved output coupling or broadened and multi-site

illumination. However, this is out of the scope of this research

(Kostovski et al., 2014; Vandekerckhove et al., 2020).

New opsins, either natural or genetically engineered, are

discovered on a yearly basis (Yizhar et al., 2011; Klapoetke et al.,

2014; Vierock et al., 2017, 2022; Oppermann et al., 2019).While this

is generally beneficial, it can hinder the development of optogenetic

tools. Dividing research among multiple opsins may limit the

understanding of a single opsin’s interactions with neurons and

its capabilities. The question arises whether the gathered insights

here are transferable to other opsins as well. Previous studies have

demonstrated the influence of channel kinetics on factors like

irradiance thresholds, spike reliability, and behavior (Grossman

et al., 2011; Mattis et al., 2012; Klapoetke et al., 2014). The exact

values of Ith will thus differ for another opsin. However, these values

are already uncertain due to multiple other uncertainties in other

parameters like Gmax. Furthermore, these differences will affect all

tested cases equally. Therefore, we expect that the observed trends

and rankings regarding optogenetic excitability will be applicable

across different opsins. In future work, a similar study could be

performed focusing on optogenetic silencing with inhibitory opsins

like GtACR2 and WiChr (Govorunova et al., 2015; Vierock et al.,

2022).

Tissue illumination causes heating. To avoid permanent

tissue damage, the local temperature increase cannot exceed

6◦C (Acharya et al., 2021). Moreover, behavioral changes are

already possible at lower temperature changes (1◦C). Several

neural parameters, e.g., capacitance, ion channel conductance, and

transmitter release and uptake, have been shown to be temperature

dependent (Kiyatkin, 2019; Fekete et al., 2020; Peixoto et al.,

2020; Acharya et al., 2021). The reported SoFPAN values are

for fiber intensities up to 1,000 mW/mm2. After extrapolation

of the change in temperature results reported in Acharya et al.

(2021) (Figure 3A), this intensity corresponds with an estimated

temperature increase of 4.85◦C after 100 ms. Consequently,

temperature-induced changes in optogenetic excitability should be

included in future work.

5. Conclusion

In this in-silico study, we examined the optogenetic excitability

of four CA1 cells using ChR2(H134R). Our findings reveal that, for

a fixed amount of opsin channels (Gmax), confining the opsin to

specific neuronal membrane compartments significantly enhances

excitability. This confinement leads to threshold reductions

exceeding 64% and up to 100% gains in the surface of fiber positions

for the activation of neurons. Additionally, we determined that

the perpendicular orientation of the fiber relative to the somato-

dendritic axis yields superior results. Furthermore, we observed

substantial inter-cell variability, with differences in thresholds

above 20%. The bistratified cell exhibited the least excitability, while

pyramidal cell 1 demonstrated the highest excitability, especially

when the opsin is confined to the basal dendrites. These findings

highlight the importance of considering neuron degeneracy while

developing optogenetic tools. By screening various uncertain

parameters, we identified opsin location and Gmax having the

greatest impact on simulation outcomes. Our study showed

the advantages of computational modeling coupled with light

propagation. An increased excitability is seen with optimal fiber

positioning, i.e., perpendicular to the somatic-dendritic axis and

focus on the most excitable cell region. Spatial confinement and

enhancements of opsin expression levels are promoted strategies

to improve optogenetic excitability. However, it should be noted

that uncertainty in these parameters limits determining the exact

irradiance thresholds.
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