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Introduction: As deep learning has achieved state-of-the-art performance for

many tasks of EEG-based BCI, many efforts have been made in recent years

trying to understand what have been learned by the models. This is commonly

done by generating a heatmap indicating to which extent each pixel of the input

contributes to the final classification for a trained model. Despite the wide use, it

is not yet understood to which extent the obtained interpretation results can be

trusted and how accurate they can reflect the model decisions.

Methods: We conduct studies to quantitatively evaluate seven different deep

interpretation techniques across different models and datasets for EEG-based

BCI.

Results: The results reveal the importance of selecting a proper interpretation

technique as the initial step. In addition, we also find that the quality of

the interpretation results is inconsistent for individual samples despite when

a method with an overall good performance is used. Many factors, including

model structure and dataset types, could potentially affect the quality of the

interpretation results.

Discussion: Based on the observations, we propose a set of procedures that allow

the interpretation results to be presented in an understandable and trusted way.

We illustrate the usefulness of our method for EEG-based BCI with instances

selected from different scenarios.

KEYWORDS

brain-computer interface (BCI), convolutional neural network, deep learning
interpretability, electroencephalography (EEG), layer-wise relevance propagation
(LRP)

1. Introduction

A brain-computer interface (BCI) builds a direct communication pathway between
the brain and external systems. Among the various neuroimaging techniques for BCIs,
electroencephalography (EEG) is the most widely used method due to its noninvasiveness,
affordability, and convenience. As one of the most powerful techniques to decode EEG
signals, deep learning can automatically capture essential characteristics from a large volume
of data by optimizing its parameters through back-propagation and stochastic gradient
descent (SGD). It is reported that deep learning has achieved better performance than
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conventional methods in many BCI domains such as identifying
attentive mental state (Fahimi et al., 2019), movement-related
cortical potential recognition (Lawhern et al., 2018), detection of
driver drowsiness (Cui et al., 2021a), etc. Despite the success, deep
learning has its major drawback of lacking transparency behind its
behaviors, which could raise potential concerns of end users on the
adoption of BCIs.

In recent years, many efforts have been made to interpret the
decisions of deep learning models with application to image and
text classification tasks. This is commonly done by generating
a heatmap indicating to which extent each pixel of the input
contributes to the final classification for a trained model. For the
context of EEG-based BCI, the technique can reveal how different
components dwelling locally in EEG, e.g., signals generated from
different cortical sources, sensor noise, electromyography (EMG),
eye movements and eye blinks activities, will affect the classification
(Cui et al., 2021a,b, 2022). It is thus possible to know whether
the model has learned neurologically meaningful features or the
decisions are influenced largely by class-discriminative artifacts
from the data, so that the process of improving the models towards
better performance and reliability can be facilitated.

Deep learning interpretability has received wide attention in the
field of EEG-based BCI (Sturm et al., 2016; Zhou et al., 2016; Bang
et al., 2021; Cui et al., 2021a,b, 2022). Despite the wide use, it is
neither well understood to which extent the obtained interpretation
results can be trusted and how accurately they can reflect the
model decisions, nor clearly explained in existing literature why
a specific interpretation technique is chosen over others. These
observations raise concern about biased conclusions that are made
based on misinterpretation of the model decisions. In order to fill
this research gap, we conduct a study to evaluate different deep
interpretation techniques for EEG-based BCI and explore the best
practice of utilizing the techniques. To summarize, the paper makes
contributions in the following aspects:

• As far as we know, this is the first comprehensive evaluation
of deep learning interpretation techniques across different
models and datasets for EEG-based BCI. It provides insights
into how seven well-known interpretation techniques,
including saliency map (Simonyan et al., 2014), deconvolution
(Zeiler and Fergus, 2014), guided backpropagation
(Springenberg et al., 2014), gradient × input (Shrikumar
et al., 2016), integrated gradient (Sundararajan et al., 2017),
LRP (Bach et al., 2015), and DeepLIFT (Shrikumar et al.,
2016), behave under different conditions.
• Based on the evaluation results, we propose a set of procedures

that allow sample-wise interpretation to be presented in an
understandable and trusted way. We illustrate the usefulness
of our method for EEG-based BCI with instances selected from
different scenarios.
• We make the source codes that implement our method in this

paper publicly available from Cuijiancorbin (2022). This will
allow other researchers from this field to conduct a quick test
of their models or datasets in order to understand how the
classification is influenced by different kinds of components
in EEG signals.

In the following part of the paper, state-of-the-art interpretation
techniques and their current applications to EEG signal

classification are reviewed in Section “2. Related work.” Datasets
and models are prepared in Section “3. Preparation of datasets
and models.” Deep learning interpretation techniques are
selected and evaluated in Section “4. Evaluation of deep learning
interpretability.” Sample-wise interpretation results are analyzed
in Section “5. Proposed method for sample-wise interpretation,”
which is followed by an extensive study of the applications in
Section “6. Application scenarios.” The discussion is presented in
Section “7. Discussion” and conclusions are made in Section “8.
Conclusion.”

2. Related work

2.1. Deep learning interpretation
techniques

In the field of deep learning interpretability, many techniques
have been proposed to interpret deep learning models by
generating a contribution map (alternatively called a “relevance”
or “attribution” map (Ancona et al., 2017)). Each value in the
contribution map indicates the importance of the corresponding
pixel (or sampling point) of the input sample to the final decision
of the model. Existing interpretation techniques majorly fall into
two categories–backpropagation-based methods and perturbation-
based methods.

Backpropagation-based methods generate the contribution
map through a single or several forward and backward passes
through the network. The saliency map method (Simonyan et al.,
2014) uses a direct way to estimate the contribution map by
calculating the absolute values of gradients back-propagated from
the target output. It reflects how much the target output will
change when the input is perturbed locally. Zeiler and Fergus
(2014) proposed the deconvolution method, which modifies the
back-propagation rule in the rectified linear units (ReLUs) layer–
the backward gradients are zeroed out if their values are negative.
By combining these two approaches, Springenberg et al. (2014)
proposed the guided backpropagation method which zeros out
the gradients at the ReLU layer during back-propagation when
either their values or values of inputs in the forward pass are
negative. The gradient × input method (Shrikumar et al., 2016)
multiplies the (signed) partial derivatives with the input sample
itself. Sundararajan et al. (2017) proposed the integrated gradient
method, where the average gradient is computed by varying the
input along a linear path from a baseline. Bach et al. (2015)
proposed the layer-wise relevance propagation (LRP) method
which redistributes the activation values at the target neuron to
the neurons connected to it according to their contributions. The
redistribution process continues layer by layer until the input layer
is reached. Shrikumar et al. (2016) proposed the DeepLIFT method,
which requires running twice forward passes with the input sample
and the baseline. Similar to the LRP method, each neuron is
assigned a contribution score in a top-down manner according to
the difference of activations obtained from the twice forward passes.

The perturbation-based methods only focus on the change of
output by perturbation of input, while treating the network as a
black box. Specifically, such methods compute the difference in
output when removing, masking, or altering the input sample.
Zeiler and Fergus (2014) proposed the occlusion sensitivity method

Frontiers in Computational Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2023.1232925
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1232925 August 16, 2023 Time: 10:43 # 3

Cui et al. 10.3389/fncom.2023.1232925

which sweeps a “gray patch” to occlude different parts of an input
image and observe how the prediction changes. Similar to the
method, Petsiuk et al. (2018) proposed to use binary random masks
to perturb the image and distribute the contribution scores among
the pixels. Zintgraf et al. (2017) proposed the prediction difference
analysis method. They calculated the difference of a prediction by
marginalizing each feature (or pixel). Fong and Vedaldi (2017)
proposed to use a soft mask with continuous values to preserve
discriminative regions for classification. The soft mask is optimized
with various regularizations to suppress artifacts. The method was
further improved by Yuan et al. (2020) by using a discrete mask
optimized with the generative adversarial network.

These interpretation techniques have been previously evaluated
on both real (Hooker et al., 2018) and synthetic (Tjoa and Guan,
2020) image datasets, as well as synthetic time-series datasets
(Ismail et al., 2020). However, they have not yet been systematically
evaluated on EEG datasets. In this paper, we design metrics to
evaluate how accurately these techniques can interpret the deep
learning models designed for EEG-based BCI.

2.2. Deep learning interpretability for
EEG-based BCI

For EEG-based BCI, deep learning interpretability can reveal
how different factors contained in EEG influence the model
decisions. For example, Bang et al. (2021) compared sample-
wise interpretation by the LRP method between two subjects and
analyzed the potential reasons that lead to the worse performance
of one of them. The LRP method was also used by Sturm et al.
(2016) to analyze the deep learning model designed for a motor
imagery task. They attributed the factors leading to the wrong
classification to artifacts from visual activity and eye movements,
which dwell in EEG channels from occipital and frontal regions.
Özdenizci et al. (2020) proposed to use an adversarial inference
approach to learn stable features from EEG across different
subjects. By interpreting the results with the LRP method, they
showed their proposed method allowed the model to focus on
neurophysiological features in EEG while being less affected by
artifacts from occipital electrodes. Cui et al. (2021a) used the Class
Activation Map (CAM) method (Zhou et al., 2016) to analyze
individual classifications of single-channel EEG signals collected
from a sustained driving task. They found the model had learned
to identify neurophysiological features, such as Alpha spindles and
Theta bursts, as well as features resulting from electromyography
(EMG) activities, as evidence to distinguish between drowsy and
alert EEG signals. In another work, Cui et al. (2022) proposed a
novel interpretation technique by taking advantage of hidden states
output by the long short-term memory (LSTM) layer to interpret
the CNN-LSTM model designed for driver drowsiness recognition
from single-channel EEG. The same group of authors recently
reported a novel interpretation technique (Cui et al., 2022) based
on a combination of the CAM method (Zhou et al., 2016) and
the CNN-Fixation methods (Mopuri et al., 2018) for multi-channel
EEG signal classification and discovered stable features across
different subjects for the task of driver drowsiness recognition.
With the interpretation technique, they also analyzed the reasons
behind some wrongly classified samples.

Despite the progress, it is yet not understood to which extent
the interpretation results can be trusted and how accurately they
can reflect the model decisions. It is also not well explained in
existing work why a specific interpretation technique is chosen
over others. This research gap motivates us to conduct quantitative
evaluations and comparisons of these interpretation techniques
on deep learning models designed for mental state recognition
from EEG signals.

3. Preparation of datasets and
models

3.1. Dataset

We selected three public datasets belonging to active, reactive
and passive BCI domains, respectively, for this study. These
datasets have been widely used for the development of deep
learning models.

3.1.1. Dataset 1: sensory motor rhythm (SMR)
Motor imagery (MI) is an active BCI paradigm that decodes

commends of users when they are imagining the movements of
body parts (De Vries and Mulder, 2007). It is reflected in EEG
as desynchronization of sensorimotor rhythm (SMR) over the
corresponding sensorimotor cortex areas. The EEG dataset comes
from BCI Competition IV (2008) Dataset 2A. It consists of EEG data
collected from 9 subjects conducting four different motor imagery
tasks, which are the imagination of moving left hand (class 1), right
hand (class 2), both feet (class 3), and tongue (class 4). There are
two sessions of the experiment conducted on different days for each
subject. Each session consists of 6 runs separated by short breaks and
each run consists of 48 trails (12 for each imaginary task). Therefore,
there are in total 288 trials of a session for each subject.

The EEG data were collected from 22 channels with a sampling
rate of 250 Hz. They were bandpass filtered to 0.5 Hz–100 Hz, and
further processed by a 50 Hz notch filter to suppress line noise. We
followed the practice in Lawhern et al. (2018) to down-sample the
signals to 128 Hz and extracted the EEG samples for each trail from
0.5 to 2.5 s after the cue appeared. The dimension of each sample is
therefore 22 (channel)× 254 (sample points).

3.1.2. Dataset 2: feedback error-related negativity
(ERN)

Feedback error-related negativity (ERN) refers to the amplitude
change of EEG, featured as a negative error component and
a positive component after a subject receives erroneous visual
feedback (Margaux et al., 2012). In the experiment, ERN was
induced by a P300 speller task, which is a passive BCI paradigm for
selecting items displayed on the screen by detecting P300 response
from EEG signals. The experiment consists of five sessions. Each of
the first four sessions contains 12 tasks of 5-letter word spelling,
while the last session contains 20 tasks. For each subject there
are 4 (sessions) × 12(tasks) × 5(letters) + 1(session) × 20
(tasks)× 5(letters)= 340 trails. 26 subjects (13 men) aged between
20 and 37 participated in the experiment. Their EEG data were
recorded at 600 Hz by 56 passive Ag/AgCl EEG sensors (VSM-CTF
compatible system) placed according to a 10–20 system. The
authors down-sampled the EEG signals to 200 Hz and divided
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them into training data (from 16 subjects) and testing data (from
10 subjects). The dataset has been made public from the “BCI
Challenge” hosted by Kaggle (B Challenge @ Ner 2015, 2015).

We selected 32 channels out of 56 channels in our study by
following the practice described in Margaux et al. (2012). Next,
we processed the data according to the steps used in Lawhern
et al. (2018) by band-pass filtering the signals to 1–40 Hz and
extracting a sample from each trail from 0 to 1.25 s after the
feedback was displayed. In this way, each sample has dimensions
of 32 (channels)× 200 (sampling points).

3.1.3. Dataset 3: driver drowsiness recognition
This dataset was built with EEG data collected from a sustained-

driving experiment (Cao et al., 2019). The subjects were required to
drive a car in a virtual experiment and respond quickly to randomly
introduced lane-departure events that drifted the car away from
the center of the road. Their reaction time was recorded to reflect
their level of drowsiness. A total of 27 subjects (aged from 22 to
28) participated in the experiment. The EEG signals were recorded
at 600 Hz with 30 electrodes, and band-pass filtered to 1–50 Hz
followed by artifact rejection.

We use a pre-processed version of the dataset described in
Cui et al. (2021a) for this study. Specifically, the EEG data were
down-sampled to 128 Hz. A 3-s length sample prior to each car
deviation event was extracted. The dimension of each sample is 30
(channel) × 384 (sample points). The samples were labeled with
“alert” and “drowsy” according to their corresponding global and
local reaction time, which were defined in Wei et al. (2018). The
samples were further balanced for each subject and class. The final
dataset contains 2022 samples in total from 11 different subjects.

3.2. Models and implementation

In this study, we select two benchmark deep learning models
for the test. The first model is a shallow CNN named “EEGNet,”
which was proposed by Lawhern et al. (2018). The model was
tested on different active and reactive BCI paradigms (Lawhern
et al., 2018). The second model named “InterpretableCNN” was
proposed by Cui et al. (2022) in their recent work for driver
drowsiness recognition. The model has a compact structure
with only seven layers. The selection of the model for this
study is motivated by its superior performance over both
conventional methods and other state-of-the-art deep learning
models including EEGNet on the passive BCI domain (Cui et al.,
2022).

The cross-subject paradigm was carried out on the three
paradigms, in order to encourage the models to derive stable
EEG features across different subjects. For Dataset 1, we followed
the procedures described in BCI Competition IV (2008) by
splitting the data collected from the first and second sessions
into training and testing sets. For each time, the data from one
subject collected from the second session are used as the test
set, while the data of all the other subjects collected in the first
session are used as the training set. The process was iterated until
every subject served once as the test subject. For Dataset 2, we
followed the original division of the dataset (B Challenge @ Ner
2015, 2015) by using the data from 16 subjects as the training
set and the data from the other 10 subjects as the testing set.

For Dataset 3, we followed the practice in Cui et al. (2022) by
conducting a leave-one-subject-out cross-subject evaluation on the
models.

We set batch size as 50 and used default parameters of the
Adam method (Kingma and Ba, 2014) (η = 0.001, β1 = 0.9,
β2 = 0.999) for optimization. Considering Dataset 2 contains
imbalanced samples, we applied the weights of 1 and 0.41 (which
is inverse proportion of the training data) to the “error” and
“correct” classes, respectively, in the loss function. Considering
the neural networks are stochastic, we repeated the evaluation of
each model on each test subject 10 times. In each evaluation, we
randomized the network parameters and trained the models from
1 to 50 epochs, and selected the best epoch for the three datasets,
respectively.

4. Evaluation of deep learning
interpretability

4.1. Interpretation techniques

4.1.1. Statement of the problem
Formally, suppose an EEG sample X ∈ RN×T (N is the number

of channels and T is the sample length) is predicted with label c. The
task is to generate a contribution map Rc ∈ RN×T , which assigns a
score Rc(i, j) (1 ≤ i ≤ N, 1 ≤ j ≤ T) to each sampling point X(i, j),
indicating its contribution to the classification.

By averaging Rc over the temporal dimension, we can
obtain a mean contribution map Rc ∈ RN , reflecting the average
contribution of each EEG channel to the final classification. By
interpolating Rc over the whole scalp area, we can obtain a
topographic map that reveals the source of signals that contain
important features. Rc has been widely used in existing work
(Özdenizci et al., 2020; Bang et al., 2021; Cui et al., 2022) to interpret
the classification results. In this paper, we name Rc as “channel
contribution map”. Rc is called “contribution map” or alternatively
“sample contribution map,” referring to the map generated for the
whole sample.

4.1.2. Interpretation techniques and
implementation

We select seven widely used interpretation techniques for
the test and they are the saliency map (Simonyan et al., 2014),
deconvolution (Zeiler and Fergus, 2014), guided backpropagation
(Springenberg et al., 2014), gradient × input (Shrikumar et al.,
2016), integrated gradient (Sundararajan et al., 2017), LRP
(Bach et al., 2015), and DeepLIFT (Shrikumar et al., 2016).
In comparison to the other methods, the selected ones have
the following advantages to be implemented for EEG-based
BCI:

• The methods can be applied to deep learning models with
different structures.
• The selected interpretation techniques are free of adjustable

parameters to be fine-tuned.
• The selected methods are computationally efficient.
• The methods are free of parameters to be randomized for

initialization so that the results are reproducible.
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Suppose a sample x is input into a DNN network and
the final activation score Sc(x) is obtained for class C. Each
layer of the DNN model performs linear transformations zj =∑

i wjixi + bj followed by a non-linear mapping xj = f (zj). The
methods of the saliency map, gradient × input, and integrated
gradients can be, by definition, implemented as a function of
the partial derivatives of the target output with respect to each
input feature. The methods of LRP and DeepLIFT can also be
implemented in a similar way by applying the chain rule for
gradients when the instant gradient f ′(z)at each non-linearity is
replaced with a function g that depends on the method (Ancona
et al., 2017). We further reformulate the methods of deconvolution
and guided back-propagation in the same framework and the
contribution score for a pixel xi of each method is listed in
Table 1.

The selected interpretation methods were implemented for
EEGNet and InterpretableCNN with the Pytorch library. We used
the input sample with zero entries as baselines (Ancona et al.,
2017) for integrated gradient and DeepLIFT. We computed the
average of gradients generated from the path between the baseline
and the input with 100 steps for the integrated gradient method.
We implemented the LRP with ε-rule and DeepLIFT with rescale-
rule by modifying the gradient flow in the non-linear activation
layers (the ReLU activation layer for InterpretableCNN and three
ELU activation layers for EEGNet) with the method proposed
by Ancona et al. (2017). LRP is equivalent to gradient × input
for InterpretableCNN as the model only has ReLU activation for
the non-linear layer (Ancona et al., 2017). In order to remove
the influence of other samples from the same batch on the
interpretation results, we made the batch normalization layers
behave linearly by fixing the parameters of batch mean and
standard deviation during backpropagation. The parameters were
obtained from an additional forward pass of the tested batch
data.

4.2. Evaluation metrics

4.2.1. Sensitivity test
Our first test was inspired by the sensitivity-n test proposed by

Ancona et al. (2017). In the method, they randomly perturbed n
pixels (by setting their values to zeros) from the input sample and
observed a change in output. Ideally, the sum contribution of the
n points is proportional to the change of the model output score of
the predicted class. They varied n from 1 pixel to about 80% pixels
and calculated Pearson correlation coefficient (PCC) r for each n as
the quality metric of the contribution map.

Our test is different in the aspect that we perturbed the input
sample locally in small patches with fixed length n instead of n
random points from different parts of the sample. In this way,
we can evaluate the local accuracy of the contribution map while
introducing less high-frequency noise to EEG signals. We limit
the patch size n to 0.1–0.5 of the sample length. That is, n is
25–127, 20–100 and 38–192, respectively, for Datasets 1, 2 and
3 with sample length of 254, 200, and 384, correspond to 0.45–
2.27%, 0.31–1.56%, and 0.33–1.67% of the total sampling points
of a sample. The size of n is chosen empirically so that it will not
significantly drift the sample away from its original distribution, at

TABLE 1 Implementation of the interpretation techniques.

Methods Contribution Rc
i (x)

Grandient* Input xi ·
∂Sc(x)

∂xi

Integrated Gradient (xi − xi) ·

∫ 1

α=0

∂Sc(x̃)

∂ x̃i

∣∣∣∣
x̃=xi+α(x−xi)

dα

LRP xi ·
∂g Sc(x)

∂xi
, g =

f (z)
z

DeepLIFT (xi − xi) ·
∂g Sc(x)

∂xi
, g =

f (z)− f (z)
z − z

Saliency Map
∂Sc(x)

∂xi

Deconvolution
∂g Sc(x)

∂xi
, g = f ′(z)(f ′(z) > 0)

Guided back-propagation
∂g Sc(x)

∂xi
, g = f ′(z)(f ′(z) > 0)(f (z) > 0)

the same time allowing the performance of different methods to be
distinguishable. For each n, we randomly perturbed the sample 100
times and calculate the correlation coefficient as a quality metric
of the contribution map. For each perturbation, the channel to be
perturbed and position of the patch are randomly selected, so that
the perturbation could occur on any part of the sample, resembling
the experiment conducted in Ancona et al. (2017).

The channel contribution map was evaluated with a
single correlation coefficient, which is obtained by perturbing
each channel once.

4.2.2. Deletion test
The deletion test proposed in Petsiuk et al. (2018) is used

in this study. In this test, we ranked the sampling points of the
input sample in descending order according to their scores in the
contribution map. By varying n from 1%, 2%, ..., 100% of the
sample size, we calculated the probabilities of the predicted class
when the first n points with the highest values in the contribution
map were removed from the sample by setting their values to
zeros. A sharp drop of the probability on the predicted class, or
alternatively a small area under the probability curve (as a function
of n) is indicative of a high-quality contribution map.

We performed the deletion test for the channel contribution
map in a similar way–each time we removed a channel by setting
them to zeros and calculated the probability of the predicted class.

4.3. Test settings

Dataset 1 contains EEG data collected from 9 subjects. Each
subject has 288 training samples and 288 testing samples with
balanced 4 classes. We randomly selected 25 samples for each class
from the test samples of each subject. In this way, we have in total 9
(subjects)× 4 (classes)× 25 (samples)= 900 samples for evaluating
the interpretation results.

Dataset 2 contains EEG data collected from 16 training subjects
and 10 testing subjects. Each subject has samples with unbalanced
labels. We selected 100 samples from each test subject and thus
have in total 10 (subjects) × 100 (samples) = 1,000 samples for
evaluation. For the test subjects 1–6, 9, and 10, we randomly
selected 50 samples of each class from each subject. For subjects
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7 and 8 with less than 50 samples for the class of error feedback, we
used all the samples from this class and randomly selected the rest
samples from the class of correct feedback.

Dataset 3 contains EEG data collected from 11 subjects. We
randomly selected 50 samples of each class from each subject, and
thus have in total 11 (subjects)× 2 (classes)× 50 (samples)= 1,100
samples for evaluation.

For each sample, we generated a contribution map with random
values as a baseline. The corresponding channel contribution map
is obtained by averaging the sample contribution map over the
temporal dimension.

4.4. Results

4.4.1. Performance of different interpretation
techniques

As can be seen from the results displayed in Figure 1,
the interpretation techniques fall into two groups by their
performance in the tests. The first group of methods, consisting
of gradient × input, DeepLIFT, integrated gradient, and LRP, have
similar and better performance than the baseline method, which
uses randomly generated contribution maps, while the second
group of methods consisting of the saliency map, deconvolution,
and guided backpropagation fail to outperform the baseline
method in most conditions. Specifically, in the sensitivity tests the
medians of correlation coefficients of the first group of methods
range from 0.4 to 1 under different conditions, while the medians of
the second group of methods are mostly around 0 under different
conditions, which fail to outperform the baseline method. In the
deletion tests, the first group of methods reaches a low probability
on the predicted class (below 0.2 under all the conditions) when a
portion of less than 0.1 of the total data are removed under different
conditions, indicating a small portion of features that contribute
most to the classification have been successfully localized. However,
the second group of methods mostly have large AUC (Area under
the Curve), indicating the most important features learned by the
deep learning models for classification are not accurately localized.

In order to understand why the interpretation techniques fall
into two groups that have distinct performances on both EEGNet
and InterpretableCNN models, we conduct a simple analysis to
explain the phenomena from a mathematical perspective. We
consider the case when the DNN model only contains a linear
layer so that the non-linear activation shown in Table 1 becomes
f (zj) = zj and f ′(zj) = 1. The contribution score of xi for integrated
gradient, LRP, and DeepLIFT are the same as xi ·

∂Sc(x)
∂xi
= wjixi,

while the deconvolution method becomes the same as the saliency
map method, which is ∂Sc(x)

∂xi
= wji. The guided back-propagation

is also the same as the saliency map method on cases when
f (z) > 0. However, the second group of methods will generate a
constant contribution score wji regardless of the inputs. This will
be problematic for both the sensitivity test and the deletion test–
removal of pixels from the input will not cause a change or drop in
the activation score Sc(x) accordingly. By contrast, the activation
score will change with the contribution score wjixi in a correct
manner when xi is perturbed. Our simple case could partially
explain why the selected methods could fall into two groups and
their difference in performance. In the actual cases where DNN

models with more complex structures are involved, the results
follow a similar pattern as that observed in the simple linear case.

The study justifies the usefulness of the gradient × input,
DeepLIFT, integrated gradient, and LRP methods for interpreting
deep learning models designed for classifying EEG signals,
while the methods of saliency map, deconvolution, and guided
backpropagation may not be suitable for interpreting deep learning
models designed for EEG signal classification. The observation
raises concerns about potential misinterpretation of the model
decisions in existing literature work, e.g., (Borra et al., 2020), where
any of these methods are used.

In the following part of this paper, we focus on methods
of gradient × input, DeepLIFT, integrated gradient, and
LRP. We use them alternatively for interpreting sample-wise
classification results.

4.4.2. Quality of individual interpretation
Despite when we focus only on interpretation results produced

with the best available methods of gradient × input, DeepLIFT,
integrated gradient, and LRP, there still exists a large variation in the
quality of individual samples under certain circumstances. As can
be seen in Figure 1, the correlation coefficients have a wide range
for Dataset 1 and it increase along with the size of the perturbation
patch. When size reaches 0.5 of the sample length, the correlation
coefficients fall in the range of 0.6 to 1 for EEGNet and 0.2 to 0.8
for InterpretableCNN, while in comparison the range falls stably
within 0.8 to 1 for Dataset 3 under different conditions. The results
reveal that the interpretation results generated for some samples
are not meaningfully correlated locally with the model outputs. In
addition, the model structure also has an impact on the quality
of interpretation results. Specifically, for Dataset 2 the correlation
coefficients for EEGNet have a narrower range than those of
InterpretableCNN. The apparent difference in performance for
different models can also be observed from the tests on Dataset 1.

To summarize, both the dataset type and model structure
have an impact on the quality of interpretation results, while this
problem may not be perfectly solved by changing the interpretation
technique. The individual interpretation results should therefore
be cautiously treated since they could be uninformative or
even misleading for many samples. We further discuss how
the individual interpretation results can be presented in an
understandable and trusted way in Section “5. Proposed method
for sample-wise interpretation.”

5. Proposed method for
sample-wise interpretation

5.1. Enhancement of visualization

The contribution maps are commonly visualized as heatmaps
(Zhou et al., 2016; Zou et al., 2018) or colormaps (Cui et al., 2021a,b,
2022) after normalization. However, the colormaps produced in
a such way tend to be too noisy to be interpretable for the
backpropagation-based methods investigated in this paper. We
show a concrete sample in Figure 2A, in order to illustrate the
problem we meet. The sample is obtained from Dataset 3. It is
predicted correctly with the label of “drowsy” by InterpretableCNN
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FIGURE 1

Evaluation results of the interpretation techniques for InterpretableCNN and EEGNet on the three datasets. The results for EEGNet and
InterpretableCNN are displayed in columns 1–3 and columns 4–6, respectively. The results for the three datasets are displayed in the three rows,
respectively. The sensitivity test results are shown in column 1 and 4. We display the boxplot (showing mean, first and third quartile of the data) of
the correlation coefficients r, which is in the range of −1 to 1 (1 represents a perfect correlation). The sensitivity test results for both the sample and
channel contribution maps are displayed in the same subfigure while different interpretation techniques are grouped and separately displayed in two
sub-figures. For InterpretableCNN, results for the LRP method are not shown since they are identical to that obtained with the gradient × input
method. The deletion test results for the sample contribution map are shown in columns 2 and 5, while the results for the channel contribution map
are shown in column 3 and 6. For the deletion test, we show the average probabilities of the predicted class against the fraction of 0–0.5 of the
sample size.

with a probability of 1, indicating that features strongly correlated
with the drowsiness have been identified by the model. The sample
contains apparent alpha spindles in its first half part (around 0–
1.5 s), which were found to be a strong signal of drowsiness
(Cui et al., 2021a). The contribution map is obtained with the
grad × input method, and it is visualized in Figure 2A as a
colormap directly after normalization. However, it is difficult to
observe any meaningful pattern from the contribution map, as it
is corrupted by the heavy high-frequency noise. We would expect
to observe distinguishable features from FCZ, CZ, CPZ, and FT7
channels, which are highlighted in the topographic map.

In order to enhance the visualization, we propose to conduct
two additional steps consisting of thresholding and smoothing
after normalization. Specifically, we manually set a threshold
and remove the unnecessary information from the normalized
contribution map below this threshold, in order to reduce the
abundant information contained in the sample. After that, we
conduct smoothing by moving an average window in order to make
the features distinguishable. Coming back to the sample shown in
Figure 2A, we performed the proposed processing steps with the
thresholds of 2 and 1 for the sample and channel contribution
maps, respectively, and the smoothing window with a size of 5. As
can be seen in Figure 2B, the visualization is apparently improved –

the alpha spindle features are clearly visible from the channels of
FCZ, CZ, CPZ, and FT7, which is consistent with the information
revealed from the channel contribution map.

5.2. Generation of sample-wise
evaluation

As has been discussed in 4.4.1. “Performance of different
interpretation techniques”, there exists a large variation in the
quality of interpretation results for individual samples even when
the best available interpretation technique is used. It is therefore
important to conduct sample-wise evaluation and present the
results along with the interpretation since the contribution maps
themselves cannot reflect how accurately the model decisions are
interpreted. In this way, the interpretation results of low accuracies
can be excluded so that misinterpretation of the model decisions
can be to a large extent avoided.

To keep the consistency of the paper, we use the sensitivity
and deletion tests as described in Section “4. Evaluation of deep
learning interpretability.” B for the evaluation. The sensitivity test
is conducted on the original contribution maps to reflect the
best correlation achieved between the perturbed batches and the
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FIGURE 2

Comparison of the contribution maps visualized (A) simply after normalization and (B) after processing with the proposed pipeline for a sample
selected from Dataset 3. The subject ID, ground truth label, probabilities of both classes are shown on the top of each sub-figures. The contribution
scores are converted to colors overlaid on the signals. An evaluation report is generated and attached below the instance in panel (B). In the report,
the deep learning model, the interpretation technique, the smoothing window size and the thresholds (for the sample and channel contribution
maps) are displayed in the first line. The perturbation testing results for the sample and channel contribution maps are displayed in the second line.
The deletion test results for the sample and channel contribution maps are displayed in the third and fourth lines, respectively. The first item in the
third line shows the new probability after deleting the highlighted parts of the signal. The second item shows the total amount (portion) of data
deleted. The third item shows the top 3 channels that contain the most of the deleted data and the amount (portion) of deleted data from them. In
the fourth line, the first item shows new probability after deletion of the channels listed in the second item.

model output. The deletion test is conducted on the processed
contribution map–we remove the highlighted areas (for the sample
contribution map) or the channels (for the channel contribution
map) and report the probability output by the model on the
predicted class. In this way, the deletion test results can be directly
related to what is observed from the displayed colormap. We

generate the evaluation report in the text box under each figure.
The sample for illustration is shown in Figure 2B.

We display another two samples in Figure 3 for the purpose
of illustrating the importance of sample-wise evaluation. By
observation of merely the interpretation results of the sample
shown in Figure 3B, we may draw the conclusion that the features
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recorded at around 0.75–1 s from the CP3 channel contribute most
to the wrong classification results. However, the evaluation results
show that the local regions of the sample contribution map do not
correlate well with the model output, and removal of channel CP3
will not actually cause the prediction probability to drop. Without
the evaluation, it will be easy to draw biased conclusions from the
misleading interpretation results. Despite the fact that some factors
that could potentially influence the quality of interpretation can be
observed from the obtained results, e.g., the deep learning model
structures and the different types of EEG features, it is yet not
fully understood what actually lead to the failure of interpretation
for some samples, e.g., the one in Figure 3B. We leave further
investigation on this topic to future work.

6. Application scenarios

In this section, we extensively explore how we can benefit
from interpreting deep learning models with the method proposed
in this paper for different EEG-based BCIs. The applications are
explored in two scenarios. In the first scenario, we visualize the
neurophysiological features learned by the models from EEG for
different datasets, which is an important step of model validation.
In the second scenario, we show the advantages of using deep
learning interpretability to discover different types of noise and
artifacts in the datasets and discuss how the classification accuracy
can be potentially improved based on the findings.

6.1. Visualization of neurophysiological
features

Deriving insights into what the model has learned from the
data is an initial step of model validation. The interpretation results
allow us to know whether neurophysiological features have been
learned from the data to distinguish different mental states. We
have selected three representative samples from the three datasets,
respectively, for the purpose of illustration.

For the SMR dataset (Dataset 1), the samples were collected
while the subjects were imaging movements of different body
parts. This reflects in EEG as event-related desynchronization
(ERD) during imagination and event-related synchronization
(ERS) after imagination of sensorimotor rhythm (SMR) or Mu
rhythm (8–13 Hz) over the corresponding sensorimotor cortex
areas (Pfurtscheller and Da Silva, 1999). A representative sample
is shown in Figure 4A. The sample is correctly predicted with
the label of “tongue movement” by EEGNet with a probability of
0.95. From the channel contribution map, we can observe that the
model has found important features from P1 and POZ channels,
which are closest to the sensorimotor area of the tongue (Maezawa,
2017). From the sample contribution map, it can be observed that
the model has recognized the decreased amplitude sensorimotor
rhythm (or ERD) at around 0–0.4 s from POz channel, as well as an
instant burst of Mu spindles at around 0.4–0.6 s as evidence for the
prediction. The amplitude change of SMR reflects neuron activities
resulted from the tongue imagination task in the corresponding
sensorimotor area.

Feedback related negativity (FRN, or feedback ERN) refers to
a specific kind of evoked responses produced by the brain when
negative feedbacks are received from external stimuli. It is featured
by a negativity peaking of EEG signals around 250 ms after feedback
is presented (Miltner et al., 1997). For Dataset 2, FRN occurs when
the subject receives an error prediction of the letter displayed on the
screen. As it can be seen in the example shown in Figure 4B, the
model has identified the typical FRN feature, which has a negativity
peaking followed by a positive peaking [see Figure 7 in Margaux
et al. (2012)], at 0.25–0.5 s after the feedback is presented. The
sample is predicted with the “error” class with a probability of 0.96.
Removal of the highlighted areas (taking up 0.02 of total data) will
cause the probability to drop from 0.96 to 0.33.

For Dataset 3, Alpha spindles, which are characterized by an
arrow frequency peak within the alpha band and a low-frequency
modulation envelope resulting in the typical “waxing and waning”
of the alpha rhythm (Simon et al., 2011), are the most notable
features in EEG associated with drowsiness (Cui et al., 2022).
A typical sample is shown in Figure 2B. The sample is predicted
correctly by InterpretableCNN with a probability of 1.0. The Alpha
spindle features have been identified from several episodes of the
signal majorly in the central cortical areas. Removal of the features
(taking up 0.28 of total data) will cause the probability to drop from
1.0 to 0.28.

6.2. Discriminating different noises and
artifacts

Electroencephalography recording is highly susceptible to
various forms and sources of noise and artifacts. The sensor noise
contained in EEG is one of the major reasons that affect the model
decisions. The interpretation results allow us to understand how
different kinds of sensor noise impact the model decisions. We
selected two samples from Dataset 3 for illustration. The first
sample shown in Figure 5A contains apparent sensor noise in the
TP7 channel. The model falsely identified several local regions of
the sensor noise as evidence to support a decision. The significant
amplitude changes of the signal in the TP7 channel could be caused
by loose conduct between the sensor and the skin. Such kinds of
sensor noise that seriously affect the model’s decision should be
cleaned from the data in the pre-processing phase. The second
sample shown in Figure 5B contains heavy high-frequency noise
in several EEG channels, e.g., CP4. The model identifies several
regions from the noise areas as evidence for classification. We have
observed many samples containing similar noise in the dataset
that are correctly classified with alert labels, which indicates that
this kind of noise could have a strong relationship with the alert
state. The noise is caused by electromyography (EMG) activities
resulting from the tension of scalp muscles. They usually dominate
the wakeful EEG signals (Britton et al., 2016) and become the most
apparent feature of alertness (Cui et al., 2021a,b, 2022), while the
cortical source Beta activities with very low amplitude (Da Silva
et al., 1976) in wakeful EEG are not as easy to be distinguished.

Eye blinks and movements are another common source of
artifacts in EEG signals. The interpretation results allow us to
identify samples that contain such kinds of artifacts and understand
how they affect the model decision. For Dataset 2, we find there are
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FIGURE 3

Comparison of the interpretation results on a sample classified by (A) EEGNet and (B) InterpretableCNN. The contribution maps generated for the
two samples display similar patterns, while the qualities of the interpretation results vary greatly as revealed by the evaluation report. For the sample
shown in panel (A), the sample contribution map is well correlated with the model output with the correlation coefficients in the range of 0.74–0.89.
Removal of the highlighted regions (taking up 0.07 of total data) of the first sample will cause the probability drop from 0.5 to 0.0, while removal of
the channel (CP1) with the highest contribution will cause the probability drop slightly from 0.5 to 0.45. However, for second sample shown in panel
(B), the local regions of the sample contribution map do not correlate well with the model output as the correlation coefficients fall in the range of
0.09–0.59. Removal of the most important channel (CP3) for the second sample will cause the probability, on the contrary, increase from 0.6 to
0.98. Therefore, the evaluation results allow us to confidently reject the interpretation shown in panel (B).
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FIGURE 4

Visualization of the learned neurophysiological features from two samples. The first sample (A) is from aset 3 and the second sample (B) is from
Dataset 2.

many samples, similar to the case shown in Figure 6A, containing
the eye blink artifacts while they are identified by the model as
evidence of the “correct” class. The eye blinks could be a sign of

relief after the subjects stare at the screen with a high degree of
concentration in the P300 task. Such class-discriminative artifacts
should be removed from the dataset and the model is expected
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FIGURE 5

Visualization of the interpretation results for selected samples containing different types of noise. (A) Apparent sensor noise in TP7 channel. (B)
Heavy high-frequency noise in multiple channels.

to learn EEG features (e.g., ERP) generated from cortical sources
instead. However, the case is on the contrary for Dataset 3, where
the eye blink and movement features are overly cleaned. The rapid
eye blinks, as reflected in EEG a short-term pulse in the frontal

channels (Figure 6B), are indicators of the alert and wakeful state.
They have been found by deep learning models as important
features for classification (Cui et al., 2022). However, the eye blink
and movement features are overly cleaned in the pre-processing
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FIGURE 6

Visualization of the interpretation results for selected samples containing different types of noise. (A) The sample contains eye blinks that could be a
sign of relief after the subjects stare at the screen with high concentration in the P300 task. Such class-discriminative artifacts should be removed
from the dataset. (B) The sample contains eye blinks that are indicators of the alert and wakeful state.

phase for Dataset 3, which causes the prediction accuracy to drop
around 0.3 for Subject 2 in our test. We show in Figure 6B an
uncleaned sample from Subject 2 and it can be seen that the model
has made the right prediction based on such kind of features.
Removal of the features will cause the model to make the wrong
prediction.

The observations above lead to the conclusion that different
types of noise should be treated differently rather than
indiscriminately removed from EEG signals. The noise and
artifacts defined in one scenario could become important features
in another scenario. Deep learning interpretability provides
us with the advantage of understanding how they impact the
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model decisions so that we can take proper strategies accordingly
to deal with them.

7. Discussion

In this paper, we investigated the topic of applying deep
learning interpretability to EEG signal recognition. Despite the
wide application of deep learning, there are yet no guidelines or
recommendations on how to interpret the results, what methods
should be used, and how accurately they can reflect the model
decisions for EEG-based BCI. In order to fill this research gap, we
conducted quantitative studies to evaluate existing interpretation
techniques and explored the best practice of interpreting deep
learning designed for EEG signal recognition.

We investigated seven well-know interpretation techniques,
seven well-known interpretation techniques, including saliency
map (Simonyan et al., 2014), deconvolution (Zeiler and Fergus,
2014), guided backpropagation (Springenberg et al., 2014),
gradient × input (Shrikumar et al., 2016), integrated gradient
(Sundararajan et al., 2017), LRP (Bach et al., 2015), and DeepLIFT
(Shrikumar et al., 2016), behave under different conditions. Our
initial observation is obvious that the interpretation techniques fall
into two groups by their performance in the tests. The first group
of methods, consisting of gradient × input, DeepLIFT, integrated
gradient, and LRP, have similar and better performance than the
baseline method, which uses randomly generated contribution
maps, while the second group of methods consisting of the
saliency map, deconvolution, and guided backpropagation fails
to outperform the baseline method in most conditions. This is
curious, we try our best to understand their differences underneath
the behavior. By definition, all the methods require a forward
pass and a back pass to generate a gradient. They are different in
handling the non-linear layer of the network.

The results revealed the importance of selecting a proper
interpretation technique in the first step. Existing interpretation
techniques, e.g., the saliency map method, despite being widely
used in existing work for interpreting learned EEG patterns (Borra
et al., 2020), could actually fail to outperform baseline with
randomly generated contribution maps in certain circumstances.
In addition, we also find that the quality of the interpretation
results is inconsistent for individual samples despite when a method
with overall good performance is used. Many factors, including
the model structure and types of features in the samples, could
potentially affect the quality of the interpretation results. It is
therefore recommended to conduct a sample-wise evaluation to
validate the results. By far as we know these findings have not
yet raised wide awareness in work interpreting deep learning for
EEG-based BCI, e.g., (Sturm et al., 2016; Özdenizci et al., 2020).

In order to make the interpretation results understandable,
we proposed a few processing steps that can effectively enhance
the visualization. Furthermore, we extensively used deep learning
interpretability to explore how different types of noise and artifacts
in the datasets can affect the model decisions. We show the
benefits with examples. The method allows us to conclude that
different types of noise and artifacts should be treated differently
based on a comprehensive understanding of the overall pattern

learned from the dataset. By far as we know, this has not yet
been realized in existing studies. The noise and artifacts defined
in one scenario could become important features in another
scenario. Deep learning interpretability could be potentially used
as a powerful tool to discover the patterns underlying a dataset
so that a proper strategy can be specifically designed in the pre-
processing pipeline.

8. Conclusion

In this paper, we explored the best practice of applying deep
learning interpretability to EEG-based BCI. Firstly, we surveyed
existing deep learning interpretation techniques and shortlisted
seven of them that can be applied to deep learning models
with different structures. We designed evaluation metrics and
tested them with two benchmark deep-learning models on three
different EEG datasets.

The results show that the interpretation techniques of
gradient × input, DeepLIFT, integrated gradient, and LRP,
have similar and better performance than the baseline method,
which uses randomly generated contribution maps, while the
methods consisting of the saliency map, deconvolution, and
guided backpropagation fail to outperform the baseline method
in most conditions. The obtained results reveal the importance
of selecting a proper interpretation technique for illustration.
In addition, we also find that the quality of the interpretation
results is inconsistent for individual samples despite when
a method with overall good performance is used. Many
factors, including the model structure and types of features
in the samples, could potentially affect the quality of the
interpretation results.

Based on the obtained results, we proposed a set of procedures
that allow the interpretation results to be presented in an
understandable and trusted way. We extensively used our proposed
method to explore how different types of noise and artifacts in
the datasets can affect the model decisions and used examples
to illustrate how deep learning interpretability can benefit EEG-
based BCI. Our work illustrates a promising direction of using
deep learning interpretability to discover meaningful patterns from
complex EEG signals.
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