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Functional connectivity between brain regions is known to be altered in

Alzheimer’s disease and promises to be a biomarker for early diagnosis.

Several approaches for functional connectivity obtain an un-directed network

representing stochastic associations (correlations) between brain regions.

However, association does not necessarily imply causation. In contrast, Causal

Functional Connectivity (CFC) is more informative, providing a directed network

representing causal relationships between brain regions. In this paper, we

obtained the causal functional connectome for the whole brain from resting-state

functional magnetic resonance imaging (rs-fMRI) recordings of subjects from

three clinical groups: cognitively normal, mild cognitive impairment, and

Alzheimer’s disease. We applied the recently developed Time-aware PC (TPC)

algorithm to infer the causal functional connectome for the whole brain. TPC

supports model-free estimation of whole brain CFC based on directed graphical

modeling in a time series setting. We compared the CFC outcome of TPCwith that

of other related approaches in the literature. Then, we used the CFC outcomes of

TPC and performed an exploratory analysis of the di�erence in strengths of CFC

edges between Alzheimer’s and cognitively normal groups, based on edge-wise

p-values obtained by Welch’s t-test. The brain regions thus identified are found to

be in agreement with literature on brain regions impacted by Alzheimer’s disease,

published by researchers from clinical/medical institutions.
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1 Introduction

Alzheimer’s disease (AD) is the most common age-related progressive

neurodegenerative disorder. It typically begins with a preclinical phase and advances

through mild cognitive impairment (MCI) to clinically significant AD, a form of dementia

(Querfurth and LaFerla, 2010). Despite substantial efforts to identify biomarkers for AD, it

still relies on clinical diagnosis, and early and accurate disease prediction remains limited

(Laske et al., 2015; Li et al., 2019). Abnormal resting-state functional connectivity (FC)

between brain regions has been observed as early as two decades before brain atrophy and

the emergence of AD symptoms (Ashraf et al., 2015; Nakamura et al., 2017). Therefore,

resting-state FC can potentially determine the relative risk of developing AD (Sheline and

Raichle, 2013; Brier et al., 2014).

Resting-state functional magnetic resonance imaging (rs-fMRI) records the blood-

oxygen-level-dependent (BOLD) signals from different brain regions while individuals are

awake and not engaged in any specific task. The BOLD signal is popularly used to infer FC

between brain regions partly due to the advantage that BOLD signal provides high spatial

resolution (Yamasaki et al., 2012; Sporns, 2013; Liu et al., 2015; Xue et al., 2019).
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FC refers to the stochastic relationship between brain regions

with respect to their activity over time. Popularly, FC involves

measuring the statistical association between signals from different

brain regions. The statistical association measures are either

pairwise associations between pairs of brain regions, such as

Pearson’s correlation, or multivariate i.e., incorporating multi-

regional interactions such as undirected graphical models (Biswas

and Shlizerman, 2022a). Detailed technical explanations of FC in

fMRI can be found in Chen et al. (2017), Keilholz et al. (2017),

and Scarapicchia et al. (2018). The findings from studies using FC

(Wang et al., 2007; Kim et al., 2016), and meta-analyses (Jacobs

et al., 2013; Li et al., 2015; Badhwar et al., 2017) indicate a

decrease in connectivity in several brain regions with AD, such

as the posterior cingulate cortex and hippocampus. These regions

play a role in attentional processing and memory. On the other

hand, some studies have found an increase in connectivity within

brain regions in the early stages of AD and MCI (Gour et al.,

2014; Bozzali et al., 2015; Hillary and Grafman, 2017). Such an

increase in connectivity is a well known phenomenon that occurs

when the communication between other brain regions is impaired.

Such hyperconnectivity has been interpreted as a compensatory

mechanism where alternative paths within the brain’s network are

recruited (Hillary and Grafman, 2017; Oldham and Fornito, 2019;

Marek and Dosenbach, 2022).

In contrast to Associative FC (AFC), Causal FC (CFC)

represents functional connectivity between brain regions more

informatively by a directed graph, with nodes as the brain regions,

directed edges between nodes indicating causal relationships

between the brain regions, and weights of the directed edges

quantifying the strength of the corresponding causal relationship

(Spirtes et al., 2000). However, functional connectomics studies in

general, and those concerning fMRI from AD in particular, have

predominantly used associative measures of FC (Reid et al., 2019).

There are a few studies that deal with comparing broad hypotheses

of alteration within the CFC in AD (Rytsar et al., 2011; Khatri

et al., 2021). However, this area is largely unexplored, partly due

to the lack of methods that can infer CFC in a desirable manner, as

explained next.

Several properties are desirable in the context of causal

modeling of FC (Smith et al., 2011; Biswas and Shlizerman,

2022a). Specifically, the CFC should represent causality while

free of limiting assumptions such as linearity of interactions.

In addition, since the activity of brain regions are related over

time, such temporal relationships should be incorporated in

defining causal relationships in neural activity. The estimation

of CFC should be computationally feasible for the whole brain

FC instead of limiting it to a smaller brain network. It is also

desirable to capture beyond-pairwise multi-regional cause-and-

effect interactions between brain regions. Furthermore, since the

BOLD signal occurs and is sampled at a temporal resolution that

is far slower than the neuronal activity, thereby causal effects

often appear as contemporaneous (Granger, 1969; Smith et al.,

2011). Therefore, the causal model in fMRI data should support

contemporaneous interactions between brain regions.

Among the methods for finding CFC, Dynamic Causal Model

(DCM) requires a mechanistic biological model and compares

different model hypotheses based on evidence from data, and is

unsuitable for estimating the CFC of the whole brain (Friston et al.,

2003; Smith et al., 2011). On the other hand, Granger Causality

(GC) typically assumes a vector auto-regressive linear model for the

activity of brain regions over time, and it tells whether a regions’s

past is predictive of another’s future (Granger, 2001). Furthermore,

GC does not include contemporaneous interactions. This is a

drawback since fMRI data often consists of contemporaneous

interactions (Smith et al., 2011). In contrast, Directed Graphical

Modeling (DGM) has the advantage that it does not require

the specification of a parametric equation of the neural activity

over time, it is predictive of the consequence of interventions,

and supports estimation of whole brain CFC. Furthermore, the

approach inherently goes beyond pairwise interactions to include

multi-regional interactions between brain regions and estimating

the cause and effect of such interactions. The Time-aware PC

(TPC) algorithm is a recent method for computing the CFC

based on DGM in a time series setting (Biswas and Shlizerman,

2022b). In addition, TPC also accommodates contemporaneous

interactions among brain regions. A detailed comparative analysis

of approaches to find CFC is provided in Biswas and Shlizerman

(2022a,b). With the development of methodologies such as TPC,

it would be possible to infer the whole brain CFC with the

aforementioned desirable properties.

In this paper, we apply the TPC algorithm to infer the CFC

between brain regions from resting-state fMRI data. The TPC

algorithm estimates the subject-specific CFC for each subject from

their fMRI data. We compare the CFC outcome of TPC with GC

and Sparse Partial Correlation (SPC), which are approaches to find

the CFC and AFC, respectively. We then use the CFC outcome

of TPC to investigate the alteration of CFC in AD. In this regard,

we conducted an exploratory analysis for the difference in strength

of causal connections in AD compared to CN subjects (and MCI

compared to CN subjects), based on their edge-wise p-values given

by Welch’s t-test. We reported the resulting CFC edges with lowest

edge-wise p-values for altered connectivity in AD compared to CN

subjects and their corresponding brain regions. The brain regions

identified in those analyses are consistent with published literature

on regions impacted by AD, with each such publication being a

report from a team involving a clinical setting and at least one

medical expert, thereby validating the approach.

2 Materials and methods

2.1 Participants

The resting fMRI and demographic data were downloaded

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI;

http://adni.loni.usc.edu/). A total of 129 subjects were included in

the study: 41 subjects who are CN, 54 subjects with MCI, and 34

subjects with AD.

Table 1 includes a summary of the participants’ demographic

and medical information. In the experiments, the subjects

with AD presented significantly lower scores in the screening

assessment cognitive test Mini-Mental State Examination (MMSE)
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TABLE 1 Summary of demographic information and Mini Mental State

Examination (MMSE) for CN, MCI and AD subjects.

Characteristic CN MCI AD p

Number of subjects 41 54 34 –

Sex (M/F) 19/22 29/26 16/18 0.16

Age (years) 74.9± 6.4 74.2± 7.1 74.4± 7.4 0.86

Education (years) 16.5± 2.3 15.7± 2.6 15.4± 2.5 0.22

MMSE 29.1± 1.4 27.8± 1.9 21.9± 4.2 <10−14

The second to fourth columns present group characteristics, mean ± SD. The fifth column

presents p-values for the statistical significance of the inter-group differences. Differences in

Sex was assessed using a Chi-Squared test and differences in Age, Education andMMSE using

non-parametric analysis of variance by Kruskal–Wallis test.

in comparison with the other groups. The subjects were age-

matched (Kruskal–Wallis test: p > 0.8), gender-matched (Chi-

Squared test: p > 0.1), and matching number of years of education

(Kruskal–Wallis test: p > 0.2). As expected, MMSE scores had a

significant difference between all pairs of groups (Kruskal–Wallis

test: p < 10−14).

2.2 Image acquisition

The acquisition of fMRI images was performed using Philips

Medical Systems scanner. The fMRI images were obtained using an

echo planar imaging sequence at a field strength of 3.0 Tesla, with

a repetition time (TR) of 3 s, an echo time (TE) of 30 ms, and a

flip angle of 80 degrees. The matrix size was 64 × 64 pixels, 140

volumes, 48 slices per volume, slice thickness of 3.3 mm, and voxel

size of 3.3× 3.3× 3.3 mm3.

2.3 fMRI preprocessing

The fMRI pre-processing steps were carried out using the

CONN toolbox version 21a, which utilizes the Statistical Parametric

Mapping (SPM12), both of which are MATLAB-based cross-

platform software (Friston et al., 1994; Nieto-Castanon and

Whitfield-Gabrieli, 2021). We used the default pre-processing

pipeline in CONN, consisting of the following steps in order:

functional realignment and unwarp (subject motion estimation

and correction), functional centering to (0, 0, 0) coordinates

(translation), slice-time correction with interleaved slice order,

outlier identification using Artifact Detection and Removal Tool,

segmentation into gray matter, white matter and cerebrospinal

fluid tissue, and direct normalization into standard Montreal

Neurological Institute (MNI) brain space, and lastly, smoothing

using spatial convolution with a Gaussian kernel of 8 mm full-

width half maximum. This pipeline was followed by detrending and

bandpass filtering (0.001–0.1 Hz) to remove low-frequency scanner

drift and physiological noise in the fMRI images. The first four time

points have been filtered out to remove any artifacts.

For the extraction of Regions-Of-Interest (ROIs), the

automated anatomical labeling (AAL) atlas was utilized on

the pre-processed rs-fMRI dataset (Tzourio-Mazoyer et al.,

2002). The list of all regions in the AAL atlas is provided in

Supplementary material along with their abbreviated, short, and

full region names. This parcellation method has been demonstrated

to be optimal for studying the FC between brain regions (Arslan

et al., 2018). The voxels within each ROI were averaged, resulting

in a time series for each ROI.

2.4 Inference of causal functional
connectivity: Time-aware PC algorithm

The TPC Algorithm finds CFC between brain regions from

time series based on DGM (Spirtes et al., 2000; Pearl, 2009;

Biswas and Mukherjee, 2022; Biswas and Shlizerman, 2022a,b).

While traditional DGM applies to static data, TPC extends the

applicability of DGM to CFC inference in time series by first

implementing the Directed Markov Property to model causal

spatial and temporal interactions in the time series by an unrolled

Directed Acyclic Graph (DAG) of the time series. The unrolled

DAG consists of nodes (v, t), for region of interest v and time t,

and edge (v1, t1) → (v2, t2) reflecting causal interaction from the

BOLD signal in region v1 at time t1 to the BOLD signal in region

v2 at time t2. The estimation of the unrolled DAG is carried out

by first transforming the time series into sequential variables with

a maximum time delay of interaction τ and then applying the

Peter-Clark (PC) algorithm to infer the unrolled DAG based on

the sequential variables (Kalisch and Bühlman, 2007). TPC then

rolls the DAG back to obtain the CFC graph between the regions

of interest (see Figure 1) (Biswas and Shlizerman, 2022b). We

consider τ = 1 for our analyses, which would include interactions

of the BOLD signal between regions of interest with a maximum

time delay of 3 s, the TR of the fMRI acquisition. The Python

package TimeAwarePC is used for implementation (Biswas and

Shlizerman, 2022b).

The CFC outcome of this methodology is interpretable in the

following manner: An edge from region i → j in the CFC estimate

represents significant causal interaction from brain region i at

preceding times to region j at following times. The model and the

approach are non-parametric, meaning that it does not require the

specification of a parametric dynamical equation for neural activity.

The method captures beyond-pairwise multivariate interactions

between brain regions. It also supports the estimation of the CFC

for the whole brain in a computationally feasible manner. It also

allows for time delays in interactions between the brain units and

the presence of feedback loops. Furthermore, it has been shown

that if the neural activity obeys an arbitrary dynamical process,

the model outcome of TPC is consistent with respect to the causal

relationships implied by the dynamical process and is predictive of

counterfactual queries such as ablation or modulation (Biswas and

Shlizerman, 2022b).

It is noteworthy that implementing the Directed Markov

Property on the unrolled DAG to model causal relationships

over time enables contemporaneous interactions e.g., from region

u to region v at time t (Biswas and Shlizerman, 2022b). Such

contemporaneous interactions are represented by the edge (u, t) →

(v, t) in the unrolled DAG, and the presence of such an edge in the

unrolled DAG would be reflected as an edge u → v in the Rolled
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FIGURE 1

Steps conveying the concept of the TPC algorithm to infer CFC from observed neural time series data: First the neural time series is transformed to

form sequential samples with a maximum time delay of interaction, τ (here τ = 1). Then, Peter-Clark (PC) algorithm is applied on the sequential

samples to obtain the unrolled DAG satisfying the Directed Markov Property. Finally the unrolled DAG is transformed to obtain the Rolled CFC

between regions.

CFC outcome. Such contemporaneous interactions are especially

relevant in fMRI due to the relatively slow temporal resolution of

the BOLD signal compared to the underlying neural activity (Smith

et al., 2011).

2.5 Comparison with functional
connectivity using other approaches

In Biswas and Shlizerman (2022b), the authors have

demonstrated that TPC performs better in computing CFC

compared to other methods such as GC on simulated and public

benchmarking datasets as well as on a real neurobiological dataset

of single neuron signals obtained using Neuropixels. Additionally,

the authors have drawn contrast [in Biswas and Shlizerman

(2022b)] with SPC, which is a popular method for inferring AFC.

In this paper, we computed AFC using SPC and CFC using GC

from fMRI data (Deshpande et al., 2009; Schouten et al., 2016).

We compared these two outputs with the CFC obtained by TPC

from fMRI data. The GC graph is computed using the Nitime

Python library, which fits a Multi-variate Auto-Regressive (MVAR)

model followed by the use of GrangerAnalyzer to compute the GC

(Rokem et al., 2009). We consider MVARmodel of order 1, and GC

likelihood ratio statistic of greater than 95 percentile as indicating

edges (Schmidt et al., 2016). The SPC was estimated by Graphical

Lasso penalized Maximum Likelihood Estimation, whose optimal

penalization was obtained by a five-fold cross-validation (Friedman

et al., 2008).

2.6 Alterations of CFC edges in Alzheimer’s
disease

We perform an exploratory analysis of statistical trends for

edge-wise inter-group differences. Using the subject-specific CFC

computed by TPC algorithm, for each detected CFC edge, we

reported the p-value in the Welch’s t-test for greater average edge

weight in one clinical group compared to another clinical group

(Yuen, 1974). Specifically, we listed the CFC edges with 10 lowest

p-values for greater average weight in CN compared to AD group

(and for greater average weight in AD compared to CN). For a

CFC edge from region u to region v, we refer to u as the source

brain region and v as the destination brain region. The source brain

regions of the CFC edges with lowest p-values are found to be in

agreement with literature for regions impacted by AD.

3 Results

3.1 Subject-specific causal functional
connectivity

Figure 2 shows the CFC estimated using the TPC algorithm

for an example subject (ID: 129_S_4396) in the CN group. In

Figure 2A, the CFC is represented in the form of a matrix, whose

entry (i, j) indicates the presence of connectivity from region index

i → j, and the value at entry (i, j) represents the weight of that

causal connection. A positive value (blue) of the weight indicates

excitatory influence, whereas a negative value (red) indicates

inhibitory influence. The diagonal of the matrix representing self-

connections for regions has been filtered out. In Figure 2B, the CFC

is represented by a directed graph overlayed on schematics of the

brain. The schematics of the brain comprise 2-dimensional brain

projections in the Frontal, Axial, and Lateral planes. The nodes of

the CFC graph correspond to the centers of brain regions in the

AAL atlas. The nodes are colored light to dark gray according to

their depth in the brain, with light gray representing superficial

and dark gray representing deeper brain regions. The CFC graph

provides a highly informative map of causal interactions between

brain regions.

It is noteworthy that the CFC computed by TPC is sparse

since the edges are filtered by conditional dependence tests. We

quantified the sparsity of a CFC graph by its edge density. Edge

density of a directed graph is the proportion of the number of

edges in the directed graph over the total number of edges in the

corresponding fully connected graph. Therefore, the edge density

of an empty graph is 0 and that of a fully connected graph is 1. For
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FIGURE 2

CFC for an example subject who is CN, estimated by TPC algorithm. (A) The estimated CFC is represented by its adjacency matrix, whose non-zero

entry (i, j) represents the connection of region i → j. (B) The CFC is visualized with directed graph edges on the Frontal, Axial and Lateral brain maps

(left to right). The nodes correspond to brain region centers, ranging from superficial (light gray) to deeper (darker gray) regions, in the AAL brain atlas.

FIGURE 3

Comparison and demonstration of FC inferred by three methods: Associative FC using SPC, and Causal FC using TPC and GC. The estimated FC is

represented by its adjacency matrix with edge weights, which is symmetric for Associative FC and asymmetric for Causal FC. In the adjacency

matrices, a non-zero entry in (i, j) represents the connection of region i → j.

the CFC graphs computed by TPC, the edge density for subjects

in the CN group is (mean ± standard deviation) 0.0117 ± 0.0008,

MCI group is 0.0118 ± 0.0009, and AD group is 0.0118 ± 0.0008,

indicating a sparse CFC outcome of TPC for subjects in each of the

groups.

3.2 Comparison with functional
connectivity using other approaches

Figure 3 shows the adjacency matrices for the FC obtained by

different methods for an example subject (ID: 129_S_4396) in the

CN group. The AFC constitutes a distinct pattern of associative

connectivity among the regions. It is expected that the CFC will

be a directed subgraph of the AFC and be consistent with the

overall patterns present in the AFC (Dadgostar et al., 2016; Wang

et al., 2016). However, the patterns present in the CFC obtained

by GC do not match with the AFC upon visual inspection. In

comparison, the overall patterns present in the CFC obtained

by TPC indeed match with the AFC obtained by SPC. On a

detailed level, there are differences between TPC-CFC and AFC:

TPC results in a directed graph thereby its adjacency matrix is

asymmetric while AFC is an undirected graph with symmetric

adjacency matrix. Furthermore, the CFC obtained by TPC includes

self-loops represented by the diagonals of the adjacency matrix

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2023.1251301
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Biswas and Sripada 10.3389/fncom.2023.1251301

in contrast to GC, and results in a sparse matrix devoid of

noise since the connections are filtered by conditional dependence

tests.

3.3 Alterations of CFC edges in Alzheimer’s
disease

Figure 4 shows the edge-wise p-values for greater average edge

weight in one clinical group compared to another, based onWelch’s

t-test. This provides insights into statistical trends for CFC edges

that have an increase (or decrease) in strength in CN compared to

MCI, CN compared to AD, and MCI compared to AD subjects.

In Table 2, we report 10 CFC edges that show the lowest p-

values for greater average strength in CN subjects compared to AD,

and their source brain regions. Similarly, we report another list of

10 CFC edges corresponding to greater average strength in subjects

with AD compared to CN, and their source brain regions. The

reported brain regions are in agreement with published medical

literature cited in Table 2.

4 Discussion

In this study, we have obtained the CFC of the whole brain from

its resting state fMRI time series. We used the recently developed

TPC algorithm based on directed graphical modeling in time series,

to compute the CFC. In the dataset, the subjects belonged to three

clinical categories: CN, MCI, and AD. We computed the subject-

specific CFC using TPC and compared it with those obtained by

other approaches, such as GC. We then used the CFC outcomes

of TPC for further investigation into the alteration of CFC in AD.

In this regard, we explored statistical trends for edges that have a

difference in strength between clinical categories, based on their

edge-wise p-values obtained by Welch’s t-test. We reported the

causal connections with lowest p-values for greater strength in CN

compared to AD (and greater strength in AD compared to CN)

and their corresponding brain regions. The brain regions identified

in the above analyses were found to be in agreement with medical

literature for regions impacted by AD.

In Figure 4 and Table 2, the presence of CFC edges with

weight in AD greater than that in CN (in addition to edges

with weight in AD less than that in CN) is consistent with

published studies in the literature. While several studies have

concluded decreased connectivity in MCI and AD compared to

CN (Jacobs et al., 2013; Li et al., 2015; Badhwar et al., 2017),

others have highlighted that MCI and early stages of AD can

involve an increase in FC between brain regions (Fredericks et al.,

2018; Penalba-Sánchez et al., 2023). This increase occurs when

the communication between specific brain regions is impaired

and has been interpreted as a compensatory mechanism where

alternative paths within the brain’s network are recruited (Hillary

and Grafman, 2017; Oldham and Fornito, 2019; Marek and

Dosenbach, 2022). In the short term, the augmentation of FC

along alternative pathways exhibits efficiency and adaptability

of the brain. However, it is imperative to acknowledge the

susceptibility of these densely interconnected hubs to beta-

amyloid deposition, which can elicit secondary damage through

metabolic stress, ultimately culminating in system breakdown

(Hillary and Grafman, 2017). Consequently, the initial state of

hyperconnectivity observed in neurodegenerative disorders may

gradually transition into hypoconnectivity among the engaged

pathways, thereby contributing to cognitive decline as the disease

advances (Marek and Dosenbach, 2022).

In Table 2A, the Heschl’s gyrus (Heschl’s gyrus Left→ Rolandic

operculum Left with edge-wise p-value 0.0008) is prominent for

lower CFC weight in AD compared to CN subjects. The Heschl’s

gyrus is not only important for language comprehension, but it

also has a crucial role in speech production, phonologic retrieval,

and semantic processing (Warrier et al., 2009; Fernández et al.,

2020), and has been reported in the literature to be impacted by

AD (Hänggi et al., 2011; Dhanjal et al., 2013). The Thalamus is

also present among the list of regions in Table 2A (Thalamus Right

→ Thalamus Left with edge-wise p-value 0.002). The Thalamus

functions as a relay station between different sub-cortical areas

and the cerebral cortex and also plays a role in sleep, wakefulness,

consciousness, and memory (Steriade and Llinás, 1988; Gazzaniga

et al., 2002; Aggleton et al., 2010; Bruno et al., 2013), and is also

known to be impacted by AD (Braak and Braak, 1991; de Jong

et al., 2008). Also present in the table is the Posterior cingulate

gyrus (Posterior cingulate Left → Angular gyrus Left with edge-

wise p-value of 0.006), which plays an essential role in memory

integration and attentional processing, and is widely considered

to be impacted by AD (Villain et al., 2008; Jacobs et al., 2013; Li

et al., 2015; Badhwar et al., 2017). The Hippocampus, which is

involved in long-term memory formation and memory retrieval,

is not in the list of regions, yet exhibits a trend of reduction

in CFC weight in AD compared to CN (Hippocampus Right →

Parahippocampal gyrus Right, edge-wise p-value 0.033) (Boutet

et al., 2014; Rao et al., 2022). Self-connections inHippocampus have

been reported to be often involved in compensatory mechanisms

leading to increased strength in AD (Pasquini et al., 2015).

In Table 2B, the self-connection Parahippocampal gyrus Right

→ Parahippocampal gyrus Right (edge-wise p-value 0.0008) is

prominent for greater weight in AD compared to CN. It is known

that the Parahippocampal gyrus is highly impacted by AD and is

the focus of damage during disease onset, in a manner such that its

connectivity to other regions of the brain decreases with AD, while

its activity and intrinsic connectivity within the region increases

with AD (Van Hoesen et al., 2000; Chen et al., 2014; Pasquini et al.,

2015, 2016; Tahmasian et al., 2015).

TPC identified 1, 475 edges in the CFCs across subjects with

CN and AD. To obtain the subset of edges which have significant

inter-group difference at Bonferonni family-wise error rate of 0.05

requires a total of 6, 352 unique subjects across three groups (2, 117

per group) to ensure a family-wise power of 0.95 in detecting mean

differences of a quarter of the standard deviation (Cohen’s D =

0.25), computed by power_t_test function in MESS package in R

(Ekstrøm, 2023). None of the databases that are available publicly

have somany subjects. For example, ADNI has under 2,000 subjects

(Weiner et al., 2017, https://adni.loni.usc.edu/adni-3/), and the

Australian database has 2,359 subjects (Fowler et al., 2021, https://

aibl.org.au/about/). Therefore we took a subset of the ADNI dataset
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FIGURE 4

Causal functional connections with edge-weights di�ering between clinical groups with edge-wise p-values ranging in 0− 0.05 based on t-test. The

edge-wise p-values are represented by a matrix whose entry in (i, j) corresponds to the edge i → j and also represented by graph edges on brain

schematics. The brain regions are annotated by Left (L) and Right (R) hemispheres of the brain and Vermis (V).
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TABLE 2 CFC edges with lowest edge-wise p-values for (a) greater weight in CN compared to AD group and (b) greater weight in AD compared to CN

group.

Edge p-value Region name Reported by

(a) CN > AD

HES_L→ ROL_L 0.0008 Heschl’s gyrus Hänggi et al., 2011; Dhanjal et al., 2013

ITG_R→ ITG_R 0.001 Inferior temporal gyrus Palmer and Burns, 1994; Scheff et al., 2011

SOG_L→ SOG_R 0.001 Superior occipital gyrus Beyer et al., 2009; Mao et al., 2021

SFG_L→ SFG_R 0.001 Superior frontal gyrus Brachova et al., 1993; Lue et al., 1996

MFGorb_R→ IFGorb_R 0.002 Middle frontal gyrus Neufang et al., 2011; Zhou et al., 2013

THA_R→ THA_L 0.002 Thalamus Braak and Braak, 1991; de Jong et al., 2008

SMG_L→ SMG_R 0.002 SupraMarginal gyrus Grignon et al., 1998; Desikan et al., 2009

IOG_L→ IOG_R 0.005 Inferior occipital gyrus Johnen et al., 2015; Wu et al., 2023

SMG_R→ SMG_L 0.005 SupraMarginal gyrus Grignon et al., 1998; Desikan et al., 2009

PCC_L→ ANG_L 0.006 Posterior cingulate gyrus Villain et al., 2008; Mascali et al., 2015; Caminiti et al.,

2020

(b) CN < AD

PHG_R→ PHG_R 0.0008 Parahippocampal gyrus Van Hoesen et al., 2000; Thangavel et al., 2008

REC_R→ REC_R 0.004 Gyrus rectus Mölsä et al., 1987; Nochlin et al., 1993; Sheline et al.,

2010

CER6_R→ CER4_5_R 0.008 Cerebellum Joachim et al., 1989; Jacobs et al., 2018

IFGtriang_R→MFG_R 0.008 Inferior frontal gyrus Eliasova et al., 2014; Cajanus et al., 2019

CER7b_L→ ITG_R 0.008 Cerebellum Joachim et al., 1989; Jacobs et al., 2018

FFG_R→ ITG_R 0.008 Fusiform gyrus Whitwell, 2010; Ma et al., 2020

CUN_L→ SOG_L 0.014 Cuneus He et al., 2007; Niskanen et al., 2011

VER1_2→ VER3 0.014 Vermis Sjöbeck and Englund, 2001; A Mavroudis et al., 2013

CAL_L→ SOG_L 0.014 Calcarine fissure Ren et al., 2020; Yang et al., 2020

PCL_L→ PCL_L 0.017 Paracentral lobule Garcia Martin et al., 2013; Yang et al., 2019

The corresponding source brain regions are in agreement with regions reported in literature (right column) as impacted by AD.

that is captured using 3T fMRI scanner while matching education

and age levels for exploratory analysis.

Based on the whole-brain CFC outcome alone, this study

obtained brain regions that have been reported across more

than 30 different studies of altered connectivity in AD, using

different feature extraction methods and advanced imaging

technologies (see Table 2). This demonstrates the promise of

CFC computed by the TPC algorithm based on directed

graphical models in a time series setting. Given the nature

of AD, progressively more and more regions of the brain get

impacted. Therefore, we make the case for the collection of

larger datasets to enable the identification, at desirable levels of

significance, of various subnetworks that alter with AD. This

would promote the maturation and the use of the TPC-CFC

(and other approaches) for prognostic and diagnostic purposes for

AD.

It is noteworthy that machine-learning-based classifiers can

help predict the clinical category of subjects and diagnose AD

(Zhang et al., 2011, 2014; Gray et al., 2013; Salehi et al., 2020; Wen

et al., 2020). Recently, researchers have proposed robust multi-

class classification methods in the presence of incorrect labeling

of classes using the broad learning system (Jin et al., 2021, 2023).

Such classifiers would be able to classify a subject as belonging

to one of the clinical categories, given a subject’s fMRI time-

series data as input. However, such classifiers do not compute

the CFC between brain regions. Computing the CFC can nicely

complement a classifier by providing insights into specific causal

functional connections and subnetworks that are altered by AD

(Chen et al., 2011; Du et al., 2018). Abnormal resting-state FC

between brain regions is known to predate brain atrophy and the

emergence of AD symptoms by upto two decades or more (Sheline

and Raichle, 2013; Brier et al., 2014; Ashraf et al., 2015; Nakamura

et al., 2017). Therefore, a subject’s computed CFC can shed light

on such abnormalities and promises to be a biomarker for early

diagnosis and prognosis of the disease.

In this paper, we have demonstrated the following: (a)

Application of the TPC algorithm to compute whole-brain CFC

for each subject, (b) Comparison of CFCs computed using other

approaches, (c) Interpretation of CFC in the context of AD

using domain (neuropathological) knowledge, and (d) Exploratory

analysis for edge-wise differences and corresponding brain regions

with altered connectivity in subjects with AD compared to CN.
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The findings are consistent with published medical literature. In

summary, our results show the promise of computing the whole-

brain CFC from fMRI data using the TPC algorithm to gain

prognostic and diagnostic insights.
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