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Bio-inspired circular latent spaces
to estimate objects’ rotations

Alice Plebe* and Mauro Da Lio

Department of Industrial Engineering, University of Trento, Trento, Italy

This paper proposes a neural network model that estimates the rotation angle

of unknown objects from RGB images using an approach inspired by biological

neural circuits. The proposed model embeds the understanding of rotational

transformations into its architecture, in a way inspired by how rotation is

represented in the ellipsoid body of Drosophila. To e�ectively capture the cyclic

nature of rotation, the network’s latent space is structured in a circular manner.

The rotation operator acts as a shift in the circular latent space’s units, establishing

a direct correspondence between shifts in the latent space and angular rotations

of the object in the world space. Our model accurately estimates the di�erence

in rotation between two views of an object, even for categories of objects that it

has never seen before. In addition, our model outperforms three state-of-the-art

convolutional networks commonly used as the backbone for vision-basedmodels

in robotics.
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neuro-inspired artificial intelligence, robotic grasping, rotation detection, bio-inspired
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1 Introduction

Accurately measuring the angles of rotation of objects is essential for a wide range of

applications, including robotics. As the complexity of these applications increases, artificial

vision has become an indispensable tool (Du et al., 2021; Yin and Li, 2022). In this context,

deep convolutional neural networks have emerged as the preferred choice (Caldera et al.,

2018; Tian et al., 2023). However, these methods use neural networks to learn from scratch

how the physical transformation of rotation works. Using these methods in applications

where rotation sensitivity is essential—as in most robotics applications—can be inefficient.

A more effective approach would be to develop a neural model that embeds the rotation

operator in its inner architecture, without having to learn it from visual data. Such an

approach would enable precise rotation estimation for objects across different categories.

Incorporating prior knowledge into deep neural networks is not straightforward, as it

goes against the data-driven nature of artificial learning. However, there are techniques to

embed prior knowledge by imposing particular architectures in the network. One potential

way is by drawing inspiration from the neural structures of biological organisms.

In the natural world, living organisms possess innate knowledge that is not acquired

through external experiences. This innate knowledge is made possible by specific structures

encoded in their biological makeup, which are predetermined and stored in their genetic

code. These specialized structures allow them to perform essential functions, behaviors, or

instincts without the need for direct learning or prior exposure to the outside environment.

This work aims to develop a deep neural network that embeds the understanding of

rotational transformations into its architecture. This embedding is inspired by how rotation

is represented in the biological neural structures of some living organisms.

All animals possess, to some extent, an innate understanding of how rotation transforms

objects through their sense of sight. In higher animals like mammals, this inherent
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understanding becomes intricately intertwined with other

processes that extract more complex information within the visual

cortex (DeYoe and Van Essen, 1988; Gulyas et al., 1993). As a result,

isolating a single mechanism or neural structure solely dedicated to

encoding rotations remains impossible. On the other hand, there

are simpler organisms, such as insects, whose nervous system has

been extensively studied, and their neural circuits are well-defined

and easier to analyze. Insects may not be concerned with estimating

the rotation of objects optimally with respect to a certain reference

axis. However, one thing they are inevitably interested in is a way

to know their own rotation relative to the external world. This

awareness is essential to maintain a sense of direction and location

while moving for a planned action: searching for food and water,

avoiding prey, finding mates.

In the brain of the fruit fly Drosophila, independent studies

have uncovered a unique method of representing heading rotations

using a ring-like neural circuit (Green et al., 2017; Turner-Evans

et al., 2017). Considering that rotation is a cyclic operation, a

neural circuit for encoding rotations should also possess a circular

structure. In other words, the neural representation should return

to its initial state after undergoing incremental modifications by a

certain angular step and completing a full rotation. Remarkably,

the neural circuit of the Drosophila is circular because the neurons

physically form a morphological ring.

We propose an autoencoder-like deep neural model featuring

a “circular latent space” inspired by the ring-like neural circuit

found in the Drosophila’s brain. Instead of estimating the insect’s

heading direction, our model is designed to estimate the angle

of rotation between two views of an object. To enforce a cyclic

structure within the latent representation, we incorporate a fixed

operator that is linearly isomorphic to rotation and affects the

circular latent space by cyclically shifting its units. This design

creates a direct correspondence between a shift in the latent

space and an angular rotation in the world. In practice, the

model learns to map shifts in the latent space to rotations of

an object, allowing it to estimate the rotation angle between two

views of the same object. This approach enables the network

to predict and estimate the rotations of previously unseen

objects. We assume a single axis of rotation in this study but

plan to extend this idea to more complex transformations in

future work.

We evaluate the performance of our model on two datasets:

one with planar rotations and the other with objects rotating in

3D space. Furthermore, we compare our model to three state-of-

the-art convolutional networks that are used as the backbone of

vision-based models for various robotic applications, and we show

that our model outperforms the benchmarks.

The rest of the paper is organized as follows. Section 2 describes

the brain structures that served as inspiration for our proposed

model in representing rotations. Section 3 provides an overview

of existing approaches utilizing deep convolutional networks in

tasks requiring rotation estimation, along with a discussion of the

challenges related to rotation invariance. Section 4 delves into the

implementation of our model, elaborating on the circular latent

space and the shift operator. In Section 5, we describe the datasets

employed in this study and the preprocessing steps taken to ensure

suitability for the rotation estimation task. Section 6 presents the

results of our model on the two datasets, along with a comparison

FIGURE 1

Simplified representation of the ellipsoid body and the protocerebral

bridge situated within the central complex of the Drosophila’s brain.

The neurons exhibit a bump of activity in a specific sector that

corresponds to the current head direction of the fly.

against benchmark models. Finally, Section 7 concludes the paper

and discusses potential future developments.

The source code of the presented model is available at

https://github.com/3lis/neuro-circ-latent.

2 Circular representations in the brain

Accurate estimation of a specific type of rotation is crucial for

the daily behavior of most animals: the rotation of the animal’s body

relative to the environment. To be able to navigate the environment

and reach a particular destination, the animal needs to know its

own location in space and its spatial orientation represented by

the body angle along the earth vertical axis (yaw). Neurons that

encode this rotation information are referred to as head direction

(HD) cells (Taube, 2007). These specialized neurons play a crucial

role in providing animals with a sense of direction and orientation,

enabling them to navigate accurately in their environment.

Several studies have detectedHD cells in different brain regions,

including the dorsal portion of the medial superior temporal

area (MSTd) in monkeys (Takahashi et al., 2007). In this region,

vision serves as the primary source for HD information, while

secondary cues are derived from vestibular, proprioceptive, and

motor inputs. However, investigating the coding mechanisms of

HD cells in mammals presents a significant challenge due to their

close connection with the visual system and their presence in areas

comprising millions of neurons, making it impractical to study

them extensively.

The limited number of neurons in insects has made them

invaluable for unraveling the mechanisms of rotation encoding in

the brain. A significant breakthrough in this area was achieved

through two coinciding yet independent research studies: (Green

et al., 2017) and (Turner-Evans et al., 2017). Both studies unveiled

a fundamental neural circuit dedicated to encoding head directions

in the fruit fly Drosophila. This essential neural circuit is located in

the ellipsoid body, situated within the central complex of the fly’s
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brain. Remarkably, the ellipsoid body comprises ∼20,000 neurons,

making it orders of magnitude simpler than similar structures in

vertebrates.

As the name suggests, the ellipsoid body has a roughly circular

structure and consists of eight sectors called “tile neurons”. Each

tile is further divided into two “wedge neurons”. Figure 1 provides

a simplified scheme of these structures. Tile and wedge neurons

exhibit a bump of activity in a specific sector that corresponds to the

current head direction, encoded from −π to π along the circular

structure of the ellipsoid body. The tile neurons respond to changes

in the animal’s direction and trigger a shift in the activations of the

wedge neurons. This continuous integration of information about

body rotations updates the head direction representation. A shift of

the bump of activity from one sector to a nearby one corresponds

to a variation in orientation of ∼ π
8 radians. Wedge neurons are

strongly influenced by visual cues, while tile neurons are mainly

activated by self-motion signals.

The ellipsoid body is primarily connected to another structure

in the central complex, known as the protocerebral bridge, which

resembles a handlebar in shape (see Figure 1). The protocerebral

bridge consists of nine “glomeruli” in each hemisphere, arranged

the one next to the other. The circular angle representation held

in the ellipsoid body is linearly reflected in the left and right arms

of the protocerebral bridge. It acts as a relay center connecting

the left and right halves of the brain and plays a crucial role in

fine-tuning motor outputs and integrating sensory information to

regulate complex behaviors.

Building on the insights from these two seminal papers,

researchers have conducted substantial work to decipher the details

of the circular angular representation in the ellipsoid body. For

example, they have explored how this representation is utilized to

compute the allocentric traveling direction (Lyu et al., 2022).

While the level of detailed knowledge discovered in insects

remains challenging to attain in vertebrates, a recent study by

Petrucco et al. (2023) has uncovered a fascinating neural structure

in zebrafish larvae that shares intriguing similarities with the

ellipsoid body found in insects. In their research, they identified a

population of 50–100 neurons in the anterior hindbrain responsible

for encoding the heading direction of the animal. This neural

population has been named r1π because the two principal

components of their signals exhibit anticorrelation at an angle of π .

What makes this discovery even more remarkable is that the

morphology of the r1π suggests a circular structure, corresponding

to angles from −π to π . This circular arrangement bears striking

similarities to the structure of the ellipsoid body observed in insects.

Similar to how the ellipsoid body in Drosophila is associated with

the linear structure of the protocerebral bridge, the r1π ring in

zebrafish larvae is closely linked to a linear structure in the dorsal

interpeduncular nucleus. This particular brain structure is known

to play a role in spatial navigation and the generation of heading

direction information.

These remarkable discoveries, demonstrating how organisms

can encode innate knowledge within specific neural structures, hold

intriguing implications for the development of novel algorithms for

various robotic applications. In particular, our focus in this work

is to harness the concept of representing rotation transformations

using circular neural structures.

3 Rotation invariance in neural
networks

The solutions presented in the previous Section, which address

the problem of representing rotations in neural circuits of insects,

have served as a source of inspiration for the model introduced

in this study. Nevertheless, an important distinction needs to

be emphasized. While in the case of insects, the objective is to

exclusively represent a specific rotation, namely head direction, our

aim is to extend the solution to encompass rotations of generic

objects in a visual scene. This entails the necessity of combining the

encoding of rotation with the identification of the object to which

the rotation pertains.

In contrast to the ellipsoidal body’s signal, which inherently

implies that the rotation refers to the animal’s body, our model

requires visual identification of the object for which the rotation

is being estimated. To accomplish this task, we rely on the well-

established effectiveness of deep convolutional neural networks

organized in an autoencoder model.

Deep convolutional networks have become the preferred choice

for a wide range of applications, ranging from robotics (Bai et al.,

2020; Ruiz-del-Solar and Loncomilla, 2020; Károly et al., 2021; Yu

et al., 2023) to autonomous driving (Bojarski et al., 2017; Kuutti

et al., 2019; Plebe et al., 2019a,b, 2024; Plebe and Da Lio, 2020).

Convolutional networks overcome a long-standing challenge in

computer vision: recognizing objects despite variations in their

appearance, such as changes in illumination, size, and viewpoint.

This property, known as invariance, is notably achieved with

great proficiency in animals. However, the specific mechanisms

employed by the brain to achieve invariance have been the subject

of a long-standing debate that remains far from being resolved

(Harris and Dux, 2005). Deep convolutional networks demonstrate

an impressive level of invariance to object viewpoints, surpassing

any previous method. Translation invariance is naturally achieved

in the lower levels of a convolutional hierarchy due to the

inherent nature of the convolution operation. On the other

hand, rotation invariance becomes increasingly better in the

higher layers and can be further improved by techniques such as

data augmentation (Chen et al., 2020). However, while rotation

invariance is advantageous for object recognition inmany scenarios

(Quiroga et al., 2023), there are situations where rotation sensitivity

can be equally or even more beneficial.

Precise measurement of object rotation angles is crucial for

a wide array of applications, for example estimating the pose of

a vehicle obstacle in driving tasks. As mentioned above, most

of these methods rely on deep neural networks. However, there

is a contradiction here: these methods use neural networks that

are optimized for rotation invariance to estimate rotations of

objects. This may be inefficient in applications where rotation

sensitivity is essential. Furthermore, these methods learn the

rotation transformation indirectly from scratch rather than being

explicitly designed to handle rotations.

Taking robotic grasping as an example, deep learning

approaches generally employ a convolutional model followed by

fully connected layers. The convolutional model is typically trained

for a generic computer vision task, such as classification, while the

final dense layers are fine-tuned for the specific pose estimation
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task. For example, in the model of Pinto and Gupta (2016), the

last convolutional layer is followed by a dense layer of 18 units,

which express the graspability scores for each angle in [0 . . . 180]

degrees in steps of 10◦. Therefore, the model is trained to solve an

18-way binary classification problem. The model in Viereck et al.

(2017) is based on a network originally designed for handwritten

digit classification. The model is a low-resolution convolutional

network that learns a distance function between an action described

as (x, y, θ) and a set of predefined viable grasp poses. In Mahler

et al. (2017), a model called the Grasp Quality Convolutional

Neural Network (GQ-CNN) predicts the success probability of

grasps from depth images, where grasps are specified, once again,

as (x, y, θ). Another study (Chen and Guhl, 2018) uses a standard

convolutional model called Faster-R-CNN (Ren et al., 2016) to

derive a bounding box of the object without explicitly measuring

a rotation angle. The Faster-R-CNN uses a VGG-net as a backbone

model and is trained on the ImageNet classification dataset. The

work of Chen et al. (2022) applies a convolutional network called

Panoptic FPN (Kirillov et al., 2018) to classify the object and match

it with a set of known objects with preplanned grasping actions.

The selected grasp is then transferred to the novel objects using

geometric transformations.

It is not impossible to extract information about object rotation

using convolutional networks. However, a challenge arises when

using networks that are designed and trained for classification, as

they are optimized for rotation invariance. These networks may not

be able to generalize to new orientations effectively or may require

extensive training data or augmentation techniques to learn how

rotation operates.

We argue that our approach introduces a novel and more

suitable method of encoding rotation, employing a cyclic structure

that aligns with the cyclic nature of the rotation, similar to the

ellipsoid body of insects or the r1π ring found in zebrafish larvae.

The key distinction lies in the fact that, rather than shifting a single

signal with the angle, our method involves shifting the entire vector

that contains the latent representation of the object.

4 Model implementation

Our model aims to estimate the angle of rotation1 between

two views of the same object. We adopt the classical autoencoder

framework and create two networks: a “forward network” and an

“inverse network”. The forward network learns to predict rotations

by encoding an object’s view and decoding a rotated version of

it, while the inverse network estimates rotations by applying the

trained encoder to two different views and predicting the angle of

rotation between them.

First, let us define the operator that manipulates the latent space

in such a way that the latent space retains the object’s features

regardless of the transformations applied to it. The shift operator

is a matrix Sn of dimensions R × R that corresponds to a shift

of n positions in a R-dimensional vector. The matrix is defined as

1 We assume a single axis of rotation. Extensions to multiple rotation axes

are discussed in future work in Section 7.

follows:

Sn =

















0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0

. . .

0 0 · · · 1 0

















n

, (1)

with the convention that S0 is the identity matrix. It has been

formally demonstrated that this kind of operator is linearly

isomorphic to rotation (Serre and Scott, 1996; Bouchacourt et al.,

2021). It is easy to see that, for a vector v, it holds v = SR v. In

other words, the shift operator affects the latent vector in a cyclic

way while preserving its information. That is what makes the latent

space in our model “circular”.

The forward network takes two inputs: an image x of the object,

an integer r ∈ [0 . . .R) that expresses an angle of rotation α in a

quantization of 2π into R intervals. We have the following:

α =
2π r

R
. (2)

The network contains an encoder e8 with parameters 8

that compresses the high-dimensional input x into a latent

representation z of dimension R. The low-dimensional

representation z is fed to a decoder d2 with parameters 2

that learns to reconstruct the image x. In addition, the shift

operator Sr is applied to z to shift the vector of r positions. The

shifted latent space is fed to a second decoder that is the same

instance of d2, and it learns to predict the image x
(α) of the

object rotated by the angle α. The forward network is depicted in

Figure 2A and is described by the following function:

f8,2 (x, r) =

[

x̃

x̃
(α)

]

, (3)

where:

x̃ = d2

(

e8(x)
)

, (4)

x̃
(α) = d2

(

Sr e8(x)
)

. (5)

The loss function to train the forward model is the weighted sum

of the mean squared errors of the reconstruction of the two images

of the object, one in the original pose and the other with the object

rotated by the angle α:

L2,8 =
1

N

N
∑

i=1

(

λ1(xi − x̃i)
2 + λ2

(

x
(α)
i − x̃

(α)
i

)2
)

. (6)

The inverse network consists of two instances of the encoder

e8, with the same weights 8 obtained after training the forward

network. Thus, all parameters of the inverse network are fixed and

are not trained again. The two inputs of the network are an image x

of the object and an image x(α) of the object rotated by an angle α.

The inverse network estimates the value of r ∈ [0 . . .R] ⊂ N so that

e8

(

x
(α)

)

= Sr e8(x). This is equivalent to saying that the network

“imagines” rotating the object in e8(x) until it finds the angle of

rotation that best matches the rotation in e8

(

x
(α)

)

. The inverse
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FIGURE 2

Our model consists of a forward network and an inverse network. The forward network (A) takes an image of an object and an integer representing

an angle of rotation and produces an image of the object rotated by that angle as well as the original image. The inverse network (B) takes two

images of an object with di�erent rotations and estimates the angle of rotation re-using the encoders of the first network.

network is depicted in Figure 2B and is defined by the following

functionmeasuring the cosine similarity between the latent vectors:

g8

(

x, x(α)
)

= argmin
r̃







e8

(

x
(α)

)

·
(

Sr̃ e8(x)
)

∥

∥e8
(

x(α)
)
∥

∥

∥

∥Sr̃ e8(x)
∥

∥







. (7)

The network output r̃ can be transformed into a rotation angle

using Equation (2). As mentioned above, the inverse network

derives directly from the forward network. It does not have

additional layers and it does not goes through any training or

fine-tuning to estimate the rotation angle.

The inverse network can also be used to estimate the rotation

of a known object from a single image. One way to do this is by

creating a dataset of known objects, where each object is associated

with a “default pose” represented by a unique circular latent vector.

In this scenario, a single encoder e8 can be used to map the input

image to the circular latent space, and the network can then utilize

the latent vector of the memorized object to estimate the new pose.

In a famous work from 1971 Shepard and Metzler (1971),

showed that the time required by humans to recognize that two

images portray different orientations of the same 3D object is

directly proportional to the angular difference in the orientations.

It might be of interest to verify something similar in our artificial

model. In its current design, however, it is not possible, as

Equation (7) computes the argmin across all possible rotations of

the object, hence taking the same computational time in every case.

In a potential future implementation, wemight consider employing

heuristics to optimize the search for the minimum, thereby making

our model more closely resemble this distinctive aspect of human

perception.

4.1 Benchmark models

To evaluate the performance of our model, we implement

three benchmarks with well-established architectures. Specifically,

we used three vision networks with pre-trained weights that are

available in the TensorFlow’s model zoo: InceptionV3 (Szegedy

et al., 2016), ResNet50 (He et al., 2016), and EfficientNetB4 (Tan

and Le, 2019).

We train each of these models to directly predict the rotation

angle α given the images x and x
(α), using a mean squared error

loss function to compare the predicted angle with the original

angle α. To achieve this, we duplicated the pre-trained encoder to

produce two latent representations, one for each image and added

two fully connected layers on top. The last layer of these models

consists of two neurons trained to represent the values sinα and

cosα. We train the models using transfer learning, thus freezing

the pre-trained weights and training only the last two layers.

5 Datasets

We employ two datasets to evaluate the performance of our

model. The first dataset encompasses only rotations in the image

plane, which we used during the initial implementation phase. The

second dataset incorporates rotations in 3D space from different

viewpoints and is used in the comparison with the benchmark

models.

5.1 COIL-proc dataset

The first dataset used in this study is a simplified version of the

Columbia University Image Library also known as the COIL-100

dataset, which was originally presented in 1996 (Nene et al., 1996).

COIL-100 is a collection of color images of 100 objects featuring
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FIGURE 3

Our custom COIL-proc dataset derived from COIL-100 (Nene et al.,

1996). (A) The selected 24 objects composing the dataset. (B)

Sample of 2D rotation poses with steps of 30 degrees.

small household items and toys. The objects are positioned on a

motorized turntable against a black background and are captured

from a fixed camera while the turntable rotates 360 degrees. This

produces 72 poses for each object with a rotation step of 5 degrees.

To test the model’s performance on a basic rotation estimation

task, we create a simplified dataset, which we called COIL-proc, by

modifying COIL-100. Firstly, we reduce the number of objects from

100 to 24 by removing objects with shapes that were not significant

to the task, such as round and uniform-shaped foods (e.g., fruits

and donuts). We also excluded objects that are repeated with the

same shape but in different colors, such as bottles, cans, and mugs.

The 24 selected objects are shown in Figure 3A.

In COIL-proc, we generate the objects’ poses in a different

manner. Unlike COIL-100, where objects rotate in 3D along the

vertical axis and their appearance changes significantly depending

on the pose, we rotate the objects in 2D on the image plane as

shown in Figure 3B. For each object, we select one “canonical pose”

from the 72 available poses in which it is possible to appreciate the

overall geometry of the object (for example, in the case of a mug, we

select a pose where the handle is visible). From the canonical pose,

we generate 71 additional poses by rotating the entire image by 5-

degree steps, with the pivot point being the center of the image. We

also apply padding to the images to ensure that the rotated poses fit

within the canvas.

The resulting dataset contains 1,728 color images of 128 × 128

pixels. We split the data into a training set of 18 objects (1,296

images) and a test set of six objects (432 images). We consider

four split combinations where we sample six different test objects

each time. This is equal to performing a k-fold cross-validation with

k = 4.

5.2 APC-proc dataset

The second dataset we use is a processed version of the Amazon

Picking Challenge Object Scans, or APC dataset, which is an update

to the previous BigBIRD dataset (Singh et al., 2014) modified to

include the objects used in the Amazon Picking Challenge launched

in 2015 (Correll et al., 2016). The dataset comprises images and

point clouds for 27 items commonly sold on Amazon. The data

is collected using a desktop photography studio (Figure 4, left) and

five cameras arranged in a quarter-circular arc (Figure 4, right). The

cameras are labeled N1 to N5, starting from the lowest position

to the one directly above the turntable. The objects are placed on

the turntable of the photography studio along with a chessboard

necessary to obtain calibrated data. The turntable rotates in steps

of 3 degrees, yielding 120 poses for each camera and a total of 600

images per object.

The APC dataset cannot be used as is in our application. In

almost every image, the calibration chessboard is visible and rotates

in exactly the same manner as the object. With this information,

it would be impossible to determine if the model is learning the

poses of the object or the pattern orientation of the chessboard.

Therefore, it is essential to preprocess the dataset and remove the

chessboard from the images. A simple crop operation would not

suffice since the placement of the chessboard varies for each object,

and in the case of cameras N1, N2, and N3, the object may occlude

a part of the chessboard—see examples of Figure 5A. Fortunately,

in addition to the point clouds, the APC dataset provides image

segmentation masks generated from the object models. We use

these masks to erase all pixels not belonging to an object and then

crop the images to maximize the size of the object while ensuring

that the poses remain within the image canvas. Figure 5B shows

examples of processed images.

The resulting dataset comprises 16,200 color images of 128 ×

128 pixels, with 20 objects allocated to the training set and 7 to the

test set. To account for the different camera viewpoints, we split

the dataset into five subsets corresponding to cameras N1–N5, and

we train a different model for each subset. Figure 6 shows sample

images for four objects arranged by camera viewpoints (rows), and

object poses (columns). It is worth noting that the objects in the

APC dataset are often positioned slightly away from the center of

the turntable, resulting in a significant variation in their horizontal

and vertical positions in the images. This differs from COIL-proc,

where the objects are always centered in the image.

6 Results

Here we present the results of our models evaluated in the two

datasets described in Section 5. For the second dataset, we also

include a comparison with three benchmark vision models, and we

show that our approach have competitive results and, in some cases,

significantly surpass the baselines.

6.1 Results on the COIL-proc dataset

We evaluate our first model on the COIL-proc dataset,

introduced in Section 5. As described in Section 4, the model is
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FIGURE 4

The data-collection process of the original APC dataset (Singh et al.,

2014). On the left, a view of the desktop photography studio, with

an object and the chessboard placed on the turntable. On the right,

a side view of the five cameras (N1–N5) arranged in a

quarter-circular arc.

FIGURE 5

Results of our post-process on the APC dataset (Singh et al., 2014).

(A) Original images in the APC dataset. (B) Corresponding processed

images in our APC-proc dataset.

composed of a forward network and an inverse network. Only

the forward network goes through training for 500 epochs. The

inverse network, instead, derives the weights from the forward

network and uses them to predict rotation angles. The encoder in

both networks consists of two convolutional layers alternated with

max-pooling layers, followed by three dense layers. The decoder

in the forward network consists of three dense layers followed by

three deconvolutional layers. The forward network has 3.8 million

of trainable parameters, and the loss function is in Equation (6)

with λ1 = λ2 = 0.5. The circular latent space is made up of 72

neurons; in other words, R = 72 in Equation (2). With 72 neurons,

it is possible to represent rotations with a granularity of 5 degrees,

which is the rotation step used in COIL-proc (and COIL-100).

To train the forward network, the dataset is organized into

couples of input (x, r) and target
(

x, x(α)
)

, as for Equation (3).

Hence, there are 722 possible combinations of inputs per object.

To speed up training, we decide to reduce the number of samples

by a factor of 1
4 . Specifically, for each of the 72 poses of x, the value

of r spans the range [0 . . .R] by steps of 4 (equal to 20 degrees).

Therefore, the training set is made up of 23,328 samples, and the

test set of 7,776 samples.

We split the training set and the test set based on the objects,

as mentioned in §Section 5. In this way, the test set contains only

objects that have never been seen during training. In addition, we

perform a k-fold cross-validation with k = 4. In the end, the error

estimation can be averaged over all k iterations to get the total

effectiveness of the model.

Table 1 shows the results of the model on COIL-proc. The

rows correspond to the four iterations of the k-fold cross-validation

and the overall average. The four columns on the left report the

performance of the forward network, whereas the two columns

on the right report the performance of the inverse network. The

forward network produces two outputs: the reconstruction of the

original image x, and the prediction of the rotated image x(α). For

each image, wemeasure themean squared error (MSE) (Bishop and

Nasrabadi, 2006) and the structural similarity index (SSIM) (Wang

et al., 2004). MSE values are in the range [0 . . . + ∞], where 0

indicates perfect similarity. SSIM values are in the range [−1 . . . 1],

where 1 indicates perfect similarity, 0 indicates no similarity, and

−1 indicates perfect anticorrelation.

The output of the inverse network is the estimation α̃ of the

rotation angle α between the two poses of the object passed as input

images
(

x, x(α)
)

. We define the following two error measures:

E2π =

(

1

π
atan2

(

sin(α − α̃), cos(α − α̃)
)

)2

(8)

Eπ = sin2(α − α̃) (9)

where atan2 is the 2-argument arctangent. Figure 7 shows the

difference between the two error measures. Both errors are in

range [0 . . . 1], but E2π has maximum at α − α̃ = π , while

Eπ has maximum at α − α̃ = π
2 + kπ . The choice of E2π is

straightforward: π is the maximum possible difference in angle.

Hence, it corresponds to the maximum error. We add Eπ to better

evaluate the model in the context of a pick-and-place application

because the grasping pose is usually equivalent when rotated 180◦.

We will further discuss this point when presenting the results on

APC-proc in Section 5.2.

The results in Table 1 appear to be consistent across the

iterations of the cross-validation. Different train/test splits yield

similar values for all metrics. Furthermore, the reconstruction error

of the rotated image x(α) (columns 3 and 4) remains very close to

the error of the original image x (columns 1 and 2), for bothmetrics

MSE and SSIM. Lastly, the average values of E2π and Eπ are similar

and correspond to approximately half shift in the 72 neurons’

discretization. However, the metric Eπ will be more meaningful in

the APC-proc, as we will see later in this Section.

We include in Figure 8 a visualization of the latent space

learned by the model. The figure shows five rotations in steps of

60 degrees and the related latent space of 72 neurons generated by

our model. It is possible to appreciate the correspondence between

the rotation in the image space and the shift operator in the circular

latent space.
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FIGURE 6

Samples of four objects in our custom APC-proc dataset derived from the Amazon Picking Challenge object scans (Singh et al., 2014). Rows show

the point of views of the five cameras from N1 to N5; columns show three poses by steps of 30 degrees.

TABLE 1 Results of our model on the COIL-proc dataset.

Original
image

Rotated
image

Rotation
angle

MSE ↓ SSIM ↑ MSE ↓ SSIM ↑ E2π ↓ Eπ ↓

Iter 1 0.0178 0.8389 0.0178 0.8391 0.0536 0.0457

Iter 2 0.0173 0.8367 0.0171 0.8369 0.0922 0.0494

Iter 3 0.0081 0.8419 0.0085 0.8352 0.0120 0.0315

Iter 4 0.0121 0.8224 0.0128 0.8142 0.0163 0.0722

Mean 0.0144 0.8392 0.0145 0.8371 0.0526 0.0422

FIGURE 7

Di�erence between our metrics measuring rotation errors: in blue

E2π from Equation (8), in orange Eπ from Equation (9).

6.2 Results on the APC-proc dataset

To fully evaluate the performance of our model, we selected

the APC-proc dataset. This dataset was chosen because it provides

multiple views of objects from various angles and includes

FIGURE 8

Visualization of a circular latent space learned by our model on the

COIL-proc dataset. In each column, the latent vector is shifted by 12

units, which equals to rotating the image by 60 degrees.

objects with complex geometries, including transparent objects.

Furthermore, since most objects are displaced from the center of

the turntable (as explained in Section 5.2), our model must be

robust to translations with respect to the center of the image.

The APC-proc dataset—as well as the original APC dataset—

is organized into five sub-datasets according to the five cameras

used in the data collection process (Figure 4, right). The same

rotations produce significantly different poses in each sub-dataset.

For instance, images captured by camera N5, which is the top-most

camera, have poses that resemble those in COIL-proc, as shown

in the last row of Figure 6. On the other hand, the sub-dataset of

camera N1, which is the front camera, yields entirely different poses

that can lead to widely varying images depending on the shape of

the objects, as evident from the disparity between the left-most and

right-most images in the first row of Figure 6. Consequently, we
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opted to train five different models, one for each camera and its

corresponding point of view.

Each of the five models consists of a forward network and an

inverse network with the same structure presented in the previous

Section 6. However, in this case, the circular latent space’s size is

R = 120 in Equation (2), since APC-proc has a granularity of 3

degrees, resulting in 120 poses per object. The forward network

has 10 million trainable parameters and undergoes 100 epochs of

training with the loss function specified in Equation (6). For each

sub-dataset, we randomly choose 20 objects for the training set

and 7 for the test set, ensuring that the model is always evaluated

on objects that it has never seen before. Similar to COIL-proc,

we reduce the number of samples to accelerate training, but this

time by a factor of 1
2 . Eventually, each sub-dataset contains 144, 000

training samples and 50, 400 test samples.

Table 2 shows the results of the five models. The rows

correspond to the models, each using one of the sub-datasets from

N1 to N5. The four columns on the left report the performance

of the forward network, and the two columns on the right report

the performance of the inverse network. Similarly to the results on

COIL-proc, for each output of the forward network, we measure

the mean squared error and the structural similarity index. For

the output of the inverse network, we use the two error measures

defined in Equations (8) and (9). Despite APC-proc being a more

challenging dataset, the models show similar results to the COIL-

proc dataset. The MSE and SSIM scores are even better in this

case. The only discrepancy is in the values of E2π and Eπ , which

get significantly worse when using front-facing cameras, such as

N1 and N2. This is no surprise: the point of view in N1 and N2

is virtually perpendicular to the rotation axis, and the consequent

partial occlusion makes it harder to estimate the rotation. This is

the reason why the error Eπ in the case of camera N1 is five times

larger than in N5.

We conclude with a comparison between our model and

three benchmarks based on commonly adopted vision models:

InceptionV3 (Szegedy et al., 2016), ResNet50 (He et al., 2016),

and EfficientNetB4 (Tan and Le, 2019). Details about the

implementation of the models are in Section 4.1. Recall that these

models are trained to estimate the angle of rotation between two

input images directly. Training takes 100 epochs, and the number

of trainable parameters is 17 million for InceptionV3, 67 million

for ResNet50, and 58 million for EfficientNetB4. As we do for our

model, we train a separate model for each sub-dataset; moreover,

for the sake of time, we discard the sub-datasets of cameras N2, N3,

and N4, and we train only on N1 and N5.

The results of the comparison are given in Table 3. Our inverse

model outperforms all the other three except for the value of E2π in

N1, which is better for EfficientNetB4—the model that performs

better among the three considered. According to the previous

results in Table 2, all models have lower errors in camera N5 with

respect to N1. However, this time it is possible to appreciate a

discrepancy between the values of E2π and Eπ . In the benchmark

models, Eπ is nearly three times higher than E2π . In our model,

instead, the difference between Eπ and E2π is much lower. In

the contest of many robotic applications, such as pick-and-place

tasks, this discrepancy is meaningful. The Eπ metric does not

penalize the model when it incorrectly estimates a rotation by 180

degrees because, for most objects, the final pose is the same—for

example, the boxes in Figure 6 are almost perfectly symmetric.

TABLE 2 Results of our models on the APC-proc dataset.

Original
Image

Rotated
Image

Rotation
Angle

MSE ↓ SSIM ↑ MSE ↓ SSIM ↑ E2π ↓ Eπ ↓

N1 0.0108 0.8900 0.0159 0.8804 0.2015 0.2719

N2 0.0091 0.9147 0.0124 0.9053 0.1732 0.2108

N3 0.0081 0.9137 0.0110 0.9057 0.1478 0.1416

N4 0.0046 0.9392 0.0057 0.9336 0.0771 0.0868

N5 0.0092 0.8961 0.0104 0.8909 0.0544 0.0534

Mean 0.0083 0.9107 0.0111 0.9031 0.1308 0.1529

The values in bold represent the best results as measured by the metrics in the respective

columns.

TABLE 3 Comparison between our model and three benchmark models

on the APC-proc dataset.

Camera N1 Camera N5

E2π ↓ Eπ ↓ E2π ↓ Eπ ↓

InceptionV3 (Szegedy et al., 2016) 0.2858 0.4707 0.1863 0.4306

ResNet50 (He et al., 2016) 0.2101 0.4523 0.0912 0.2452

EfficientNetB4 (Tan and Le, 2019) 0.1664 0.4104 0.0617 0.2043

Ours 0.2015 0.2719 0.0544 0.0534

The values in bold represent the best results as measured by the metrics in the respective

columns.

When performing pick-and-place, the grasping movement is the

same if the object has rotation α or α + π . For this reason, it

is more effective to evaluate the accuracy of the models with Eπ

when considering potential robotic applications. When doing so,

our model is shown to outperform all other models, despite having

nearly six times fewer trainable parameters than EfficientNetB4 (the

best of the three benchmark models). Moreover, recall that while

the benchmark models are directly trained to evaluate the rotation

between images, our model is trained to reconstruct image output,

and the inverse network never goes through a training phase.

6.3 Analysis of the circular latent space

To conclude, we conduct an analysis of the structure within

the circular latent space learned by the presented model. We focus

on the model trained on the COIL-proc dataset due to the limited

number of objects and the reduced size of the latent space (72

neurons instead of 120 for the APC-proc), which facilitates a clearer

visualization of the internal structure. We investigate whether the

latent space, due to the well-documented polysemous nature of

neurons in artificial (and biological) neural networks, demonstrates

a superposition of coding related to rotations, irrespective of the

object category, intertwined with coding related to the objects

themselves.

In a first analysis, which results are in Figure 9, we aim to

identify neurons within the latent space that exhibit stronger

correlations with specific objects from the COIL dataset. This

analysis is performed considering the 72 possible rotations of each

object separately.
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FIGURE 9

Visualization of neurons in the latent space that exhibit strong correlations with specific objects from the COIL dataset. The 72 possible rotations of

each object are considered separately. Detailed description of the matrices in the text.

FIGURE 10

Visualization of neurons in the latent space that exhibit strong correlations with specific objects from the COIL dataset, mediated over all rotations.

Detailed description of the matrix in the text.

Let zi(r, o) be the activation value of the i-th neuron in the

latent space z encoding an image of the object o ∈ O with an

index of rotation r ∈ [0 . . .R), and i ∈ [0 . . .R). For each object

o, we compute a matrix R×R, where the number of rows represent

all rotations r. Each row consists of an array of binary values

vi(r, o) describing if the i-th neuron in the latent space is strongly
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associated with the object o. Specifically, being ō ∈ O\{o}, we define

vi(r, o) as follows:

vi(r, o) =

{

1 if zi(r, o) > µ
(

zi(r, ō)
)

+ σ
(

zi(r, ō)
)

0 otherwise
, (10)

where µ is the average and σ the standard deviation of the

activation values over all possible ō.

The results in Figure 9 show how, for all objects, the shifting

pattern of activation does not originate from a single distinct

cluster of neurons. Furthermore, there is minimal overlap in the

patterns for the same rotation across all objects. This implies

that the neurons in the latent space are effectively distributed in

their representation of objects, encoding various distinct features.

Additionally, the consistent diagonal pattern in the matrices

confirms that the model correctly maps rotations in the world with

shifts within the circular latent space.

We extend our investigation to identify neurons in the latent

space that primarily represent object identity, regardless of rotation.

To do this, we follow a similar approach to our previous analysis,

but this time, we consider all rotations collectively.

Let zi(o) be the average activation value of the i-th neuron of z

encoding the object o over all R rotations, with i ∈ [0 . . .R). We

define a score si(o) of the i-th neuron over all rotations as follows:

si(o) = zi(o)− µ
(

zi(ō)
)

, (11)

where µ is the average over all possible ō. For each object o, we

indicate the M neurons with the highest non-negative scores si(o).

In Figure 10, we usedM = 8.

The results of this second analysis are reported in Figure 10. In

contrast to the first analysis, in this case, the number of neurons

involved in coding for individual objects is lower, as expected due

to the constraint of maintaining the shifting property for rotation.

For these select neurons, the results remain consistent with our

previous analysis, revealing a uniform distribution of neurons

across the various objects, even though it becomes more sparse

when distilled for all rotations.

7 Conclusions

We have presented a model to estimate the difference in

rotation between two views of the same object. Our model is

explicitly designed to incorporate prior knowledge about the

rotation operation, in a way that resembles the neural circuits used

by Drosophila’s brain to represent head directions. In our model,

the rotation transformation is encoded within the network as an

operator that cyclically manipulates the internal latent space. The

operator works by shifting the elements in the circular latent vector.

When the vector is decoded, it produces an image of the object that

is rotated relative to its original pose while maintaining its original

features.

We have demonstrated the model’s performance on two

datasets that we pre-processed to be best suited for rotation

estimation: COIL-proc and APC-proc. We have evaluated the

results—both as image output and as rotation angles—using four

different metrics, and the model performs effectively in all four.

In addition, we have compared our model with three benchmarks

based on widely employed vision models. Despite being a much

smaller neural network, our model significantly outperforms the

benchmarks in most cases.

As part of future work, we intend to address the main limitation

of our model, which is its assumption of a single axis of rotation.

This will likely require us to elaborate further on the structure of

the circular latent space and how the shift operator manipulates it.

Once the model is capable of processing multiple axes of rotation,

it will have the potential to be integrated into practical robotic

applications, such as pick-and-place tasks. Furthermore, because

of its compact size, the model can also serve as a module in other

complex pipelines that require rotation estimation, such as a stereo

vision system. Furthermore, we will explore novel applications to

showcase the usefulness of this concept, particularly in the domains

of robotics and autonomous driving.
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