
TYPE Original Research

PUBLISHED 12 September 2023

DOI 10.3389/fncom.2023.1268374

OPEN ACCESS

EDITED BY

Ruile Pan,

Chinese Academy of Medical Sciences and

Peking Union Medical College, China

REVIEWED BY

Fukun Bi,

North China University of Technology, China

Long Pang,

Communication University of China, China

Lianlin Li,

Peking University, China

*CORRESPONDENCE

Yizhuang Xie

xyz551_bit@bit.edu.cn

RECEIVED 28 July 2023

ACCEPTED 15 August 2023

PUBLISHED 12 September 2023

CITATION

Xie Y, Qiao T, Xie Y and Chen H (2023) Soft

error mitigation and recovery of SRAM-based

FPGAs using brain-inspired hybrid-grained

scrubbing mechanism.

Front. Comput. Neurosci. 17:1268374.

doi: 10.3389/fncom.2023.1268374

COPYRIGHT

© 2023 Xie, Qiao, Xie and Chen. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Soft error mitigation and recovery
of SRAM-based FPGAs using
brain-inspired hybrid-grained
scrubbing mechanism

Yu Xie, Tingting Qiao, Yizhuang Xie* and He Chen

Beijing Key Laboratory of Embedded Real-Time Information Processing Technology, School of

Information and Electronics, Beijing Institute of Technology, Beijing, China

Soft error has increasingly become a critical concern for SRAM-based field

programmable gate arrays (FPGAs), which could corrupt the configuration

memory that stores configuration data describing the custom-designed circuit

architecture. To mitigate this kind of error, this study proposes a brain-inspired

hybrid-grained scrubbing mechanism consisting of fine-grained and coarse-

grained scrubbing to mitigate and repair the errors as quickly as possible after an

SEU occurrence. Inspired by the human brain’s ability to filter out redundant and

irrelevant information, we propose a mechanism that can mask invalid position

information when errors occur. Compared with the scrubbing of full configuration

memory, this mechanism can achieve precise error location and recovery utilizing

targeted scrubbing of specific frames or modules. The e�ectiveness is evaluated

by executing fault injection campaigns on the International SymposiumonCircuits

and Systems 1989 (ISCAS89) benchmark circuits and fault tolerant fast Fourier

transform (FT-FFT) circuit. If upsets are detected, they will be repaired with fine-

grained or coarse-grained scrubbing depending on their location. The experiment

results show that this mechanism can e�ectively mitigate and repair single-

bit upsets (SBUs) and double-bit upsets (DBUs). In addition, the mechanism is

proven to be superior in error recovery time and hardware overhead compared

to counterpart approaches.

KEYWORDS

brain-inspired, configuration scrubbing, hybrid-grained, single event upset (SEU), SRAM-

based FPGA

1. Introduction

In recent years, “brain-inspired” research has emerged as a significant direction in the

fields of artificial intelligence and computer science. Drawing inspiration from the design

principles and mechanisms of the human brain’s neural system, it offers new insights and

approaches for addressing complex computational and processing tasks. In this study,

we apply the concept of “brain-inspired” to the design of a hybrid-grained scrubbing

mechanism, aiming to enhance fault tolerance and recovery capabilities in SRAM-based

FPGAs. By drawing inspiration from the fault tolerance and adaptability of the human brain,

we can design systems that are more robust and resilient.

SRAM-based FPGAs have been widely used in security and mission-critical applications

(Yang and Fathy, 2009; González et al., 2011; Hartley et al., 2013; Wang et al., 2015), due

to their high logic density, low power consumption, reconfiguration feature, and parallel

computing capability, especially in aerospace and avionic domains. However, they are

extremely sensitive to radiation effects. SRAM-based FPGAs have a number of SRAM cells

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1268374
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2023.1268374&domain=pdf&date_stamp=2023-09-12
mailto:xyz551_bit@bit.edu.cn
https://doi.org/10.3389/fncom.2023.1268374
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1268374/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fncom.2023.1268374

FIGURE 1

SEUs occurred in the configuration memory of SRAM-based FPGA.

which are called configuration memory cells. Once the

configuration memory cells are hit by energy particles, the

configuration bits may be flipped, which is called single event

upsets (SEUs) (Karnik and Hazucha, 2004). If SEUs occur in

LUT cells or in the cells that control the routing and selectors,

it will cause circuit output errors (Morgan et al., 2005), as

depicted in Figure 1. These errors have a permanent impact

(Nidhin et al., 2017) because these upsets have been latched

by the configuration cells. Therefore, certain measures must be

taken to prevent the SEUs from affecting the applications and to

repair errors.

Recently, many approaches have been proposed to mitigate

and repair the errors from different levels (Kastensmidt and Rech,

2016), where there are two different strategies at the design level,

one is failure masking and the other is failure recovery.

Failure masking techniques can mask errors through hardware

redundancy, such as triple modular redundancy (TMR) (Sterpone

and Violante, 2005), partial TMR (Pratt et al., 2008), duplication

with compare (DWC) (Johnson et al., 2008), and reduced

precision redundancy (RPR) (Pratt et al., 2013). The most

classical TMR was first proposed by Von Neumann (1956) and

was extensively studied to reduce resource overhead (Samudrala

et al., 2004) and improve voter reliability (Kshirsagar and

Patrikar, 2009). In addition, algorithm-based fault tolerance

(ABFT) (Bosilca et al., 2009) can be used for certain circuits to

reduce overhead.

Failure recovery can repair the upsets by dynamically

and partially reconfiguring the configuration memory without

interrupting the operations (Xilinx UG909, 2019), which is

called configuration scrubbing (Herrera-Alzu and Lopez-Vallejo,

2013). Periodic scrubbing is the most basic approach, which

periodically reconfigures the configuration memory with the

original configuration data. The opposite is readback scrubbing

(Michel et al., 2015), which refers to reading back the current

bitstream and scanning to find upsets, and reconfiguring the

configuration memory with the original bitstream when upsets

are detected. Configuration scrubbing can also be classified as

internal and external depending on the configuration interface

(Berg et al., 2008). External scrubbing uses Select-Map or JTAG

(Giordano et al., 2017) to access configuration memory, which

typically requires a radiation-hardened device (such as an anti-

fuse FPGA, processor, or ASIC) and a radiation-hardened memory

(Wang, 2012). Internal scrubbing is typically based on the Internal

Configuration Access Port (ICAP) (Guohua et al., 2017), which

uses a soft core (HWICAP, 2020) or finite state machine (FSM)

(Ebrahim et al., 2012) to control the scrubbing process.

Although the failure masking technique can mask errors, it

suffers from large resource overheads and cannot repair upsets, and

the main bottleneck of failure recovery is long error detection and

recovery time. Thus, we propose a brain-inspired hybrid-grained

scrubbing mechanism that combines fine-grained scrubbing and

coarse-grained scrubbing.

One key characteristic of “brain-inspired” approaches is their

adaptability and fault tolerance. The brain possesses redundant

neural networks and neuroplasticity, allowing for reorganization

and rewiring in the presence of damaged neurons or connections,

thus maintaining fundamental functions and adaptability. By

leveraging these features, we have designed a hybrid approach to

provide robust error mitigation and recovery capabilities, which

can repair single-bit upsets (SBU) and double-bit upsets (DBU)

while detecting errors.

Compared with the existing solutions, this approach shows

a significant improvement in terms of fault repair rate, recovery

time, and area overheads. The main contributions are summarized

as follows:

• Soft error mitigation and recovery of SRAM-based FPGAs

using a brain-inspired hybrid-grained scrubbing mechanism,

which can reduce at least 29.4% error recovery time.

• Analysis of the Xilinx 7-series configuration architecture and

calculation of the frame address in fine-grained mechanism.

• A hardware redundancy technology based on ECCs and ABFT

to mitigate and mask errors in the coarse-grained mechanism.

The remainder of the study is organized as follows: Section 2

analyzes the Xilinx 7-series configuration architecture and explains

how to calculate the frame address. Section 3 presents the brain-

inspired hybrid-grained scrubbing mechanism, combining fine-

grained and coarse-grained scrubbing mechanisms. In Section 4,

the fault injection experiment results are discussed. A comparison

with related work is conducted to demonstrate the advantages and

validity of this approach. Section 5 concludes the study.

2. Methods

2.1. Analysis of Xilinx 7-series
configuration architecture

The Xilinx FPGA is composed of a series of function blocks and

a set of controls and routes (Xilinx UG470, 2018) as depicted in

Figure 2, taking the Kintex-7 XC7K325T (KC705) as a reference.

The block types are used to determine certain function blocks,

where block 0 is used to define functions of logic, I/O, routing,

DSP, etc., block 1 is used for the initial content of the block random

accessmemories (BRAM), and the other types of blocks are used for

specific features. The device is physically divided horizontally into

two parts: top (0) and bottom (1). Each part is further divided into

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2023.1268374
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fncom.2023.1268374

FIGURE 2

Configuration architecture layout of XC7K325T.

TABLE 1 Frames per column of the XC7K325T.

Block Number of frames

CLB 36

DSP 28

BRAM 28

IOB 42

Clock column 30

serval rows depending on the size of the device. There are seven

rows in the KC705, the top (0) includes four rows and the bottom

(1) includes three rows. This corresponds to the row address. Each

row consists of a stack of basic function blocks with a fixed number

of columns. Each column is further divided into sub-columns,

which are called frames. This corresponds to the minor address.

As can be seen from Table 1, different types of columns have

different numbers of frames, depending on the block types.

2.2. Frame address calculation

The frame is the smallest amount of configuration data

that can be read or written. Each configuration frame has a

unique 32-bit address that can be divided into 5 parts (Xilinx

UG953, 2018), which are block type, top/bottom position, row

address, column address, and minor address, as shown in

Figure 3. From Section 2.1, we find that the frame address

is discontinuous due to block cross-distribution, and different

blocks correspond to different frames. We define these non-

contiguous frame addresses as physical frame addresses (PFAs),

and the addresses obtained by sequentially arranging PFAs are

called linear frame addresses (LFAs). The function of an SRAM-

based FPGA is determined by configuration data called bitstream,

and the bitstream consists of frame data. Since Xilinx does

not disclose the relationship between frame data and PFA in

a bitstream, it is difficult to reconfigure the error frame with

a correct frame to repair upsets. We derived this relationship

by analyzing the configuration architecture and bitstream. For

example, if a module is placed in top (0), row 0, column 2, as

shown in Figure 4, then its PFA is 00000100 to 00000123(h), and the

corresponding LFA is 72 to 107(d). Therefore, the corresponding

frame data of the module in the bitstream is the 72nd to

107th frame.

3. Mechanism

3.1. Brain-inspired hybrid-grained
scrubbing mechanism

The architecture of the brain-inspired hybrid-grained

scrubbing mechanism is shown in Figure 4. It mainly

consists of an error detection module, scrubbing controller,

fault injector, Internal Configuration Access Port (ICAP),

universal asynchronous receiver/transmitter (UART), and

external memory.

3.1.1. Error detection module
The detection logic of fine-grained and coarse-grained

mechanisms are implemented in it, and the error detection signals

will be input into the scrubbing controller.

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2023.1268374
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fncom.2023.1268374

FIGURE 3

Composition of 32-bit physical frame address.

FIGURE 4

The architecture of brain-inspired hybrid-grained scrubbing mechanism.

3.1.2. Scrubbing controller
It is implemented by Verilog and used to control the read frame

andwrite frame, which are used to read frames from or write frames

to the configuration memory.

By utilizing the ICAP module, a fault injector can be

implemented. The fault injection or error repair is a simple

read–modify–write process. When we finish the procedure

of injecting fault, the FPGA will operate the data that

include errors. Then, the brain-inspired hybrid-grained

scrubbing will come into force. ICAP is a configuration

interface that allows to access configuration memory by

FSM or an embedded processor. External memory is used

to store the original configuration data. The UART is used

to interact with the scrubbing controller with a specific

command format.

The coarse-grained scrubbing mechanism can repair SBU

and DBU with a shorter repair latency compared with the fine-

grained mechanism; this is applied for critical designs. Only the

upsets that cause the output error can be detected and repaired

in the coarse-grained mechanism, the others will accumulate

in configuration memory, which can be repaired by the fine-

grained mechanism. Thus, this study combines fine-grained and

coarse-grained scrubbing mechanisms to provide the strongest

mitigation and recovery capabilities. We enable both mechanisms

at the same time. If errors occur in FT-FFT modules, the upsets

will be detected and repaired by the coarse-grained mechanism,

and if it is not, they will be detected and repaired by the

fine-grained mechanism. Figure 5 shows the entire recovery flow

of brain-inspired hybrid-grained scrubbing when SBU or MBU

is injected.

As shown in Table 2, this approach occupies 385 LUTs,

56 FFs, and 1.5 RAMs, <1% of the total resources in

KC705. Compared to the soft error mitigation (SEM)

IP (Le, 2012) created by Xilinx, this approach has fewer

hardware overheads and therefore has fewer sensitive areas

for higher reliability.

The fine-grained scrubbing mechanism enables precise

localization and repair of errors such as single-bit upsets,

double-bit upsets, and multiple-bit upsets. On the other

hand, the coarse-grained scrubbing mechanism employs

hardware redundancy techniques and error detection

and correction codes to mask and repair errors by

reconstructing faulty modules. The integration of these

two mechanisms has led to significant improvements

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2023.1268374
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fncom.2023.1268374

FIGURE 5

The recovery flow of brain-inspired hybrid-grained scrubbing.

TABLE 2 Hardware resource comparison.

Hardware overhead I/O

LUTs FFs BRAM (RAM36)

This approach 385 56 1.5 1

SEM 559 139 1.5 56

in terms of error repair rate, recovery time, and

resource utilization.

3.2. Fine-grained scrubbing mechanism

The fine-grained scrubbing mechanism utilizes two built-in

features of Xilinx, which are the readback cyclic redundancy check

(CRC) circuit and FRAME_ECCE2 primitive. Readback CRC is a

dedicated circuit to continuously read back the bitstream in the

background while computing the global CRC value. At the end

of the readback, if the computed CRC does not match the golden

CRC, it indicates that a CRC error has occurred. FRAME_ECCE2

is a primitive consisting of a 12-bit standard Hamming code and

an extra parity bit, which allows to detect and correct a single error

and detect (but not correct) a double error (SEC/DED). Its block

diagram is shown in Figure 6.

Each configuration frame in Xilinx FPGAs contains 101 words,

of which the 13-bit extended Hamming is stored in the 51st word,

as depicted in Figure 3. To start using the FRAME_ECCE2 circuit,

it is necessary to first invoke the Readback CRC circuit to read

back the current bitstream. Then, FRAME_ECCE2 utilizes the

bitstream to compute the SYNDROME [12:0]. If SYNDROME

[12:0] is not equal to zero, it indicates that the current frame has

FIGURE 6

Diagram of FRAME_ECCE2.

FIGURE 7

The format of fault injection command.

an error and FAR [25:0] will give the PFA of the current frame. If

the odd numbers of bits are flipped, the parity will be incorrect,

resulting in the SYNDROME [12:0] being incorrect. Therefore,

the FRAME_ECCE2 always detects double and all odd-number bit

upset in a frame, while for even-number upset >2, it is not always

detectable. If FRAME_ECC does not detect an even-number upset

>2, then it will eventually be detected by the CRCERROR signal at

the end of the readback.

The fine-grained mechanism consists of a readback CRC

circuit and FRAME_ECCE2 primitive, a scrubbing controller,

ICAP, UART, and an external memory. Readback CRC and

FRAME_ECCE2 are responsible for detecting upsets. ICAP is a

configuration interface that allows to access configuration memory

by FSM or an embedded processor. External memory is used to

store the original configuration data. The scrubbing controller

implemented by Verilog is used to control the read frame and

write frame, which are used to read frames from or write frames

to the configuration memory. The UART is used to interact with

the scrubbing controller in the format of a specific command, as

shown in Figure 7.

• Command to enter idle state: AA084988.

• Command to inject error with PFA: AA28XXXXXXXXXX88.

• Command to enter Observation state: AA084F88.

The UART receives three types of commands above. In the

idle state, the scrubbing controller receives the fault injection

command and the command to enter the observation state. To

evaluate the effectiveness of the brain-inspired hybrid-grained

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2023.1268374
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fncom.2023.1268374

FIGURE 8

Whole circuit structure of the fault injection command module.

scrubbing mechanism, we implemented a fault injector by reading–

modifying–writing a frame, which can simulate SBUs or MBUs. In

the observation state, the system automatically detects and repairs

upsets. If upsets are detected by the SYNDROME [12:0] signal,

it is repaired by reconfiguring the error frame with the correct

frame. If it is detected by the CRCERROR signal at the end of

the readback, since the address of the fault frame is unknown,

the scrubbing controller will reconfigure the whole configuration

memory to repair the error.

The whole circuit structure of the fault injection command

module (shown in Figure 4) is shown in Figure 8, consisting of the

UART receive module, UART transmit module, data concatenation

module, buffer FIFO, and fault injection command parsing

module. Line ① is responsible for delivering the configuration

data corresponding to the .rbd file, .msd file, and FFT modules

to the DDR read/write control module, then writes the data to

the external DDR3 memory. Line ② is responsible for receiving

control information sent from the host computer and parsing

it into corresponding control commands, facilitating interaction

between the host computer and the brain-inspired hybrid-grained

scrubbing controller.

(1) UART receive and transmit module:

This module consists of UART receive and transmit circuits and

operates with a data format of 1 start bit, 8 data bits, 1 stop bit, no

parity bit, and a baud rate of 115,200 bps.

(2) Data concatenation module:

The data concatenation module converts the .rbd file, .msd file,

and configuration data of the FFT backup module from an 8-bit

data width to a 512-bit data width.

(3) Buffer first input first output (FIFO):

The buffer FIFOmodule is composed of a 512-bit wide and 512-

bit deep FIFO. Its main function is to buffer the data received from

the data concatenation module, facilitating read access by the DDR

read/write control module.

(4) UART command parsing module:

The UART command parsing module decodes each frame

of control information received via the UART. It extracts the

control commands: Enter Idle State Command, Error Injection

Command, and Observation Command. The command parsing is

TABLE 3 The ports of the UART communication and command parsing

module.

Signal
name

Bit
width

Direction Description

Clk 1 Input System clock

rst_n 1 Input System reset

i_Rx_Serial 1 Input UART receive

rd_en 1 Input Enable read buffer FIFO

sel_0 1 Input Switch between line ①

and ②, “0” for line ①, “1”

for line ②

fifo_empty 1 Output Buffer FIFO empty signal

data 512 Output Buffer FIFO output

inj_en 1 Output Enable fault injection

inj_addr 40 Output Fault injection address

idle_en 1 Output Enter idle state

command

readback_en 1 Output Enable readback data

command

readback_addr 32 Output Readback data frame

address

scan_en 1 Output Readback data frame

address

implemented using a state machine, consisting of four states: Frame

Header Parsing, Frame Length Parsing, Frame Data Reception,

and Frame Footer Parsing. The state machine starts in the Frame

Header Parsing state and transitions to the Frame Length Parsing

state upon detecting the frame header data (0xAA). If the received

frame length matches the expected values (0x08, 0x10, 0x20, or

0x28), it moves to the corresponding Frame Data Reception state;

otherwise, it returns to the Frame Header Parsing state. In the

Frame Data Reception state, after receiving the frame data of the

expected length, it transitions to the corresponding Frame Footer

Parsing state. If the frame data length does not match the expected

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2023.1268374
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fncom.2023.1268374

length, it directly returns to the Frame Header Parsing state. If the

frame footer is 0x88, the parsing is successful, and the command is

considered valid. If the frame footer is not 0x88, the frame data is

discarded, and it returns to the Frame Header Parsing state. After

completing the frame data parsing, it automatically returns to the

Frame Header Parsing state.

For the Error Injection Command, the data information

corresponds to the address for fault injection, consisting of 40 bits.

The bits 35–39 are all “0”, bit 34 represents the quadrant address,

bits 29–33 represent the row address, bits 19–28 represent the

column address, bits 12–18 represent the sub-address, bits 5–11

represent the word address (which word within the frame), and bits

0–4 represent the bit address (which bit within the word).

The ports of the UART communication and command parsing

module are shown in Table 3. After power-on, line 1 is connected

while line 2 is disconnected. The UART receive module receives

the .rbd file, .msd file, and configuration data corresponding to the

FFT backup module from the host computer. The received data

are processed by the data concatenation module to generate 512-

bit data, and if the buffer FIFO is not full, the data are written

into the buffer FIFO. At the same time, when the DDR read/write

control module detects that the buffer FIFO is not empty, it reads

the data and writes it to the specified address in the external

DDR3memory. Once the .rbd file, .msd file, and configuration data

for the FFT backup module are written into the DDR3, line 1 is

disconnected and line 2 is connected, maintaining this state. When

line 2 receives control information, it parses the data packet and

generates commands for the main controller. The UART transmit

module is used to send the current status of the fault injection, fault

detection, and repair of the hybrid-grained scrubbing controller

back to the host computer.

3.3. Coarse-grained scrubbing mechanism

Long error detection and recovery time and the inability to

mask errors are two major drawbacks of fine-grained scrubbing

mechanisms. With the KC705 as a reference, it takes 23.5ms to

scan the entire configuration memory. On average, it will take half

of the configuration scan time to find an error (11.25ms). This is

unacceptable for high-reliability and high-efficiency applications.

Therefore, it is necessary to introduce a mechanism to repair errors

more quickly than fine-grained scrubbing while detecting errors.

Actually, both failure masking and scrubbing techniques

are used in coarse-grained mechanisms. This study utilizes

hardware redundancy to mask errors in coarse-grained, including

redundancy with ECCs and ABFT (Gao et al., 2015). If an error

is detected in a certain module, the error will be masked and

a reconfiguration will be performed to repair the failed module.

With Xilinx floor planning technology, we limit the original and

redundant modules to a specific position. According to the analysis

in Section 2, we can calculate the LFA of each module. Then, we

can write a script to extract the configuration frames data of the

corresponding module from the bitstream and store them in the

external memory. Once upsets occur in a certain module, it will

be detected immediately and the accurate frame address of this

module will be located because this approach does not need to

FIGURE 9

Coarse-grained mechanism error detection scheme.

TABLE 4 Results of error recovery time.

Error recovery time (ms)

SBU DBU

Fine-grained 11.7541 11.7541

Coarse-grained 0.3666 0.3666

Hybrid-grained (average) 8.298 8.298

SEM IP (Xilinx PG036, 2015) 12.58 12.58

Stoddard et al. (2016) 11.7545 13.61

read back bitstream to check for upsets frame-by-frame. If any

one of the modules fails (including the redundancy module), the

other modules can mask the errors and output, while the controller

executes a reconfiguration to repair the failed module. The greatest

advantage of coarse-grained scrubbing is the reduction of recovery

time because we do not need to check for upsets frame-by-frame

in the function modules (which often occupy major memory

configuration of the FPGA).

The error detection scheme of the coarse-grained mechanism

is shown in Figure 9, taking fast Fourier transform (FFT) as an

example. Traditional TMR for FFT needs large extra overhead

(twice more than that used in the original design), while the fault-

tolerant FFT (FT-FFT) design can lower the cost to about 1.75 (7/4).

Hence, we can save 41.7% (1–1.75/3) hardware overhead compared

to TMR.

The main principle of this approach is that for any linear

operation, the output of a linear combination of multiple inputs

is equal to the same linear combination of their individual outputs,

an example is expressed in Equation (1).

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2023.1268374
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fncom.2023.1268374











y5(c1) = y1 + y2 + y3
y6(c2) = y1 + y2 + y4
y7(c3) = y1 + y3 + y4

(1)

Generally, we consider that only one error will occur in several

modules at the same time. Assume that the check bits are c3c2c1,

which is determined by Equation (1). Different error patterns are

summarized as shown in Figure 9. If an expression in Equation (1)

does not hold, the corresponding check bit will be set to 1. For

example, if y3 is wrong, then the c3c2c1 will be set to 101 and the

output can be reconstructed by Equation (2), therefore, the method

is not unique.

y3 = y5 − y1 − y2 (2)

4. Fault injection experiments

The experiments are carried out in KC705 Xilinx FPGA and

all circuits are run at 100 Mhz. We first evaluated the effectiveness

of the fine-grained and coarse-grained mechanisms by randomly

injecting faults into the ISCAS89 circuit and the FT-FFT circuit,

respectively. Then, we enabled both mechanisms at the same

time and evaluated the brain-inspired hybrid-grained scrubbing

mechanism by injection faults into the FT-FFT circuit.

The error recovery time (TR) and the error repair rate (µ)

are two important evaluation criteria. TR is defined as the sum of

the error detection time (TD) and error correction time (TC), as

expressed in Equation (3).

TR = TD + TC (3)

In Xilinx FPGAs, essential bits are defined here as those bits

associated with the circuitry of the design and are a subset of the

device configuration bits. Critical bits are defined here as those bits

that cause a functional failure. In this study, µ is defined as the

number of upsets corrected (NC) divided by the number of total

upsets that can be injected (NT), as expressed in Equation (4). NT

depends on the number of essential bits of KC705. In addition, the

number of upsets that caused circuit output error is represented by

NE, which depends on the number of critical bits.

µ = NC/NT (4)

4.1. Error recovery time

The comparison ofTR is shown in Table 4. Soft ErrorMitigation

Controller LogiCORE IP (SEM IP) (Xilinx PG036, 2015) is an IP

created by Xilinx to solve soft errors. It has three modes, and here

we only compare the frame replacement mode. Stoddard et al.

(2016) proposed a scrubbing method, which combines internal and

external scrubbing. We have conducted statistical analysis on the

average fault recovery time of the brain-inspired hybrid-grained

scrubbing mechanism.

This study adopts two different scrubbing mechanisms to

refresh and repair the FFT circuit area and the non-FFT circuit

area separately. As the fine-grained and coarse-grained scrubbing

mechanisms govern different areas, it is necessary to calculate

the weighted average of the error recovery time (TR) for both

mechanisms based on their respective coverage areas.

Let Nfine−grained represent the total number of configuration

frames managed by the fine-grained scrubbing mechanism

responsible for detection and repair, and Ncoarse−grained represent

the total number of configuration frames managed by the coarse-

grained scrubbing mechanism. The average fault recovery time for

the hybrid-grained, fine-grained, and coarse-grained mechanisms

is denoted as TRhybrid−grained, TRfined−grained, TRcoarse−grained,

respectively. The weighted average fault recovery time for the

hybrid-grained mechanism TRhybrid−grained can be obtained by

Equation (5) as follows:

TRhybrid−grained =
(Nfine−grained × TRfine−grained + Ncoarse−grained × TRcoarse−grained)

(Nfine−grained + Ncoarse−grained)
(5)

Considering the differences in the coverage areas managed

by the fine-grained and coarse-grained scrubbing mechanisms,

this weighted average computation allows for a comprehensive

evaluation of the hybrid-grained approach’s overall performance in

terms of fault recovery time.

As can be seen from Table 4, this approach has the smallest

TR, so we can repair errors in the shortest time. The unit of TR is

milliseconds. Compared with using fine-grained scrubbing alone,

the proposed hybrid-grained method achieves a further reduction

of 29.4% in fault recovery time.

4.2. Fault injection and scrubbing
experimental results

Table 5 shows the faults injection results, where 10,000

upsets for SBU and DBU have been randomly injected into the

configuration memory for some ISCAS89 benchmark circuits,

coarse-grained fault tolerant FFT circuits, and brain-inspired

hybrid-grained circuits. It can be seen from the NE columns that

not all upsets lead to wrong circuit output, and bits corresponding

to these upset positions can be considered as non-critical bits. This

is also foreseeable because not all configuration bits are directly

related to the circuit’s output. The results indicate that both the fine-

grained mechanism and coarse-grained mechanism can detect and

correct SBU or DBU, with an error repair rate µ of 100%.

The effectiveness of the coarse-grained scrubbing mechanism is

evaluated by randomly injecting 10,000 SBU andDBU in redundant

and original FFT modules of FT-FFT circuits. Since the coarse-

grained mechanism does not read back the bitstream and check

it for upsets frame-by-frame, but directly compares the output

results to immediately find the module with errors, the TD can

be ignored. TC depends on the number of frames of the FFT

module. The coarse-grained mechanism has an order of magnitude

improvement in TR compared to the fine-grained mechanism

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2023.1268374
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fncom.2023.1268374

TABLE 5 Results of fault injection and scrubbing experiments.

Fault injection and scrubbing experimental results (numbers)

SBU DBU

Fine-grained
ISCAS89
benchmark
circuits

NE NC NT µ NE NC NT µ

S510 1,121 10,000 10,000 100% 1,457 10,000 10,000 100%

S713 1,605 10,000 10,000 100% 2,090 10,000 10,000 100%

S820 2,319 10,000 10,000 100% 3,000 10,000 10,000 100%

S832 2,878 10,000 10,000 100% 3,576 10,000 10,000 100%

S953 3,517 10,000 10,000 100% 4,345 10,000 10,000 100%

S1196 4,110 10,000 10,000 100% 5,005 10,000 10,000 100%

S1238 4,662 10,000 10,000 100% 5,715 10,000 10,000 100%

S1494 5,356 10,000 10,000 100% 6,346 10,000 10,000 100%

S5378 5,916 10,000 10,000 100% 7,115 10,000 10,000 100%

S9234 7,120 10,000 10,000 100% 8,657 10,000 10,000 100%

Coarse-grained

FT-FFT circuit

2,980 2,980 2,980 100% 3,765 3,765 3,765 100%

Hybrid-grained

circuit

3,035 3,035+ 6,965 10,000 100% 3,876 3,876+ 6,124 10,000 100%

and other solutions. It should be noted that the coarse-grained

scrubbing mechanism can only be used for fault recovery of critical

bits upsets, which corresponds to the upsets that affect the FT-FFT

output results in this experiment.

To evaluate the effectiveness of the brain-inspired hybrid-

grained scrubbing mechanism, we enable both fine-grained and

coarse-grained scrubbing mechanisms at the same time. Similarly,

we randomly inject 10,000 SBU and DBU into the FT-FFT circuit

and record the results of the experiment. The fault injection

results are shown in the last row of Table 5. The upsets that

cause the circuit’s output error are repaired by the coarse-grained

scrubbing mechanism, and the rest are repaired by the fine-grained

scrubbing mechanism. Experimental results show that combining

these two mechanisms can provide the strongest error mitigation

and recovery capabilities with= 100%.

4.3. Tests for SAR imaging application

Considering the practical application, the soft error mitigation

and recovery performance should be tested further. To make

sure whether the proposed mechanism is valid for SAR imaging,

we use a 16K∗16K Chirp-Scaling SAR imaging system developed

by this laboratory (Beijing Key Laboratory of Embedded Real-

Time Information Processing Technology, Beijing Institute of

Technology) for the tests. The prototype of the system is shown in

Figure 10A and the processing board is shown in Figure 10B. We

apply this brain-inspired hybrid-grained scrubbing mechanism to

the processing board to improve its fault tolerance.

We adopt a chirp scaling (CS) imaging algorithm for the

system-level SAR verification tests. The calculations of FFT/IFFT

of the processing flow are protected by this brain-inspired hybrid-

grained scrubbing mechanism. A typical SAR system test scenario

is a point target scene. We use the fault injection command in a

fine-grained mechanism to mimic errors and repeat 1,000 tests,

the average imaging results are shown in Figures 10C, D. From

the comparison of the results with the original result, we can see

that the proposed mechanism can achieve good protection on FFT

modules in SAR imaging. In addition, we apply this mechanism on

an actual scene imaging system, results shown in Figure 10E, and

verify the validity and availability of this design.

5. Conclusion

This study proposed a brain-inspired hybrid-grained

scrubbing mechanism, combining fine-grained and coarse-

grained mechanisms that can mitigate and repair SBU or DBU. In

summary, the application of “brain-inspired” principles provides

an innovative design approach for this hybrid-grained scrubbing

mechanism, offering new perspectives for enhancing reliability

and performance in SRAM-based FPGAs. By combining the

principles and techniques inspired by the brain, we can better

distinguish error location and interferences, leading to more

reliable and efficient soft error mitigation and recovery capabilities

for SRAM-FPGA. In fine-grained mechanism, we analyze the

configuration architecture and bitstream to resolve the problem

of correspondence between the PFA and bitstream, so that faults

can be repaired by run-time dynamic partial reconfiguration

of frame or module. This mechanism experiences a significant

reduction of TR compared to full reconfiguration. We utilize

Xilinx’s built-in features to detect errors, which not only simplifies

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2023.1268374
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fncom.2023.1268374

FIGURE 10

Test results for SAR imaging application. (A) Prototype of the system. (B) The processing board. (C) Original point target result. (D) Average result with

1,000 fault injection tests. (E) Actual scene imaging results with this mechanism.

the circuit structure but also provides higher reliability. This

approach accounts for less resources than SEM IP. In the coarse-

grained mechanism, we use a hardware redundancy technology

based on ECCs and ABFT to mitigate and mask errors, saving

41.7% overhead compared to TMR. The proposed approach was

evaluated through fault injection, and the results demonstrated

that this mechanism can mitigate and repair upsets with a

repair rate of 100%. At last, this brain-inspired hybrid-grained

mechanism can reduce at least 29.4% of the time of TR compared

to counterpart approaches.

There exists a notable limitation that the current

implementation is primarily applicable to FPGA architectures,

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2023.1268374
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fncom.2023.1268374

relying on the linear frame addresses of FPGA configuration

files for refresh and reconstruction. To further enhance the

effectiveness and versatility of this approach, future work should

focus on extending its application to the general circuit domain.

By overcoming the dependency on FPGA-specific configuration

features, the method can be adapted to other types of circuits,

including ASICs and custom-designed integrated circuits. This

extension would open up new opportunities for improving

reliability and performance in a broader range of electronic

systems, addressing soft error mitigation and recovery challenges

beyond the realm of FPGAs. With continued research and

development, the brain-inspired principles integrated with

fine-grained and coarse-grained techniques hold the potential

to revolutionize fault-tolerance strategies and make electronic

systems more robust and reliable across various applications.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

YuX: Conceptualization, Formal analysis, Writing—original

draft. TQ: Software, Validation, Writing—review and editing.

YiX: Software, Validation, Writing—review and editing. HC:

Conceptualization, Methodology, Writing—review and editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by the National Key R&D Program of China under

contract 2022YFB3902304.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Berg, M., Poivey, C., Petrick, D., Espinosa, D., Lesea, A., LaBel, K. A., et al.
(2008). Effectiveness of internal versus external SEU scrubbing mitigation strategies
in a Xilinx FPGA: design, test, and analysis. IEEE Trans. Nucl. Sci. 55, 2259–2266.
doi: 10.1109/TNS.2008.2001422

Bosilca, G., Delmas, R., Dongarra, J., and Langou, J. (2009). Algorithm-based fault
tolerance applied to high performance computing. J. Parallel Distrib. Comput. 69,
410–416. doi: 10.1016/j.jpdc.2008.12.002

Ebrahim, A., Benkrid, K., Iturbe, X., and Hong, C. (2012). “A novel high-
performance fault-tolerant ICAP controller,” in 2012 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS) (Erlangen: IEEE), 259–263.

Gao, Z., Reviriego, P., Xu, Z., Su, X., Zhao, M., Wang, J., et al. (2015). Fault tolerant
parallel FFTs using error correction codes and parseval checks. IEEE Transact. Very
Large Scale Integr. Syst. 24, 769–773. doi: 10.1109/TVLSI.2015.2408621

Giordano, R., Perrella, S., Izzo, V., Milluzzo, G., and Aloisio, A. (2017). Redundant-
configuration scrubbing of SRAM-based FPGAs. IEEE Trans. Nucl. Sci. 64, 2497–2504.
doi: 10.1109/TNS.2017.2730960

González, C., Mozos, D., Resano, J., and Plaza, A. (2011). FPGA implementation
of the N-FINDR algorithm for remotely sensed hyperspectral image analysis.
IEEE Transact. Geosci. Remote Sens. 50, 374–388. doi: 10.1109/TGRS.2011.2
171693

Guohua, W., Dongming, L., Fengzhou, W., Adetomi, A., and Arslan, T. (2017). “A
tiny and multifunctional ICAP controller for dynamic partial reconfiguration system,”
in 2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS) (Pasadena,
CA: IEEE), 71–76.

Hartley, E. N., Jerez, J. L., Suardi, A., Maciejowski, J. M., Kerrigan, E.
C., and Constantinides, G. A. (2013). Predictive control using an FPGA with
application to aircraft control. IEEE Transact. Cont. Syst. Technol. 22, 1006–1017.
doi: 10.1109/TCST.2013.2271791

Herrera-Alzu, I., and Lopez-Vallejo, M. (2013). Design techniques for Xilinx
Virtex FPGA configuration memory scrubbers. IEEE Trans. Nucl. Sci. 60, 376–385.
doi: 10.1109/TNS.2012.2231881

HWICAP (2020). v3. 0: LogiCORE IP Product Guide. San Jose, CA: Xilinx.

Johnson, J., Howes, W., Wirthlin, M., McMurtrey, D. L., Caffrey, M., Graham,
P., et al. (2008). “Using duplication with compare for on-line error detection in
FPGA-based designs,” in 2008 IEEE Aerospace Conference (Big Sky, MT: IEEE), 1–11.

Karnik, T., and Hazucha, P. (2004). Characterization of soft errors caused by single
event upsets in CMOS processes. IEEE Transact. Depend. Sec. Comp. 1, 128–143.
doi: 10.1109/TDSC.2004.14

Kastensmidt, F., and Rech, P. (2016). FPGAs and parallel architectures for aerospace
applications. Soft Errors Fault Tol. Des. doi: 10.1007/978-3-319-14352-1

Kshirsagar, R. V., and Patrikar, R. M. (2009). Design of a novel fault-tolerant voter
circuit for TMR implementation to improve reliability in digital circuits.Microelectron.
Reliabil. 49, 1573–1577. doi: 10.1016/j.microrel.2009.08.001

Le, R. (2012). Soft Error Mitigation Using Prioritized Essential Bits. San Jose, CA:
Xilinx XAPP538 (v1. 0), 72.

Michel, H., Belger, A., Lange, T., Fiethe, B., and Michalik, H. (2015). “Read back
scrubbing for SRAM FPGAs in a data processing unit for space instruments,” in 2015
NASA/ESA Conference on Adaptive Hardware and Systems (AHS) (Montreal, QC:
IEEE), 1–8.

Morgan, K., Caffrey, M., Graham, P., Johnson, E., Pratt, B., and Wirthlin, M.
(2005). SEU-induced persistent error propagation in FPGAs. IEEE Trans. Nucl. Sci.
52, 2438–2445. doi: 10.1109/TNS.2005.860674

Nidhin, T. S., Bhattacharyya, A., Behera, R. P., Jayanthi, T., andVelusamy, K. (2017).
Understanding radiation effects in SRAM-based field programmable gate arrays for
implementing instrumentation and control systems of nuclear power plants.Nucl. Eng.
Technol. 49, 1589–1599. doi: 10.1016/j.net.2017.09.002

Pratt, B., Caffrey,M., Carroll, J. F., Graham, P., Morgan, K., andWirthlin,M. (2008).
Fine-grain SEU mitigation for FPGAs using partial TMR. IEEE Trans. Nucl. Sci. 55,
2274–2280. doi: 10.1109/TNS.2008.2000852

Pratt, B., Fuller, M., Rice, M., and Wirthlin, M. (2013). Reduced-
precision redundancy for reliable FPGA communications systems in high-
radiation environments. IEEE Trans. Aerosp. Electron. Syst. 49, 369–380.
doi: 10.1109/TAES.2013.6404109

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2023.1268374
https://doi.org/10.1109/TNS.2008.2001422
https://doi.org/10.1016/j.jpdc.2008.12.002
https://doi.org/10.1109/TVLSI.2015.2408621
https://doi.org/10.1109/TNS.2017.2730960
https://doi.org/10.1109/TGRS.2011.2171693
https://doi.org/10.1109/TCST.2013.2271791
https://doi.org/10.1109/TNS.2012.2231881
https://doi.org/10.1109/TDSC.2004.14
https://doi.org/10.1007/978-3-319-14352-1
https://doi.org/10.1016/j.microrel.2009.08.001
https://doi.org/10.1109/TNS.2005.860674
https://doi.org/10.1016/j.net.2017.09.002
https://doi.org/10.1109/TNS.2008.2000852
https://doi.org/10.1109/TAES.2013.6404109
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fncom.2023.1268374

Samudrala, P. K., Ramos, J., and Katkoori, S. (2004). Selective triple modular
redundancy (STMR) based single-event upset (SEU) tolerant synthesis for FPGAs.
IEEE Trans. Nucl. Sci. 51, 2957–2969. doi: 10.1109/TNS.2004.834955

Sterpone, L., and Violante, M. (2005). Analysis of the robustness of the
TMR architecture in SRAM-based FPGAs. IEEE Trans. Nucl. Sci. 52, 1545–1549.
doi: 10.1109/TNS.2005.856543

Stoddard, A., Gruwell, A., Zabriskie, P., and Wirthlin, M. J. (2016). A hybrid
approach to FPGA configuration scrubbing. IEEE Trans. Nucl. Sci. 64, 497–503.
doi: 10.1109/TNS.2016.2636666

Von Neumann, J. (1956). Probabilistic logics and the synthesis of
reliable organisms from unreliable components. Automata Stud. 34, 43–98.
doi: 10.1515/9781400882618-003

Wang, X., Wei, X., Fan, Q., Li, J., and Wang, G. (2015). Hardware implementation
of fast and robust star centroid extraction with low resource cost. IEEE Sens. J. 15,
4857–4865. doi: 10.1109/JSEN.2015.2428434

Wang, Y. C. (2012). Virtex-5QV FPGA External Configuration Management. San
Jose, CA: Xilinx FAE.

Xilinx PG036 (2015). Soft Error Mitigation Controller LogiCORE IP Product Guide
(PG036). San Jose, CA: Xilinx IP and SEM CL.

Xilinx UG470 (2018). 7 Series FPGAs Configuration User Guide (UG470).
Xilinx I. https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_
Config.~pdf

Xilinx UG909 (2019). Vivado Design Suite User Guide: Partial Reconfiguration
(UG909). Xilinx AMD.

Xilinx UG953 (2018). Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries
Guide (UG953). San Jose, CA: Xilinx I.

Yang, Y., and Fathy, A. E. (2009). Development and implementation of a real-time
see-through-wall radar system based on FPGA. IEEE Transact. Geosci. Remote Sens. 47,
1270–1280. doi: 10.1109/TGRS.2008.2010251

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2023.1268374
https://doi.org/10.1109/TNS.2004.834955
https://doi.org/10.1109/TNS.2005.856543
https://doi.org/10.1109/TNS.2016.2636666
https://doi.org/10.1515/9781400882618-003
https://doi.org/10.1109/JSEN.2015.2428434
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.~pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.~pdf
https://doi.org/10.1109/TGRS.2008.2010251
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	Soft error mitigation and recovery of SRAM-based FPGAs using brain-inspired hybrid-grained scrubbing mechanism
	1. Introduction
	2. Methods
	2.1. Analysis of Xilinx 7-series configuration architecture
	2.2. Frame address calculation

	3. Mechanism
	3.1. Brain-inspired hybrid-grained scrubbing mechanism
	3.1.1. Error detection module
	3.1.2. Scrubbing controller

	3.2. Fine-grained scrubbing mechanism
	3.3. Coarse-grained scrubbing mechanism

	4. Fault injection experiments
	4.1. Error recovery time
	4.2. Fault injection and scrubbing experimental results
	4.3. Tests for SAR imaging application

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


