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Computational assessment of 
visual coding across mouse brain 
areas and behavioural states
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Introduction: Our brain is bombarded by a diverse range of visual stimuli, which 
are converted into corresponding neuronal responses and processed throughout 
the visual system. The neural activity patterns that result from these external 
stimuli vary depending on the object or scene being observed, but they also 
change as a result of internal or behavioural states. This raises the question of 
to what extent it is possible to predict the presented visual stimuli from neural 
activity across behavioural states, and how this varies in different brain regions.

Methods: To address this question, we assessed the computational capacity of 
decoders to extract visual information in awake behaving mice, by analysing 
publicly available standardised datasets from the Allen Brain Institute. We evaluated 
how natural movie frames can be  distinguished based on the activity of units 
recorded in distinct brain regions and under different behavioural states. This 
analysis revealed the spectrum of visual information present in different brain 
regions in response to binary and multiclass classification tasks.

Results: Visual cortical areas showed highest classification accuracies, followed 
by thalamic and midbrain regions, with hippocampal regions showing close 
to chance accuracy. In addition, we  found that behavioural variability led to a 
decrease in decoding accuracy, whereby large behavioural changes between 
train and test sessions reduced the classification performance of the decoders. A 
generalised linear model analysis suggested that this deterioration in classification 
might be due to an independent modulation of neural activity by stimulus and 
behaviour. Finally, we reconstructed the natural movie frames from optimal linear 
classifiers, and observed a strong similarity between reconstructed and actual 
movie frames. However, the similarity was significantly higher when the decoders 
were trained and tested on sessions with similar behavioural states.

Conclusion: Our analysis provides a systematic assessment of visual coding in 
the mouse brain, and sheds light on the spectrum of visual information present 
across brain areas and behavioural states.
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Introduction

The pattern of neural activity elicited by a visual stimulus depends on the object or scene 
being viewed. Past studies have explored how the brain translates such diverse visual stimuli into 
neural responses (DiCarlo et al., 2012; Ki et al., 2021). The question of visual coding and its 
relation to neural activity patterns can be studied from encoding point of view, namely how 
external stimuli determine neural responses. Different visual stimuli are processed within the 
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visual system, leading to brain activity patterns related to the observed 
object or scene, but they are also influenced by internal states, such as 
arousal (Mickley Steinmetz and Kensinger, 2009; McGinley et al., 2015; 
Vinck et al., 2015), attention (Maunsell, 2015; Huang et al., 2023), or 
changes in behavioural states like running (Niell and Stryker, 2010; 
Vinck et  al., 2015; Sadeh and Clopath, 2022). In particular, the 
modulation of neural activity by running may either enhance or 
suppress the responses of neurons to visual stimuli, with the exact effect 
depending on different parameters like the specific area involved (Nasr 
et al., 2015; Dadarlat and Stryker, 2017; Christensen and Pillow, 2022).

Due to the complex interaction of the external and internal 
parameters, it remains an open question how visual stimuli are 
encoded in different brain regions and under different behavioural 
states (Vinck et al., 2015; Stringer et al., 2019; Lazar et al., 2021). This 
question can be  posed from a decoding point of view: given the 
pattern of neural activity recorded from the brain, how accurately the 
visual stimuli can be predicted or distinguished from each other? It is 
now possible to address this question more rigorously, thanks to 
recent technological developments that allow us to record and analyse 
neuronal activity from large-scale populations of neurons, while 
simultaneously quantifying different aspects of animals’ behaviour 
(Jun et al., 2017; Steinmetz et al., 2021).

Here, we used standardised publicly available datasets from the 
Allen Brain Institute, to evaluate the computational capacity of 
decoders to extract visual information across mouse brain regions and 
under different behavioural states. We  focused on Neuropixels 
datasets, which allowed us to analyse large-scale population activity at 
precise temporal resolution and to link it with various behavioural 
measures, across a large number of animals. Specifically, we focused 
on analysing natural movie stimuli and the locomotion state of the 
animals to elucidate visual coding. We  performed a systematic 
decoding survey, whereby the same decoding approaches were applied 
to neural activity patterns in response to multiple repeats of the same 
natural movie. By reconstructing decoder ‘receptive fields’, our 
approach allowed us to visualise and analyse the low-dimensional 
projections of the visual coding space from high-dimensional neural 
activity patterns. We further employed encoding models (generalised 
linear models) to predict the activity of individual units based on both 
the stimulus and behavioural parameters, and to quantify their 
interactions. Our study suggests a systematic approach to analysing 
visual coding across brain areas and behavioural states.

Results

Decoding natural images from neural 
activity

We analysed a publicly available dataset from the Allen Brain 
Institute (Siegle et al., 2021). The dataset comprises recordings from a 
total of 60 mice. In the data recording, the mice were head-fixed but 
could move on a rotating platform while at the same time showing a 
set of standardised visual stimuli (Figure 1A). Neuronal activities were 
recorded simultaneously from up to 6 Neuropixel probes (374 data 
channels, sampling rate 30 kHz) across various mouse brain areas (Jun 
et al., 2017), including the primary visual cortex (VISp or V1) and the 
higher visual areas VISl, VISrl, VISal, VISpm, VISam as well as the 
thalamus, midbrain regions, and hippocampus (Figures  1B,C). 

We rendered the activity of units in 1-s bins. During the recording, 
mice were shown two possible stimulus sets: ‘Brain Observatory 1.1’ 
(referred to as dataset1) and ‘Functional Connectivity’ (referred to as 
dataset2) (Figure 1D). In each dataset, natural movie 1 (30 s long, 30 
fps) is presented multiple times in each presentation block (10 and 30 
repetitions for dataset1 and dataset2, respectively). Snapshots from 
every second of the movie (30 images in total) are shown in 
Figure 1E. For an example individual session, the neuronal activity of 
all units in response to the first frame of the movie across all 20 
repetitions is shown in Figure 1F. Different units index correspond to 
different brain regions, as shown in Figure  1F (left). Our study 
primarily focuses on the data from dataset1, examining the neural 
responses to the natural movie stimuli across the various brain regions.

We first asked how different frames of the natural movie can 
be decoded from neural activity. To this end, a support vector machine 
(SVM) decoder was trained to perform the binary classification 
between pairs of natural movie frames. Specifically, each classification 
task involved a target image, or class1, and a distractor image, or 
class2. For each pair of image frames (i-th and j-th), we trained the 
decoder on 80% of the neural activity to distinguish the two images 
(i-th and j-th) from each other. The training was performed on neural 
activity taken from randomly chosen repeats of the movie. We then 
tested the decoder on the remaining 20% of the neural data and 
evaluated the accuracy of decoding. The average decoding accuracy 
was obtained as the mean accuracy across multiple randomizations of 
the train and test datasets and was compared to the chance level for 
the binary classification (50%). An example of the classification 
between the first and the sixth frames (i = 1, j = 6) is illustrated in 
Figure 2A. The classification accuracy can be visualised for all pairs of 
image frames by a matrix of pairwise classifications (Figures 2B,C). 
We presented the results when the decoder uses the activities of all 
units (Figure  2B) or when the decoding was based solely on the 
activity of units recorded from specific regions (Figure 2C). We then 
calculated the average accuracy across all possible image pairs 
illustrated in the accuracy matrices (Figure 2D), by selecting the upper 
or bottom triangular half of the matrix in order to avoid counting 
image pairs twice. The diagonal pairs are excluded. In the three 
example regions shown, the primary visual cortex (V1) reveals the 
highest classification accuracy, with an average accuracy approaching 
100% (Figure 2D, ‘V1’). The dorsal lateral geniculate nucleus (dLGN) 
also shows very high levels of accuracy, although lower than V1 
(Figure 2D, ‘dLGN’). The neural activity in the CA1 region, in contrast, 
shows levels of accuracy close to chance levels (50%), suggesting the 
presence of low or no visual information in the neural activity 
(Figure 2D, ‘CA1’). Visual areas, in general, show very high levels of 
classification accuracy (e.g., V1 and dLGN). These results, therefore, 
suggest that different natural movie frames can overall be distinguished 
with very good levels of accuracy from neural activity, but different 
regions contain different levels of visual information.

Decoding natural movie frames across 
different brain regions

Next, we  applied our classification approach to systematically 
examine the amount of visual information present in distinct brain 
regions included across all recording sessions of dataset1 (n = 32). In 
addition to the binary classification, we also trained a multi-class SVM 
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decoder to classify all 30 frames of the natural movie. In this case, 
we employed a ‘one-vs-all’ strategy for multi-class classification. 30 
distinct binary classifiers were trained. Each classifier was designed to 
differentiate a specific frame of the movie (class1) from all the other 
frames (class2). For each recording session, we randomly selected 80% 
of the movie repetitions for training, with the remaining 20% used for 
testing the accuracy of classification. The outcomes were compared 
with the chance level (50% for binary SVM and 0.11% for multi-class 
SVM) to assess the performance of classification. A total of 51 brain 
regions were identified and analysed, spanning the visual cortex (10), 
hippocampus (9), thalamus (20), midbrain (9), and other regions (3; 
Supplementary Table 1). The number of units varies in different areas 
(see Figures 1C,F). We initially tested the impact of units number on 
decoding performance in four selected brain regions (V1, dLGN, 
CA1, APN) by randomly selecting 25 units (starting from 1 and 
increasing incrementally) and averaging the results over 10 recording 
sessions (Supplementary Figure 1A). Expectedly, as the number of 
units increased, more visual information was captured by the decoder, 
with the exception of the CA1 region (Supplementary Figure 1A). 
However, the impact on decoding accuracy plateaued after reaching a 
certain threshold (~20 units). We therefore used this threshold to run 
the decoders and compare the results for different regions. Across all 
sessions, 30 brain regions were found that met this condition. 
Decoding was performed on 20 randomly chosen units in each brain 
region, and the results were reported for the average accuracy across 
different sessions. Brain regions with fewer than 20 units were 

excluded from the analysis here (the full results are shown in 
Supplementary Figures 1B,C).

The results of the two classification approaches are exhibited in 
Figures 3A,B. For each classification, the regions are ordered according 
to the respective average accuracy over all recording sessions, illustrating 
the variable coding capacity of neural activity across different brain 
regions. Remarkably, the V1 exhibited exceptional accuracy (~90% in 
binary and ~ 40% in multi-class), outperforming other regions. The 
primary mediomedial (VISmmp) and laterointermediate (VISli) areas 
also demonstrated high accuracy, suggesting they potentially play an 
important role in decoding. However, it is worth noting that while the 
performance of V1 was consistent across multiple sessions, VISmmp 
and VISli were only recorded in only one session.

Other regions of the visual cortex, including the anterolateral 
(VISal), lateral (VISl), anteromedial (VISam), posteromedial (VISpm), 
anterior medial (VISmma), and rostrolateral (VISrl) areas, also 
displayed relatively high accuracy. In the thalamus, the dorsal lateral 
geniculate nucleus (dLGN) and the ventral lateral geniculate nucleus 
(vLGN) showed good decoding accuracy and even surpassed some 
areas of the visual cortex, reflecting their pivotal role in visual 
information processing.

Additionally, the anterior pretectal nucleus (APN), which is part 
of the midbrain region, displayed relatively high accuracy. Our results 
suggest that APN may contain a certain level of visual information. 
Moreover, most regions within the hippocampus, which is usually 
considered the vital memory system in the brain, displayed decoding 

FIGURE 1

Overview of the dataset from Allen brain observatory, Neuropixels visual coding. (A) Data recording setup. Mice are head-fixed and can move on a 
rotating platform. Visual stimuli are displayed on a monitor, and neural activity is captured using six Neuropixels probes, targeting regions including the 
visual cortex, thalamus, midbrain, and hippocampus. (B) The adult mouse brain atlas. The main brain regions recorded during the recording session are 
shown, including the visual cortex, hippocampus, thalamus, and midbrain. Adapted from Allen Mouse Brain Atlas, https://atlas.brain-map.org/atlas. 
(C) Abbreviations and full names of some brain regions in the dataset. To facilitate better understanding, we also provide some alternative abbreviations 
that are more commonly used (such as V1 for primary visual cortex). Units number refers to the total number of units recorded in selected brain 
regions after quality control filtering (see Methods). (D) The presentation of stimuli in the two datasets (‘Brain Observatory 1.1’, or dataset1, and 
‘Functional Connectivity’, or dataset2) is illustrated, where different colours represent different types of stimuli, including gabors, flashes, and natural 
movies, among others. White blocks represent blank screen. Natural movie 1 (NM1), represented by the light purple blocks, includes two presentation 
blocks in each dataset. (E) 30 images from NM1, each capturing a specific moment within a 1-s bin. The video has a frame rate of 30 fps. (F) Neural 
activity in response to the presentation of image 1 in the example session (ID: 791319847). Right: The corresponding index of units per brain region. 
Left: The average spiking activity of units in bins of 1  s. (A,C) Adapted from Allen Brain Institute and Neuropixels Visual Coding – White Paper v1.0 
(October 1, 2019) and Cheat Sheet Version 1.1 (November, 2019).
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accuracy close to the chance level. However, CA1 demonstrated 
a slight increase in decoding accuracy as the unit increased 
(Supplementary Figure 1A) and demonstrated a higher accuracy than 
CA2 and CA3 (Supplementary Figures 1B,C). Overall, our results 
demonstrate the differential coding capacities of neural activity 
across various brain regions.

Impact of different behavioural states on 
decoding

We then asked how different behavioural states of the animals may 
affect our decoding results. To answer this question, we established 
two distinct groups for comparison. The control group was based on 
the random selection of movie repeats for training and testing. This 
was compared with the selection of movie repeats based on the 
behavioural states of animals, as assayed by the locomotion speed. The 
behavioural variant group was divided into repeats of high (> = 2 cm/s) 
and low locomotion speed (<2 cm/s) based on the average running 
speed. The choice of the speed threshold (2 cm/s) was based on the 
experimental distribution of running speeds, whereby values below 
2 cm/s show a local maximum in the probability density, implying two 
distinct behavioural states (Supplementary Figure 2; see Methods for 

details). Binary SVM decoders were trained using 80% of the repeats 
exhibiting either high (H) or low motion speed (L), with the remaining 
repeats used for testing.

Therefore, we generated four possible combinations of behavioural 
states of training and testing (H-H, L-L, H-L, and L-H; where the 
former behavioural state is used for training and the latter for testing). 
We  define high behavioural variability as a condition where the 
training repeats and the test repeats correspond to different behavioural 
states (H-L and L-H). On the other hand, low behaviour variability 
refers to the conditions where the training repeats and the test repeats 
share the same behavioural state (L-L and H-H). To avoid overfitting 
and to ensure the robustness of our decoding model, we screened all 
recording sessions and preserved only those that complied with our 
training and testing scheme (i.e., 80% of data for training and 20% for 
testing). Examples of such sessions are illustrated in Figure 4A.

For each brain region, we  calculated the accuracy of binary 
classification for each combination of behavioural states and compared 
it with the control group (Figure  4B). Under low behavioural 
variability conditions, the decoding accuracy across most regions 
remained relatively unchanged (Figure 4B). Interestingly, the decoding 
accuracy of visual regions increased during H-H states, compared to 
L-L states (Figure 4B). This suggests that visual information increases 
during running.

FIGURE 2

The identity of natural frames can be distinguished from neural activity using linear decoders. (A) Illustration of the training (top) and testing (bottom) 
processes for classification between two example image frames (the first and the sixth frame here). (B) The matrix of pairwise classification accuracy 
when the decoder is trained and tested on neural activity from all units. Accuracy between all pairs of image frames is shown here (x-axis: class1/target 
image; y-axis: class2/distractor image). The black arrows highlight the example pair of images (image 1 and 6) represented as class 1 and 2 in (A). The 
purple arrows indicate the sequential direction of natural movie frames. The chance level for the binary classification is 50%. The diagonal represents 
the accuracy when both class1 and class2 are the same image, which is expected to be at the chance level. (C) Specific matrices of pairwise 
classification accuracies when the decoder is trained and tested on neural activity from specific regions (Left: primary visual cortex (VISp/V1); Middle: 
dorsal LGN (LGd/dLGN); Right: hippocampal region CA1), in the same session. (D) The distribution of the data (dots) from matrices in (C), along with 
their mean values (indicated by bars). Values on the diagonal are excluded. Error bars show mean  ±  s.e.m. For statistics, the Kruskal Wallis test was 
performed to compare multiple groups, **** value of p <0.0001.
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In contrast, running had a different effect when train and test 
repeats were not behaviourally matched. In both H-L and L-H 
conditions, corresponding to high behavioural variability, most 
regions displayed decreased decoding accuracy compared to the 
control (Figure 4B). The effect was, however, more significant when 
the decoder was trained on L and tested on H states. The most 
susceptibility to behavioural state alterations was shown in the visual 
cortex. Decoding outcomes within the visual cortex were significantly 
decreased by changed behavioural states in L-H (p < 0.0001), and the 
effect was close to significant in H-L (p = 0.10) (Figure  4C). 
Intriguingly, despite the inherently lower decoding accuracy of 
hippocampal regions, the behavioural state appeared to modulate 
their decoding accuracy as well, especially in L-H (p = 0.0043). None 
of the changes in decoding accuracy were statistically significant for 
low behavioural variability vs. control (Figure 4C). We also did the 
same analysis for V1 units only and observed qualitatively similar 
results, although the overall accuracy was higher on average 

(Supplementary Figure 3). These results, therefore, show the effect of 
behavioural state changes on the decoding of visual information: 
higher running speed increased the decoding performance, while 
higher behavioural variability decreased the decoding accuracy.

Encoding of stimulus and behavioural 
parameters

Our results demonstrated that natural images can be  better 
decoded from the neural activity when behavioural variability is low 
between training and test datasets. Which type of encoding model can 
explain this finding? One possibility is that changes in the behavioural 
state scale the stimulus-evoked neural responses (e.g., higher running 
speed or larger pupil size increase the response gain of units). But 
under such a transformation, a decoding model trained on the L state 
should be  transferable to H state. Another possibility is that the 

FIGURE 3

The decoding of neural activity in different brain regions. (A) Decoding accuracy of binary classification (20  units), mean  ±  s.e.m. Left: The bars display 
the accuracy for each session that includes the given brain region. Right: Scatter plots summarising the overall results for brain regions, which are 
classified by the source (visual cortex, thalamus, hippocampus, midbrain, and hypothalamus). n  =  32 recording sessions. For statistics, the Kruskal Wallis 
test was performed to compare multiple groups, * value of p <0.05 ** value of p  <  0.01. (B) Decoding accuracy of multi-class classification (20  units), 
mean  ±  s.e.m. For statistics, the Kruskal Wallis test was performed to compare multiple groups, ** value of p  <  0.01. The grey dashed line shows the 
chance levels (50% in binary SVM and 0.11% in multi-class SVM; see Methods for details).

https://doi.org/10.3389/fncom.2023.1269019
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xie and Sadeh 10.3389/fncom.2023.1269019

Frontiers in Computational Neuroscience 06 frontiersin.org

behavioural parameter contributes independently to neural 
modulation (Sadeh and Clopath, 2022). Under such a transformation, 
training a decoding model under L state may not translate to H state, 
as the decoder cannot learn the behavioural modulation in the 
absence of behavioural inputs in the L state.

To better understand how neural activity is jointly determined by 
stimulus and behavioural parameters, we  therefore turned to the 
encoding models. We employed Generalised Linear Models (GLM) to 
predict the neural activity of V1 units from stimulus and behavioural 
variables. We chose units in the primary visual cortex (V1) as they 
contain more visual information and higher capacity in decoding 
images from neural activity (Figures  2, 3). We  quantified the 
contributions of image frames (as stimulus parameters), the animal’s 
running speed (as animal behavioural parameter), and an interaction 
term representing the interplay between the two. If the behavioural 
parameter scaled the stimulus-evoked responses, we would expect 
large interaction terms in our GLMs.

To evaluate this interaction between behavioural and stimulus 
parameters, we pursued a two-stage approach (Figure 5A). In the first 
step, for each unit, we ran a GLM with only stimulus parameters (30 
different natural movie frames), to identify the preferred stimulus (the 
image with the largest coefficient, indicating the frame that primarily 
determined the prediction of neural activity; Figure 5B). In the next 
step, we ran another GLM model with three input parameters: the 
maximum stimulus (obtained from step 1), the running speed of the 
animal (as the behavioural parameters), and their interaction term. 
This process was performed for each V1 neuron across all recording 
sessions. The GLM models could capture responses of V1 units to 
various degrees, with some units showing a very good match between 
actual and fitted responses (Figure 5C). We assessed the goodness of 
model fits with two metrics: the mean squared error (MSE) and 
correlation coefficient between actual and fitted traces. There was a 
distribution of CC and MSE values, with the average of 0.4 for CC and 
0.023 for MSE at the population level (Figure 5D).

FIGURE 4

Impact of animal behaviour states on decoding accuracy across different brain regions. (A) Examples of recording sessions that were chosen for 
training (80%) and testing (20%) of the decoder in different combinations. The high-speed (H) or low-speed (L) repeats used in the test set are the 
highest or lowest average speeds in the session, respectively. The training set uses the remaining repeats. Low behavioural variability conditions 
correspond to sessions with similar training and test conditions (high-high, H-H; or low-low, L-L, respectively). High behavioural variability conditions 
correspond to sessions with different training and test conditions (high-low, H-L; or low-high, L-H, respectively). (B) The distribution of decoding 
accuracy across different brain regions for different behavioural conditions vs. control. (C) Scatter plots of the difference in accuracy between 
behavioural conditions and control, for different brain regions. Error bars indicate mean  ±  s.e.m. For statistics, the Mann Whitney U test was performed 
to compare two groups (control and behavioural variant group), ** value of p  <  0.01, **** value of p  <  0.0001.
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The coefficients of the stimulus were generally high, suggesting its 
primary role in driving the predictions of neuronal activity (not 
shown). Conversely, the coefficients of interaction between running 
speed and maximum stimulus showed a narrow distribution 
(Figure 5E), indicating a weak scaling of stimulus-induced activity by 
running. In fact, there was not a significant difference between the CC 
of actual and fitted response for units with small or large interaction 
coefficients (Figure  5F), suggesting that it does not enhance the 
prediction of responses, on average. These results suggest that the 
behavioural parameter (i.e., running speed) does not simply scale 
the stimulus-evoked responses, when animal transitions between 
different behavioural states (i.e., L and H running speeds). This 
can explain why our decoding models could not perform as well when 
trained and tested on neural data belonging to different 
behavioural states.

Assessing the visual coding space by 
‘decoder receptive fields’

We next asked if we could gain further insights into the visual 
coding space by evaluating the ‘receptive fields’ of the decoders used 
to distinguish natural images. Since we have employed linear SVMs, 
the weights (W) with which the multi-class decoder weighs neural 
activity (A) can be used to reconstruct the image that is ‘seen’ by the 
decoder. By multiplying these weights by the neural activity of all units 
to different frames of the movie stimuli (W. A), we can project the 
neural activity into a low-dimensional space. This space is designed to 
differentiate between the classes on which the decoder has been 
trained. These low-dimensional activity projections can then 
be multiplied with the natural movie (M) to reconstruct the ‘decoder 
receptive field’ (dRF = W. A. M) for each class (Figure 6A). Note that 

FIGURE 5

Encoding of stimulus and behavioural parameters. (A) Conceptual diagram of the generalised linear model (GLM) employed for encoding. Using the 
GLM, the stimulus that results in the maximum coefficient for each neuron is determined (I). The maximum stimuli, along with the running speed and 
its interaction with the stimulus, are used in another GLM to predict neural activity, generating corresponding coefficients (II). (B) Distribution of the 
best stimuli obtained from (A-I) across all V1 units. (C) Comparison of predicted and actual neural activity obtained from (A-II). The predicted and 
actual neural activities of a selected V1 neuron are compared across 20 movie repetitions (600  s in total, the correlation coefficient between actual and 
fitted traces, CC: 0.81; the mean squared error, MSE  =  0.004). (D) Distribution of the MSE and CC computed from all V1 units across all recorded 
sessions. (E) Distribution of interaction coefficients across all neurons. (F) CC between the observed and predicted neuronal firing rates for units with 
small or large interaction coefficients. The two distributions were not significantly different from each other (value of p  =  0.25).
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another way of interpreting this operation is by multiplying the 
decoder weights (W) with the ‘receptive fields’ of individual 
neurons (A. M).

We therefore multiplied these three matrices to reconstruct how 
the decoder represents different frames from a natural movie clip 
(Figure 6A). The specific matrices included the decoder coefficients 
for each neuron (across 30 classes), the integrated neuronal activity 
(averaged from 20 repeats), and specific image information from 30 
representative frames of the nature movie. Two examples of 
reconstructed decoder images are shown and compared with 
corresponding actual images (Figure 6B). Decoder images showed 
remarkable similarity to the actual images, despite using a rather 
simple decoder and only using 50% of repetitions for training (cf. 90% 
train - 10% test in Schneider et al., 2023).

In the above examples, the decoders were trained on the first 
presentation block (50% of the data). The decoder weights were then 
used to reconstruct decoder images by using the neural activity from 
the second presentation block (50%). We  performed this for two 
conditions: when choosing sessions with similar behavioural variability 
between the first and the second blocks (low behavioural changes), or 
for sessions with large changes (high behavioural changes). The quality 
of reconstruction was better for low behavioural changes, as evident 
from visual inspection and quantified by the correlation coefficient of 
the reconstructed and actual images in each case (Figure 6B).

We further used the correlation of images to obtain the matrix of 
similarity both within and across different images (Figures 6C,D). 
First, we compared the structure of correlation within natural images 
themselves with the pairwise correlation of reconstructed images from 
decoding (Figure 6C). The overall structure of correlations seems to 
be  preserved in reconstructed images. However, reconstructed 
decoding images showed more spurious pairwise correlations under 
high behavioural changes (Figure 6C). This suggests that they would 
be less distinguishable in the decoder space and can therefore explain 
the lower accuracy of classification under high behavioural variability.

We also quantified the similarity of reconstructed images with 
actual images by calculating the matrix of correlations between the 
respective images. There was a range of reconstruction qualities, but 
many images could be reconstructed with high accuracy (Figure 6D). 
Importantly, reconstructing images under high behavioural variability 
led to decreased correlation with the real images compared to low 
behavioural variability (p = 0.0086), consistent with our results before 
(cf. Figure 4). Taken together, our results shed further light on how 
behavioural variability may affect the results of decoding natural 
images. More generally, the results of this analysis suggest that by 
reconstructing the low-dimensional decoding images, we can obtain 
key insights into the visual coding space when recording high-
dimensional neural responses.

Discussion

Natural visual stimuli can be decoded from 
neural activity

Our results suggest that visual information can be decoded from 
neural activity, but it varies depending on different brain regions and 
behavioural states of the animal. In particular, using SVM decoders 
with linear kernels, we classified different frames of a natural movie 

from neural activity. This allowed us to interpret the decoding results 
by projecting the high-dimensional neural activity over the 
low-dimensional space of classification, which is most likely relevant 
to animals’ perception, decision making and behaviour.

Decoding of natural images from neural 
activity depends on brain regions

Differences in decoding accuracy between brain regions underlie 
regional specificity in visual information processing. We demonstrate 
that the visual cortex, especially the primary visual cortex (V1), plays 
a central role in decoding visual information. Moreover, lateral 
geniculate nuclei (dLGN and vLGN) showed the best decoding 
accuracy in the thalamus region, which is consistent with the fact that 
they are upstream of V1 and receive visual information from the 
retina (Tong, 2003; Jeffries et al., 2014; Covington and Al Khalili, 
2023). The midbrain regions, APN, also show relatively high accuracy. 
Even though the role of APN in sensory processing has been 
established, it has not been associated with direct retinal inputs or 
connections to the visual accessory nuclei (Rees and Roberts, 1993). 
One possibility could be  that this is because the midbrain could 
interact with the thalamus to manage attention (Knudsen, 2011), 
especially the visual selective attention, and shape high-level visual 
properties (Bogadhi et al., 2021) (however, see our discussion below 
in ‘Limitations of our study’).

Behavioural variability affects the results of 
neural decoding

By decoding the visual content from the neural activity of mice in 
different behavioural states, our results revealed that behavioural 
variability can significantly affect the accuracy of decoding. When 
train and test datasets were chosen with high behavioural variability 
(high running speed for train and low running speed for test, H-L; or 
low running speed for train and high running speed for test, L-H), the 
classification accuracy was reduced compared to control data, where 
train and test datasets were chosen randomly. Within those two 
conditions, L-H led to stronger decreases in decoding accuracy, 
suggesting that the decoder cannot learn about the modulation of 
neural activity by behaviour in the H test state, when it is trained on L 
train data. Under low behavioural variability, namely, when we used 
similar behavioural states (L-L or H-H), the decoding accuracy was 
similar to the control. However, the decoding accuracy was higher in 
H-H, suggesting that running could increase the decoding accuracy, 
if the decoder is trained on datasets with running.

Encoding of stimulus and behavioural 
parameters

The results of our encoding modelling shed further light on the 
interaction of stimulus and behavioural parameters in modulating 
neuronal responses. We chose the generalised linear models (GLM), 
which is a common and effective encoding method in understanding 
and modelling neural responses (Desbordes et al., 2010; Shi et al., 
2015; Hosseini et al., 2021; Williams et al., 2023), to predict the neural 
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FIGURE 6

Assessing coding space by reconstructing decoder receptive fields. (A) Illustration of the three matrices in the image reconstruction process: The SVM 
coefficients matrix that assigns weights to each neuron, the activity matrix that represents the neuronal responses of all units to different classes (i.e., 
different frames of the movie stimuli), and the image information matrix (total image number  =  30). These matrices are multiplied together to produce 
a final 3D array, which is the reconstruction of the natural movie frames. (B) Image reconstruction from the decoder. Two examples of image 
reconstruction from the decoder are shown here. For each example, the decoded image [obtained from the final 3D array produced in (A)] is displayed 
alongside the corresponding actual image from the movie. (C) Left, correlation coefficients between actual images. Middle, correlation coefficients 
between decoder images reconstructed from low behaviour variability sessions (n  =  3). Right, correlation coefficients between decoder images 
reconstructed from high behaviour variability sessions (n  =  3). (D) Left, comparison of correlation coefficients between decoder reconstructed images 

(Continued)
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activity of units in V1. Our results showed that visual stimuli 
contribute significantly to predicting neural activity. Moreover, our 
results revealed weaker interaction of behavioural and stimulus 
parameters in predicting neural activity. Our analysis therefore 
suggests that behavioural states do not simply scale natural movie-
evoked neural responses but may influence neural activity through 
more complex mechanisms (Erisken et al., 2014; Dadarlat and Stryker, 
2017). These mechanisms may involve different subtypes of 
interneurons as well as the effects of locomotion (Garcia del Molino 
et al., 2017; Dipoppa et al., 2018).

Our study employed a binary vector to represent our stimuli, 
where only the frame currently being stimulated was represented as 1 
and all others as 0. Each frame was uniquely encoded to ensure its 
stimuli were solely responsible for influencing the model’s predictions. 
This approach may only partially consider the complex correlation 
among visual stimuli (natural movies). Recent research suggests that 
a nonlinear mixed selectivity coding scheme, where multiple stimulus 
features are conjunctively coded, may provide a more comprehensive 
and reliable encoding of visual stimuli (Johnston et al., 2020). Besides, 
a model containing semantic information may increase the model’s 
explanatory power for brain activity (Naselaris et al., 2009; Takagi and 
Nishimoto, 2022). It would be interesting to see if including these 
features in more advanced decoding models can improve the accuracy 
and quality of decoding.

Image reconstruction from decoders and 
the low-dimensional visual coding space

Since we used SVM decoders with linear kernels, our approach 
could effectively reconstruct the images ‘seen’ by the decoders to 
distinguish between different images. This is subject to the 
classification problem the decoder is trying to solve, as this shapes the 
low-dimensional space within which the decoder needs to maximise 
the distance of high-dimensional population responses. Therefore, our 
multi-class SVM, which was trained across 30 classes (individual 
movie frames), could obtain a more realistic weight distribution for 
each participating neural unit. We obtained a high average correlation 
between our reconstructed images and the actual images (average 
CC = 0.6; Figure 6), explaining why the multi-class SVM was capable 
of distinguishing the majority of the images with good accuracy 
(Figure 2).

Consistent with our results on the dependence of the accuracy of 
decoders on behavioural variability (Figure 4), we also found that high 
behavioural variability resulted in lower quality of reconstructed 
images. It would be interesting to see how the animals manage to 
correct for significant behavioural changes to reach the same levels of 
decoding accuracy. This might be achieved by training the decoders 
on high behavioural variability (as we  showed similar levels of 
accuracy for H-H states), by focusing on reliable units (Sadeh and 
Clopath, 2022), and/or by employing predictive coding (Friston, 2010; 
Keller and Mrsic-Flogel, 2018; Hogendoorn and Burkitt, 2019). It 

would also be  interesting to apply recently developed encoding-
decoding methods (Schneider et al., 2023) to see how behavioural and 
neural activity data can be mutually combined to inform a robust 
decoding of natural images, independent of behavioural states. It 
would be important to try these approaches on individual sessions/
animals, as concatenating the data into ‘super mice’ (Deitch et al., 
2021; Schneider et  al., 2023) averages over individual variability. 
Future work should test these advanced methods on sessions with 
high behavioural changes (cf. Figures  4, 6) to see if the decoding 
accuracy can be improved in individual animals.

Instead of retrieving the identities of natural movie frames (see 
Schneider et al., 2023), here we reconstructed the actual images from 
our decoders. This was achieved due to the employment of linear 
decoders, which are more interpretable, as opposed to nonlinear 
methods (Schneider et  al., 2023). However, we  reconstructed the 
decoder images by using the limited number of natural movie frames 
shown to the animal. Approximating the decoder receptive fields with 
limited images is comparable to obtaining the receptive fields of units 
with a limited number of stimuli, rather than mapping them with 
detailed and fine-tuned stimuli (cf. Figure  6A). In future work, it 
would be interesting to map the neuronal receptive fields by presenting 
them with noise or Gabor patterns (Jones and Palmer, 1987; Kay et al., 
2008), which has been performed within the same datasets (Siegle 
et  al., 2021) as visual stimuli. This may provide a more refined 
reconstruction of decoder images, and how individual neurons, with 
their unique receptive field properties, contribute to the overall 
decoding of visual stimuli.

Limitations of our study

In our analysis, we relied on the spike sorting and registrations 
performed by the Allen Brain Observatory, based on their 
established procedures. However, it is possible that this procedure is 
not perfect, and there might be inherent limitations or errors in the 
spike sorting and registration process. These potential challenges 
could influence our results and the interpretation of our findings. 
For instance, higher than expected visual information we found in 
APN might be  due to misclassification of the units. It would 
be interesting to repeat our analysis on the same data with more 
recent methods (Fabre et  al., 2023), and see if the results hold. 
Additionally, there are inherent limitations posed to our analysis 
based on the number of units. Some brain regions, such as VISmmp 
and VISli, have a limited number of recordings across all sessions in 
the analysed datasets. Therefore, the results from these regions 
should be interpreted with caution. Future studies with more units 
across multiple regions should enable a more consistent comparison 
of decoding across brain regions. To achieve more robust and 
consistent results, increasing the number of recordings and ensuring 
a minimum number of recorded units (~20–50) for each region is 
suggested. More number of stimulus presentations may also 
be useful in future analyses, as longer blocks of stimulus presentation 

from various behavioural states and the corresponding actual images. Paired t-test was performed, ** value of p  <  0.01. Middle and Right, Correlation 
coefficients between the decoder image and the actual image under conditions of low behavioural change (middle) and high behavioural change 
(right).

FIGURE 6 (Continued)
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(with more repetitions) may increase the behavioural variability and 
hence aid the analysis.

Conclusion

In summary, we  provided a systematic survey of how natural 
movie frames can be decoded from neural activity in multiple brain 
regions and across behavioural states. By quantifying decoding 
accuracy and reconstructing decoders’ receptive fields, our study 
suggested a computational approach to analyse and visualise the 
low-dimensional structure of visual coding within high-dimensional 
neural activity patterns. Our decoding approach, combined with 
encoding analysis, can help to obtain a comparative picture of the 
spectrum of visual information present in different areas, and how this 
can be modulated by behavioural states.

Methods

Data acquisition and pre-processing

Dataset from the Allen Brain Observatory (Siegle et al., 2021) was 
accessible through the AllenSDK.1 The data in our analysis constituted 
50 sessions distributed across two distinct datasets based on the 
presentation sequences: the brain observatory dataset (referred to as 
dataset 1, n = 32 sessions) and the functional connectivity dataset 
(referred to as dataset 2, n = 18 sessions). During the recording, mice 
were exposed to a range of stimuli (including natural movies), each 
with varying durations and presentation sequences across the two 
datasets.2

Each recording in the dataset measured multiple regions 
(Figure 1), conducted simultaneously with up to 6 Neuropixels probes 
(374 data channels, sampling rate 30 kHz; Jun et al., 2017). The spike 
sorting and registration procedures were carried out by the Allen 
Brain Institute. Kilosort2 was used (Stringer et al., 2019) and included 
units that passed the default quality standards. We  excluded any 
invalid intervals that were denoted as not a number (NaN) value. For 
more detailed information about the experiment preparation, visual 
stimuli, data acquisition, and data preprocessing steps, please refer to 
the Technical White Paper from the Allen Brain Observatory on 
Neuropixels Visual Coding.

In this study, we chose a specific stimulus, namely ‘natural movie 
1’. The activity was recorded from the onset of the presentation of each 
stimulus block. These presentations were divided into two blocks 
(each block, 10 repeats in dataset1, 30 repeats in dataset2). The first 
half of the repetitions of this movie stimulus in each dataset was 
classified as block 1, and the second half of the repetitions were 
classified as block 2. For analysis, we partitioned the spiking activity 
of the neurons into bins of 1 s each. Behavioural information 
(including speed) was obtained in the same time intervals.

1 https://allensdk.readthedocs.io

2 https://allensdk.readthedocs.io/en/latest/_static/neuropixels_stimulus_

sets.png

Data normalisation

For the GLM analysis, we applied normalisation procedures to 
both neural activity and motion speed data. For the neural activity, 
we normalised by min-max:

 

Normalised activity
activity activity activity

 =
-( ) -min / max min aactivity( ) ,

where activity is the original neuronal spike count. We  also 
normalised the locomotion speed by min-max:

 

Normalised speed
speed speed speed speed

 =
-( ) -( )min / max min .

Different behavioural states

We selected the locomotion speed of the animal as our behavioural 
variable of interest to investigate the impact of behavioural variability 
on neural decoding. The average locomotion speed of the anima 
during each repeat of the natural movie was used to categorise the 
state of the movie presentation as either low (L) or high (H) speed. 
Movie presentations with an average speed of <2 cm/s were categorised 
as low-speed repeats, and repetitions of the movie with an average 
speed of > = 2 cm/s were categorised as high-speed repeats.

Support vector machine decoders

We used Support Vector Machines (SVM) as our supervised 
decoding models to understand how neural responses map to external 
stimuli. Our decoder was implemented with a linear kernel SVM, 
which is particularly suitable for decoding tasks involving high-
dimensional input features, such as neuronal firing rates. The 
implementation was done in The MathWorks Inc. (2021).

The performance of the decoder was evaluated using cross-
validation. In this approach, the data was divided into training and test 
sets. For the experiments depicted in Figures 1–3, we used 80% of all 
repeats as the training set, which were selected either randomly or 
based on behavioural states. The remaining 20% served as the test set. 
In the case of Figure 5, the data was split evenly, with 50% serving as 
the training set (block1) and the remaining 50% as the test set 
(block2). These training and test sets were completely independent of 
each other.

The SVM decoder was trained on a binary classification task to 
distinguish between pairs of natural movie frames (i-th and j-th 
frames). In the binary decoder, one target class was labelled as the 
positive category, or class 1, and the other as the negative category, or 
class 2. After training, the decoder returned a vector of predicted class 
labels, either positive or negative, based on the trained SVM model.

Decoder accuracy calculation

We used the classification accuracy, by comparing the results of 
the SVM predictions with the actual data, to characterise the ability 
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of the brain region to decode the neural activity. For each pair of 
image frames, we calculate how many of the SVM predictions are 
correct (100% if all are correct). The positive and negative examples 
represent the two types of images (one frame and another random 
frame) in our SVM test, respectively. The accuracy of prediction is 
therefore given as:

 Accuracy TP TN TP NP TN FN= +( ) + + +( )/

where, TP is True Positive (when the model correctly predicts 
positive samples), FP is False Positive (when the model incorrectly 
predicts negative samples as positive), TN is True Negative (when 
the model correctly predicts negative samples), and FN is False 
Negative (when the model incorrectly predicts a positive sample as 
a negative sample). For a binary classification task between a 
positive class and a negative class, the chance level is 50%. The 
classification accuracy of a session is then computed by calculating 
the average SVM prediction accuracy after combining all frames in 
each recording session. The classification accuracy of each brain 
region is obtained by selecting the recording units corresponding 
to that brain region and averaging all sessions containing that 
brain region.

Multi-class decoders

We trained 30 individual binary classifiers to distinguish 
between a particular category (class 1/the positive category) and all 
other categories (class 2/the negative category). After all the SVM 
models are trained, the decoder uses these models to make 
predictions on the test set. Specifically, the decoder used each SVM 
model to calculate its score of belonging to the positive category, 
and then the category with the highest score was used as the 
predicted category. For each binary classifier, the ratio between 
positive and negative categories is 1:29. For each positive category, 
the classifier has a 1/30 probability of correctly predicting the 
positive category and a 29/30 probability of incorrectly predicting 
the negative category. Each binary classifier has a 1/30 probability 
of correctly identifying the positive category. During prediction, 
our decoder opts for the class associated with the classifier that 
demonstrates the highest confidence among the 30 classifiers. 
Consequently, the chance level of decoding accuracy in this task can 
be calculated as 1/30 ́  1/30 = 1/900 (~0.11%). The performance of 
the multi-class decoder was evaluated in the same way as 
described before.

Generalised linear models (GLM)

The GLM was fitted with a normal distribution. The link function 
was chosen to be the logarithm, ensuring that the predicted firing rates 
were always positive. The stimuli applied in this model were 
represented using a binary encoding scheme: The frame currently 
being presented is assigned a value of 1, while all other frames are 
designated a value of 0. For the first GLM fit, the predictor variables 
included the presented stimuli. The best stimulus (the stimulus with 
the highest coefficient) was then used to fit another GLM. The 
predictor variables in this GLM included the best stimulus, the 

behavioural state of the animal, and the interaction between the two. 
Each predictor variable was associated with a coefficient, which the 
GLM estimated to minimise the difference between the observed and 
predicted firing rates. The following equation can be used to represent 
the model:

 Y X X nXn= + + +¼+ +b b b b e0 1 1 2 ,

where Y  is the predicted variable, such as the firing rates of 
neurons. X X Xn1 2, , ,¼ , are predictor variables, which could include 
the presented stimuli, the behavioural state of the animal, and other 
variables. b b b0 1, , ,¼ n are the associated coefficients, estimated by 
the GLM to minimise the difference between the observed and 
predicted firing rates. ε is the error term, representing the difference 
between the predicted and actual values.

Evaluation of predicted firing rate by mean 
squared error

The performance of the GLM encoder is evaluated using the mean 
squared error (MSE), which is calculated as the mean value of the 
square of the prediction error:
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where Yi is the true value, Yi


 is the predicted value, and n  is the 
total number of samples.

Reconstructing the ‘decoder receptive 
field’ for each class

Our multi-class linear SVM decoder can make predictions by 
weighting (W ) the neural activity (A) with their corresponding 
coefficients. We  multiply these weights with the neural activity 
(W A. ) to obtain a projection of the neural activity. These 
low-dimensional activity projections can then be multiplied with the 
natural movie (M) to reconstruct the ‘decoder receptive field’ for 
each class (dRF = W A. .M ). For each reconstructed image, we computed 
the Pearson correlation coefficient between the image and the 
corresponding real image as a measure of similarity. This coefficient 
ranges from −1 (perfect negative correlation) to +1 (perfect 
positive correlation), with a value of 0 indicating no similarity. A 
higher correlation coefficient indicates that our reconstructed 
image is closer to the real image. As the linear decoder is agnostic 
about the sign of the reconstruction to discriminate between 
classes, we  have taken the absolute value of the coefficients to 
quantify the similarity.
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SUPPLEMENTARY TABLE S1

List of brain region abbreviations and their full names.

SUPPLEMENTARY FIGURE S1

Decoding analysis when all the recorded units in all brain regions are 
considered. (A) Relationship between the number of units and the 
decoding accuracy. The decoding accuracy was obtained from binary 
classifiers after selecting up to 25 units from the thalamus, midbrain, 
visual cortex, and hippocampus in at least 10 recording sessions and 
averaged. (B) Decoding accuracy of binary classification from all units. 
Results are presented as mean ± s.e.m. Note that the number of units are 
different for every region and session. Left: The bars display the accuracy 
for each session that includes the given brain region. Right: scatter plots 
summarising the overall results for brain regions, which are classified by 
the source (visual cortex, thalamus, hippocampus, midbrain and 
hypothalamus). n = 32 recording sessions. (C) Decoding accuracy of 
multi-class classification from all units. For statistics, the Kruskal-wallis 
test was performed to compare multiple groups, **p value <0.01  
***p value <0.001. The grey dashed lines show the chance levels. 

SUPPLEMENTARY FIGURE S2

Distribution of running speed for two different datasets. (A) Left: the 
distribution of speed in the dataset1, which contains 20 repetitions. Right: 
the distribution of speed in the dataset2, which contains 60 repetitions. 
The vertical line (at speed = 2cm/s) denotes the speed threshold chosen 
to distinguish low and high speed states. Note the logarithmic scales on 
both axes. Bin length = 1. (B) The distribution of speed for each movie 
frame, combining data from both dataset1 and dataset2. Note the 
logarithmic scales on both axes. Overall, the distributions look very similar 
across movie frames; specifically, the bimodal nature of the distributions 
with a distinct peak at < 2cm/s is preserved.

SUPPLEMENTARY FIGURE S3

Impact of mice behavioural states on decoding accuracy when only units 
in the primary visual cortex (V1) are considered. (A) The distribution of 
decoding accuracy for the V1 region across different behavioural states 
versus control. (B) Scatter plots showing the difference in decoding 
accuracy between behavioural states and control for the V1 region. Error 
bars indicate mean ± s.e.m.
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