
Frontiers in Computational Neuroscience 01 frontiersin.org

Artificial neural network models: 
implementation of functional 
near-infrared spectroscopy-based 
spontaneous lie detection in an 
interactive scenario
M. Raheel Bhutta 1†, Muhammad Umair Ali 2†, Amad Zafar 2*, 
Kwang Su Kim 3,4, Jong Hyuk Byun 5,6* and Seung Won Lee 7*
1 Department of Electrical and Computer Engineering, University of UTAH Asia Campus, Incheon, 
Republic of Korea, 2 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 
Republic of Korea, 3 Department of Scientific Computing, Pukyong National University, Busan, Republic 
of Korea, 4 Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School 
of Science, Nagoya University, Nagoya, Japan, 5 Department of Mathematics and Institute of 
Mathematical Science, Pusan National University, Busan, Republic of Korea, 6 Finace Fishery 
Manufacture Industrial Mathematics Center on BigData, Pusan National University, Busan, Republic of 
Korea, 7 Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 
Republic of Korea

Deception is an inevitable occurrence in daily life. Various methods have been 
used to understand the mechanisms underlying brain deception. Moreover, 
numerous efforts have been undertaken to detect deception and truth-telling. 
Functional near-infrared spectroscopy (fNIRS) has great potential for neurological 
applications compared with other state-of-the-art methods. Therefore, an 
fNIRS-based spontaneous lie detection model was used in the present study. 
We interviewed 10 healthy subjects to identify deception using the fNIRS system. 
A card game frequently referred to as a bluff or cheat was introduced. This game 
was selected because its rules are ideal for testing our hypotheses. The optical 
probe of the fNIRS was placed on the subject’s forehead, and we acquired optical 
density signals, which were then converted into oxy-hemoglobin and deoxy-
hemoglobin signals using the Modified Beer–Lambert law. The oxy-hemoglobin 
signal was preprocessed to eliminate noise. In this study, we  proposed three 
artificial neural networks inspired by deep learning models, including AlexNet, 
ResNet, and GoogleNet, to classify deception and truth-telling. The proposed 
models achieved accuracies of 88.5%, 88.0%, and 90.0%, respectively. These 
proposed models were compared with other classification models, including 
k-nearest neighbor, linear support vector machines (SVM), quadratic SVM, cubic 
SVM, simple decision trees, and complex decision trees. These comparisons 
showed that the proposed models performed better than the other state-of-the-
art methods.
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1 Introduction

Deception is an intrinsic and unavoidable facet of our society, 
manifesting itself in everyday life. It is unsurprising for a person to 
encounter or be involved in multiple deceptive situations within a 
single day. Failure to identify deception has serious consequences for 
the victim. To avoid being deceived, people have begun to study the 
behavioral and physiological changes exhibited by deceivers. Hence, 
this study aimed to detect the differences between hemodynamic 
signals during spontaneous deception and classify between truth and 
lie during an interactive game paradigm.

In earlier times, people identified deceivers based on the deceiver’s 
personality or their own personal experiences (Freud and Strachey, 
1962; Zuckerman et  al., 1981b; Kleinmuntz and Szucko, 1984; 
Peterman and Anderson, 1999). Additionally, during earlier times, 
people often relied on myths based on religious norms to identify a 
person who was being untruthful (Trovillo, 1938). Advancements in 
scientific methods and new equipment, including polygraphs, have 
enabled us to better understand the cues of deception that are beyond 
the scope of religious beliefs, personal experience, and stereotypes 
(Brett et al., 1986; Varisai Mohamed et al., 2006). These physiological 
measures have revealed many new findings that provide the basis for 
numerous theories, such as the non-verbal leakage theory (Ekman 
et  al., 1969), four-factor theory (Zuckerman et  al., 1981a), and 
interpersonal deception theory (Buller and Burgoon, 1996). These 
theories have helped us understand why these cues of deception 
manifest in humans when attempting to deceive someone (Bond et al., 
2014). Most of these theories agree that the intent and process of 
deception invoke changes in the deceiver’s behavior that result from 
changes in the person’s state of mind.

Many researchers have investigated different neurophysiological 
signals to identify changes in an individual’s mental state while they are 
attempting to deceive. One such technique is Electroencephalography 
(EEG), which records event-related potentials (ERPs) from the scalp of 
the brain (Abootalebi et al., 2009; Meijer et al., 2013). ERPs are mainly 
used to test knowledge of crime details that are only known to the 
criminals involved (Farwell and Donchin, 1991). This type of test is 
commonly known as the guilty knowledge test or concealed information 
test (Furedy and Ben-Shakhar, 1991; Elaad and BEN-SHAKHAR, 1997; 
Kong et al., 2012). EEG has excellent temporal resolution, enabling 
rapid detection of brain signals (Turnip et al., 2011; Chen et al., 2023), 
but exhibits poor spatial resolution, which cannot confine the brain area 
associated with the deception process.

Functional magnetic resonance imaging (fMRI) is another 
technique widely used to detect brain areas activated during deception. 
fMRI offers a substantial advantage in terms of high spatial resolution 
when compared to EEG (Spence et al., 2004). It can effectively localize 
changes in regional blood flow (Farah et al., 2014) and hence provides 
a comprehensive review of fMRI-based deception decoding. Because 
of the high cost of scanners and their bulky size, the use of fMRI is 
very limited in day-to-day human routines. Moreover, fMRI is highly 
sensitive to motion artifacts. Therefore, researchers have embarked on 
exploring an alternative brain imaging technique: functional near-
infrared spectroscopy (fNIRS).

Using fNIRS, brain activity is measured through hemodynamic 
responses associated with neuronal behavior (Kamran and Hong, 2013; 
Santosa et al., 2013; Khan et al., 2014; Ruotsalo et al., 2023). The fNIRS 
can provide topographic (Obrig and Villringer, 2003; Wolf et al., 2007; 
Hu et al., 2011; Li et al., 2018) and tomographic brain images (Bluestone 

et  al., 2001; Boas et  al., 2004). Oxy-hemoglobin (HbO), deoxy-
hemoglobin (HbR), and water are significant light absorbers, whereas 
skin, tissue, and bone are mainly transparent to near-infrared light 
within an optical window of 650–1,000 nm. Compared with EEG and 
fMRI, fNIRS offers a superior tradeoff between temporal and spatial 
resolutions. In one study (Irani et al., 2007) compared the features of 
fNIRS and fMRI and reported that fNIRS has excellent potential for 
psychotic and neurological applications because of its portability, 
simplicity, and insensitivity to motion artifacts compared to fMRI. fNIRS 
also has several advantages over other brain imaging techniques; it can 
be  designed in a compact and portable form, is very cost-effective 
(Muehlemann et al., 2008; Bhutta et al., 2014; Toglia et al., 2022), and 
can be used in diverse fields such as neuroscience, brain-computer 
interfaces (Naseer and Hong, 2013a,b), and rehabilitation.

2 Literature review

Limited research has been conducted in the field of fNIRS-based 
deception decoding (Tian et al., 2009; Hu et al., 2012; Ding et al., 2013, 
2014; Bhutta et  al., 2015; Emberson et  al., 2017; Quaresima and 
Ferrari, 2019). To detect deception, one study (Hu et  al., 2012) 
employed a mock crime paradigm. Because individuals were 
instructed to provide deceptive or truthful responses at specified times 
and locations, this research, which was based on the concealed 
information test, did not incorporate a spontaneous paradigm. The 
first study to use fNIRS to identify the neural correlates of spontaneous 
deception was conducted by Ding et al. (2013). These aforementioned 
studies on fNIRS-based deception decoding have exclusively 
investigated cases of deceptions where the perpetrator lies to an 
unsuspecting victim; this type of deception occurs more frequently in 
casual social interactions. In contrast, there are also situations in 
which the perpetrator deliberately misleads the victim, even though 
both parties are fully aware of the attempt at deception. This type of 
circumstance is typically referred to as reverse psychology, and it 
frequently occurs in highly competitive settings, such as diplomatic 
meetings, political debates and elections, sports, card games (including 
gambling), and other various scenarios. In this scenario, the individual 
employing reverse psychology can deceive the victim not only by 
uttering a false statement but also by making a truthful remark. The 
deceiver may choose to speak the truth, knowing that the victim is 
aware of the deceptive intention, yet the victim interprets it as a lie, 
thus believing the contrary. Consequently, speaking the truth serves 
the deceiver’s purpose of misleading the victim.

Deep learning classifiers have been widely used recently. A deep 
neural network (DNN) is composed of multiple layers of nonlinear 
processing modules called neurons (Schmidhuber, 2015; Huve et al., 
2018). These fully connected or semi-connected neurons receive inputs 
from previous consecutive neurons. DNN can achieve superior 
classification performance in comparison to linear classifiers, such as 
linear discernment analysis (LDA), support vector machine (SVM), and 
others when applied to signals (language and speech processing) or 
images (Collobert and Weston, 2008; Krizhevsky et al., 2012; Bianchini 
and Scarselli, 2014; Simonyan and Zisserman, 2014). Hence, DNN 
classifiers are also gaining attention in the biomedical field (Hudson and 
Cohen, 2000; Cireşan et al., 2013; Ronneberger et al., 2015).

Only a few studies have employed DNN for classification. 
Abibullaev et al. (2011) investigated the performance of a DNN in a 
four-class classification experiment and reported a maximum accuracy 
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of 94%. Yi et al. (2013) used a DNN to classify left and right motor 
imagery with an average classification accuracy of 84%. Hennrich et al. 
(2015) reported a similar classification performance of DNN compared 
to that of other classifiers (such as LDA and SVM) in a three-mental 
task experiment. To the best of our knowledge, no previous study has 
used a DNN for spontaneous deception decoding using fNIRS.

In this study, we hypothesized that, in the real world, a deceiver 
can deceive another person not only by telling a lie but also by telling 
the truth. Therefore, the objectives of this study were to:

 • compare the differences between the hemodynamic responses 
produced by spontaneous lying and stating the truth,

 • classify between the lie and truth for an interactive 
game paradigm,

 • develop three deep ANN models for classifying responses, and
 • compare the performance of the proposed deep ANN with other 

classifiers, such as LDA and SVM, in a spontaneous deception 
decoding paradigm.

According to these findings, the fNIRS system can accurately 
identify changes in HbO signals during spontaneous lies and truths.

3 Materials and methods

3.1 Subjects

Ten healthy male individuals (mean age 30.8 ± 3.68) participated 
in the experiments. Each patient had normal or corrected-to-normal 
eyesight. Of the 10 subjects, nine were right-handed. None of the 
subjects had any history of mental or neurological illness. The card 
game was known to all subjects. Informed consent was obtained from 
all subjects, and the experiments were performed in accordance with 
the latest Declaration of Helsinki. The framework proposed in this 
study is illustrated in Figure 1. The framework is divided into two 
blocks: a training block (blue dotted lines) and a testing block (green 
dotted lines). The training black was used to train the neural network 

models on the given data, whereas the testing block was used to 
classify the data into truth and lie classes based on the model trained 
in the training block. Information on the individual blocks is provided 
in the respective chapters of the article.

3.2 Experimental procedure

The subjects were seated comfortably in front of a second person 
(referred to as the victim). The subject and victims underwent three 
practice sessions, and a brief explanation of the experiment before the 
experiment was provided to ensure that they fully understood 
the guidelines.

A well-selected experimental paradigm was used in this study. The 
experimental paradigm was a card game known as bluff or cheat. The 
bluff game was chosen because the rules of the game are ideal for 
testing our hypotheses. Our objective was to distinguish between 
deceptive actions when the subject is speaking the truth and when 
they are intentionally deceiving the victim with a falsehood.

The game rules are straightforward. The subject received 20 
randomly selected cards, with the consideration that a minimum of six 
of these cards had no corresponding matches. Therefore, the subject had 
to lie at least four or five times in order to get rid of those cards. The 
subject had to play out all of their cards without revealing any signs of 
bluffing. The subjects had 1 min to carefully organize all their cards prior 
to starting the experiment. The duration of each experiment was 
approximately 10 min, with each experiment having a maximum of 20 
sessions, each lasting approximately 30 s. In each session, the first 15 s 
were allotted for card arrangement. The subject had to lie to the victim 
in the next 5 s (called “claim time”) by laying his cards face down on the 
table and declaring what kind of cards they are (for instance, “three 
sevens”). Depending on his claim, the subject could select any number 
of cards between two and four. However, this assertion may or may not 
be correct. The victim then had 10 s to react to the subject’s assertion 
(response time). If the victim believed that the subject is telling the 
truth, they could choose to pass, removing the pile from the table. 
However, if the victim suspected that the subject had lied in their claim, 

FIGURE 1

Proposed framework for spontaneous lie detection in an interactive scenario. SM: signal mean and SS: signal slope.
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they had the option to flip the cards face up. If the subject lied, the pile 
was returned to the subject. However, if the subject was truthful, the pile 
was removed from the table, and the next session commenced. The 
game continued for 20 sessions. A prize of 10,000 Korean Won was to 
be awarded to the subject if they managed to play all their cards within 
20 sessions; however, if they were to do so, they would not receive the 
prize money. There were 12 total subjects in this trial. Two respondents’ 
data were excluded from the analysis as they consistently spoke the truth 
at the beginning of trials and only lied towards the end, rendering their 
responses predictable. Eight out of ten subjects were able to play all of 
their cards. One administrator continuously monitored the experiment 
and documented the trials in which the subject deceived the victim.

3.3 Data acquisition

A lab-built multichannel continuous-wave imaging system 
captured the brain signals (Bhutta and Hong, 2013). The optical probe 
of the fNIRS system was positioned on the forehead of the subject 
such that the FP1 and FP2 locations were in the middle of the probe, 
as shown in Figure  2. To connect the flexible probe and ensure 
excellent contact between the its emitters and detectors and the 
subject’s scalp, hair was brushed backward. Self-adhesive bandages 
were used to secure the probe to the subject’s head. The emitters and 
detectors were systematically positioned within a 4.3 × 13 cm2 area 
according to a source-detector distance of approximately 3 cm. A 

FIGURE 2

Optode placement and channel configuration.
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sampling rate of approximately 3.8 Hz was used to collect the data. A 
Velcro band was used to hold the probe at the appropriate location 
throughout the experiment.

3.4 Data processing

MATLAB (MathWorks, United States) was used to import and 
further analyze the signals from the fNIRS equipment offline. The 
data were stored in a host computer text file as digitized raw intensity 
values from the fNIRS system. The hemoglobin conversion block of 
the framework was used to convert the intensity values to 
concentration changes of HbO and HbR using the Modified Beer–
Lambert law (Bhutta et  al., 2015). The change in optical density 
(ΔOD) was calculated using these raw intensity values at each 
discrete time k as:

 
∆ ( ) = ( )

= ( )∆ ( )( )OD k
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Where Iout is the intensity of detected light; Iin, intensity of incident 
light; d, differential path length factor; l, distance between the emitter 
and detector; and Δμa, absorption change of the tissue. The changes 
of HbO (ΔcHbO) and HbR (ΔcHbR) were measured using the modified 
Beer–Lambert Law as (Bhutta et al., 2015):
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with λ1 = 640 nm, λ2 = 910 nm, dλ
1 = 6.63, and dλ

2 = 2.765, according to 
the values for the wavelength-dependent absorption coefficients αHbO, 
αHbR. fNIRS, while detecting the hemodynamic responses, picks up the 
physiological noise of respiration, pulse, and low-frequency drift 
fluctuations. A second-order low-pass filter with a cutoff frequency of 
0.15 Hz was used to eliminate such noises (Hu et al., 2012; Bhutta 
et al., 2015). The HbO was considered for further analysis in this study 
because it is a more sensitive and reliable activity indicator than HbR 
(Hoshi, 2003, 2007).

3.5 Classification

Once the data were preprocessed, classification was performed on 
the ΔcHbO(k) signals. We conducted this classification to distinguish 
between lie and truth responses based on the features extracted from 
fNIRS signals. The features selected in this study were the signal mean 
(SM) and signal slope (SS) of the HbO signal during the 5-s claim 
period of the stimulus. We used this claim period because it is the 
actual time at which the subject attempted to deceive the victim by 
either telling the truth or lying. The average HbO signal for each 
subject was obtained by averaging all 12 channels of the corresponding 
subject. SM and SS values over a 5-s window can yield better results 
in binary classification (Khan et al., 2014; Bhutta et al., 2015).

In this study, we  performed the classification using various 
classifiers categorized into linear and nonlinear categories. LDA and 

SVM are the main linear classifiers, whereas the ANN is a nonlinear 
classifier. Both the LDA and SVM algorithms classify different classes 
of data based on hyperplanes. In LDA, a separating hyperplane is 
generated to minimize the interclass variance and maximize the 
distance between the class means (Lotte et al., 2007). For the SVM 
classifier, a separating hyperplane is designed such that the distance 
between the hyperplane and the nearest training point(s) is 
maximized (Naseer et al., 2014).

Mainstream machine learning techniques can be categorized as linear 
or nonlinear classifiers. Linear classifiers classify a sample based on the 
value of the linear combination of its features. For example, assume that 
we have an input feature vector x. A linear classifier then constructs a 
function that directly assigns the input vector x to a specific class:

 
f x

if x threshold

otherwise
( ) =

>
−




1

1

,

 
(3)

A linear SVM is a linear classifier that makes decisions 
according to a linear hyperplane capable of effectively segregating 
data. SVM finds an optimal hyperplane by maximizing the margin, 
which is the minimum distance between the hyperplane and any of 
the data samples. Such classifiers perform well when the problem is 
linearly separable. However, if the data are not linearly separable, 
they will have poor generalization ability. In this case, we could map 
the input vector onto a higher-dimensional space using the kernel 
function K and find the separating hyperplane in that particular 
dimension. Quadratic SVM and Cubic SVM are examples of 
kernelized versions of SVM that utilize second and third-degree 
polynomial kernels.

 
K x ,x x xi j i

T
j( ) = +( )1 ρ

 
(4)

In the machine learning literature, several other algorithms 
handle nonlinear cases using a completely different computational 
approach; one of the simplest algorithms is the K-Nearest Neighbor 
(KNN). The main idea of this algorithm is that, for a new instance to 
be classified, the algorithm searches for the K-nearest points in the 
feature space and assigns it to the class that prevails among its 
neighbors. Similarly, the decision tree constructs a classification 
model with a tree-like structure. It partitions a feature space into 
smaller regions containing homogenous instances and simultaneously 
incrementally constructs an associated decision tree. The partitions 
of the feature space are usually based on criteria such as the Gini 
impurity, information gain, or distance measure.

3.6 Proposed artificial neural networks 
(ANN) models

In recent years, artificial neural networks have flourished in the 
machine learning and pattern recognition domains. They consist 
of many interconnected processing units, called neurons. The 
outputs of the hidden layer neurons are transmitted to the inputs 
of the next hidden layer within the network (Ullah et al., 2020). 
Thus, they communicate with each other by emitting signals over 

https://doi.org/10.3389/fncom.2023.1286664
https://www.frontiersin.org


Bhutta et al. 10.3389/fncom.2023.1286664

Frontiers in Computational Neuroscience 06 frontiersin.org

numerous weighted connections. During training, each neuron can 
update its weight, allowing the network to learn hidden patterns 
from the data. In this study, we designed three ANN architectures 
(M1, M2, and M3) to conduct experiments on our dataset. These 
structures were designed based on ideas from state-of-the-art 
convolutional neural network models, including AlexNet, ResNet, 
and GoogleNet. The numbers of input and output nodes and 
hidden layers of these neural networks are the same; however, the 
number of nodes in each hidden layer varies. The first two layers 
of M1 contain 10 neurons; the subsequent two hidden layers 
consist of eight and five neurons, respectively; and finally, the 
prediction layer contains two SoftMax classifiers. The M2 topology 
is similar to that of M1; however, we  introduced two pairs of 
hidden layers with the same number of neurons in this structure. 
The first two layers had eight neurons, and the next pair had layers 
containing four neurons. We  designed a third neural network 
architecture that differed from the aforementioned architecture. In 
this structure, we first increased the number of neuron dimensions 
from two to six and six to eight and then decreased it from eight to 
six and six to two neurons for the final class prediction. The 
architectures of the three ANNs are shown in Figure 3. Neural 
networks have weights that are initially randomly initialized, and 
later in the training process, these weights are optimized. The 
initial weights of our neural networks were determined using 
Kaiming uniform initialization (also known as HE initialization). 
This method is tailored for layers activated by the ReLU function 
and provides an advantage over random initialization. Specifically, 

HE initialization mitigates issues such as vanishing and exploding 
gradient problems, thereby enabling faster convergence during 
training. Aligning with the characteristics of ReLU, it also 
minimizes the occurrence of inactive neurons at the start of 
training. The empirical robustness of this method makes it a 
superior choice for deep network initialization compared to other 
simplistic methods. We selected four intermediate layers to achieve 
an optimal balance for our dataset. With only two features present 
in the input, it is essential to project them into a higher-
dimensional space for feature extraction and subsequently 
condense the dimensions as we approach the classification layer. If 
we were to increase the number of hidden layers, the model would 
risk succumbing to the vanishing gradient problem. This is 
especially pertinent when processing only two features across 
excessive layers, as this is not advisable.

4 Results and discussion

This section presents a comparative analysis of the six statistical 
machine-learning techniques and three neural network models. 
The experiments were conducted using the MATLAB 2018b 
classification learning toolbox and Python 3.5 with Keras. 
We utilized a confusion matrix, receiver operating curve (ROC), 
area under the curve (AUC), and subject-level performance 
evaluation for the proposed method, which are discussed in 
subsequent sections.

FIGURE 3

Neural network architectures for lie detection. Models M1, M2, and M3 process the mean and slope of the oxy-hemoglobin (HbO) signals through 
varying numbers of hidden layers and neurons. Each model produces a two-dimensional output representing the probabilities of a lie and truth.
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In the domain of machine learning, mainly while dealing with 
classification problems having a distinction between a number of 
different items, the confusion matrix is considered an effective 
metric for evaluation. It is also known as the error matrix, as it 
indicates the error rate. It is used to show the effectiveness and 
performance of any trained classifier and summarizes the 
prediction results on any classification problem. We  used a 
confusion matrix as an evaluation metric to demonstrate the 
performance of our proposed method.

The predictive class-wise results for different classifiers with 
different statistical classifier flavors are shown in Figure 4. The top left 
corner in Figure 4 shows the confusion matrix for the KNN classifier, 
followed by simple and complex decision trees with 55%, 77%, and 
56% completely true predictions, respectively. The accuracy achieved 
by these classifiers for positive classes is not convincing for real-world 
problems or for their deployment in different sectors. Therefore, 
we obtained better prediction results for the same data using different 
classifiers in the second row, starting from the linear SVM, followed 
by the quadratic and cubic SVM. The quadratic SVM achieved an 
average correct prediction result of 80%, which was dominated by the 
cubic SVM. The cubic SVM obtained the highest prediction results, 
with 88% correct prediction results for the positive class on the same 
data, proving it to be  the best fit for deployment and practical 
implementation in real-world lie detection problems. The overall 

accuracy performances of different classifiers are listed in Table 1. 
Table 1 shows that the three proposed models were dominant for all 
statistical machine learning classifiers and achieved 8%–10% of the 
overall accuracy of the system.

4.1 ROC and AUC curves

In a binary classification problem, the output class is usually 
labeled as positive or negative. The classification results can 
be  represented in a structured form called a confusion matrix. 
However, the confusion matrix only provides true- and false-positive 
results. Therefore, to check the performance of the classification model 
at different thresholds, we calculated the ROC curves for all classifiers. 
This ROC curve plots the True Positive Rate (TPR) and False Positive 
Rate (FPR) at various thresholds, where TPR is a synonym for recall. 
These can be defined as follows:

 
TPR

TP

TP FN
=

+  
(5)

 
FPR

FP

FP TN
=

+  
(6)

FIGURE 4

Confusion matrices of different statistical machine learning classifiers for lie prediction.
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Moreover, for further evaluation, it is crucial to compute the 
ROC points, which is a resource-intensive method. An efficient 
sorting-based algorithm called the AUC, provides this information 
for evaluation. It measures the entire area under the ROC curve 
from (0,0) to (1,1). AUC offers an aggregate measure of 
performance at all possible thresholds. Thus, we calculated these 
values and obtained promising results for both the ROC curves and 

AUC values for all classifiers. The obtained AUC values and ROC 
curves for all classifiers are shown in Figure 5. The SVM classifiers 
achieved better AUC values and ROC curves, obtaining 86%, 84%, 
and 83% AUC for linear, quadratic, and cubic SVM, respectively. 
In contrast, the KNN, simple decision tree, and complex decision 
tree achieved AUCs of 64%, 78%, and 73%, respectively. Linear 
SVM has better accuracy than other statistical machine-learning 
techniques. However, it is still ineffective for sensitive problems, 
such as lie detection. To achieve better performance, we proposed 
three different neural network structures that increased the 
accuracy of lie detection from 8% to 10%.

4.2 Evaluation of the proposed ANN 
models

In the proposed method, we conducted experiments on our 
data using the three neural network models discussed in detail in 
the proposed methodology section. The models were trained for 
50 epochs, and the data were divided into training, validation, and 
test sets of 60%, 20%, and 20%, respectively. The confusion 
matrices, ROC curves, and AUC for the three models are shown in 
Figure  6, and the overall accuracies are listed in Table  2. The 
proposed neural network models outperformed statistical machine 

FIGURE 5

Receiver operating characteristic (ROC) curves and the area under the curve (AUC) values achieved from different hyperplane thresholds of six 
machine learning classifiers.

TABLE 1 Comparison of different machine learning classifiers for overall 
accuracy.

Method Overall accuracy (%)

KNN 68.5

Simple decision tree 77.5

Complex decision tree 70.0

Linear SVM 80.0

Quadratic SVM 81.5

Cubic SVM 80.5

Proposed NN M1 88.5

Proposed NN M2 88.0

Proposed NN M3 90.0

KNN, k-nearest neighbor; SVM, support vector machines; NN, neural network.
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learning approaches by a large margin, reaching 90% overall 
accuracy for the M3 neural network model, which is a 10% increase 
in accuracy. We trained our models five times and obtained the 
highest accuracies of 88%, 88%, and 87% for the fourth folds of 
M1, M2, and M3, respectively. The confusion matrices of the three 
models were almost identical, demonstrating the effectiveness of 
the models for lie detection.

The proposed neural network models were also evaluated for 
subject-wise performance, which is illustrated in Figure  7. In the 
entire dataset, we  had a total of 10 subjects. For this experiment, 
we trained our models on nine subjects and tested the models on the 
remaining one subject. This experiment showed the accuracy of our 
models when applied to unseen data. Subjects 1 and 9 achieved the 
highest accuracy of 90% and 95% on each model, respectively; only 
subjects 2 and 7 were had accuracies less than 70%. The remaining 
subjects had accuracies greater than 80% for all three models. The 
average accuracies achieved for M1, M2, and M3 were 81%, 80%, and 
82%, respectively, demonstrating that the models are very effective 
and robust for unseen data.

Figure 7 displays the results for the test set of each subject’s 
data. We randomly selected three samples from each subject to 
check the robustness of our models for different subject’s data. 
The third column represents the actual label of the test sample, 
and the other columns represent the results of its corresponding 
machine-learning algorithm. The proposed three neural network 
models achieved better performance of 80%, 80%, and 90% 
subject-wise accuracy for neural network1, neural network2, and 
neural network3, respectively. On the other hand, the machine 
learning-based methods, namely KNN, SDT, CDT, L-SVM, 
Q-SVM, and C-SVM achieved 60%, 72%, 60%, 70%, 77%, and 
73% accuracies, respectively. The proposed models have low 

accuracy for only three samples’ data, including the first sample 
of subject 2 and the third sample of subjects 4 and 6. However, 
for this data, other machine learning algorithms also faced 
challenges in detection. Subsequent examination of data revealed 
that these particular samples significantly differed from the rest 
of the dataset and exhibited substantial noise; therefore, the 
outcomes for these three samples were unsatisfactory.

5 Conclusion

In this study, we proposed an fNIRS-based spontaneous lie 
detection framework. The HbO and HbR signals were acquired 
using the fNIRS system. We  used HbO SS and HbO SM as 
features in the classification of truths and lies. We developed an 
ANN, inspired by deep learning including AlexNet, ResNet, and 
GoogleNet, for classification during HbO concentration changes 
in an interactive environment. The proposed models, M1, M2, 
and M3, had overall accuracies of 88.5%, 88.0%, and 90.0%, 
respectively. We  compared the results of the proposed ANN 
models with those of conventional classifiers such as KNN, 
simple decision tree, complex decision tree, linear SVM, 
quadratic SVM, and cubic SVM and found that the proposed 
ANN models outperformed conventional methods. In addition, 
we compared the individual subject accuracies and found higher 
accuracies for individual subjects. We further tested randomly 
selected samples from each subject, and the proposed ANN 
models M1, M2, and M3 achieved accuracies of 80%, 80%, and 
90%, respectively. The resultant accuracies demonstrated the 
feasibility and robustness of practical fNIRS spontaneous lie 
detection in interactive scenarios.

FIGURE 6

Receiver operating characteristic ROC curves, the area under the curve (AUC) values, and confusion matrices of three proposed neural network (NN) 
models for lie detection.
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FIGURE 7

Subject-wise performance evaluation of the three proposed neural network (NN) models.

TABLE 2 Results achieved by different trained models for sample test data.

Subject Sample Actual 
class

Prediction

NN M1 NN M2 NN M3 KNN SDT CDT L-SVM Q-SVM C-SVM

1 1 True True True True True True True True True True

2 False True False False True True True True False True

3 True True True True True True True True True True

2 1 False True True True True True False True True True

2 True True True True True True True True True True

3 False False True False True False True True True True

3 1 True True True True True True True True True True

2 False False True False False True False False False False

3 True True True True True True True True True True

4 1 False False False False False False False False False False

2 True True True True True True True True True True

3 False True True True True True True False True True

5 1 True True True True True True True True True True

2 False False True False True True True True False False

3 True True True True True True True True True True

6 1 False False False False False False False False False False

2 True True True True True True True True True True

3 False True True True True True True True True True

7 1 True True True True True True False True True True

2 False False False False False True False False False False

3 True True True True False True False False False False

8 1 False False False False False False False False False False

2 True True True True True True True True True True

3 False True False False True True True True True True

9 1 True True True True True True True True True True

2 False False False False True False True True False False

3 True True True True False True False False False False

10 1 False False False False False False False False False False

2 True True True True False True False True True True

3 False True False False True True True False False False

Average accuracy (%) 80 80 90 60 70 60 70 77 73

KNN, k-nearest neighbor; SVM, support vector machines; NN, neural network; SDT, simple decision tree; CDT, complex decision tree; L-SVM, linear-SVM; Q-SVM, quadratic-SVM; C-SVM, cubic-SVM.
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Glossary

fNIRS Functional near-infrared spectroscopy

SVM Support vector machines

EEG Electroencephalography

fMRI Functional magnetic resonance imaging

HbO Oxy-hemoglobin

HbR Deoxy-hemoglobin

DNN Deep neural network

LDA Linear discernment analysis

SS Signal slope

SM Signal mean

KNN K-nearest neighbor

ANN Artificial neural networks

ROC Receiver operating curve

AUC Area under the curve

TPR True Positive Rate

FPR False Positive Rate
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