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The emergence of deep learning has not only brought great changes in the field 
of image recognition, but also achieved excellent node classification performance 
in graph neural networks. However, the existing graph neural network 
framework often uses methods based on spatial domain or spectral domain to 
capture network structure features. This process captures the local structural 
characteristics of graph data, and the convolution process has a large amount of 
calculation. It is necessary to use multi-channel or deep neural network structure 
to achieve the goal of modeling the high-order structural characteristics of the 
network. Therefore, this paper proposes a linear graph neural network framework 
[Linear Graph Neural Network (LGNN)] with superior performance. The model 
first preprocesses the input graph, and uses symmetric normalization and feature 
normalization to remove deviations in the structure and features. Then, by 
designing a high-order adjacency matrix propagation mechanism, LGNN enables 
nodes to iteratively aggregate and learn the feature information of high-order 
neighbors. After obtaining the node representation of the network structure, 
LGNN uses a simple linear mapping to maintain computational efficiency and 
obtain the final node representation. The experimental results show that the 
performance of the LGNN algorithm in some tasks is slightly worse than that of 
the existing mainstream graph neural network algorithms, but it shows or exceeds 
the machine learning performance of the existing algorithms in most graph neural 
network performance evaluation tasks, especially on sparse networks.
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1 Introduction

Graph neural networks have developed rapidly in node representation learning and graph 
data mining in recent years. The reason why we focus on the study of graph neural networks is 
that data with complex network structures are common in reality, such as social networks, 
protein interaction networks, knowledge maps, etc. Effectively learning the representation of 
such graph structure data is of great significance for many tasks. The early graph neural network 
method is mainly based on the spectral domain or spatial domain to extract the structural 
information between nodes. Representative methods include graph convolutional neural 
network (GCN) based on spectral method (Defferrard et al., 2016) and graph sample and 
aggregate (GraphSage) based on spatial sampling (Hamilton et al., 2017). Both of these two 
methods learn node representation by aggregating node neighbor features, but there are also 
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some limitations. Specifically, GCN relies on the calculation of the 
adjacency matrix of the whole graph, and it is difficult to extend to 
large-scale graphs; GraphSage needs to perform multiple sampling 
and aggregation, and the computational efficiency is low.

In order to improve the efficiency and effect of node representation 
learning, a variety of improvement methods are proposed in the 
follow-up research. The graph neural network then draws on the 
technologies in the field of neural networks, such as convolutional 
networks (Kattenborn et al., 2021), recurrent networks (Yin et al., 
2017), autoencoders (Lange and Riedmiller, 2010; Liou et al., 2014; 
Mushtaq et al., 2022), etc., and successively proposes recursive graph 
neural networks (RecGNN) (Guangquan et al., 2022), convolutional 
graph neural networks (ConvGNN) (Duvenaud et al., 2015) and other 
algorithm frameworks. Although these methods extend the modeling 
ability of graph neural networks, they also inherit certain 
computational complexity. Therefore, exploring and constructing an 
effective graph representation learning framework has become a key 
goal of research.

Specifically, the linear structure is one of the simplest forms of 
neural networks. Convolutional networks, recurrent networks, and 
MLP (Pinkus, 1999) are all developed on this basis. Constructed 
with a simple linear framework, it not only tests the expression 
ability, but also ensures efficiency. Even if the performance does 
not exceed all existing graph neural networks, it is equivalent to or 
exceeds the mainstream models of existing graph neural networks 
in most graph neural network performance evaluation tasks, and 
the effectiveness of this kind of framework can be verified. For 
example, GRAND (Chamberlain et al., 2021) constructed a graph 
neural network from the perspective of differential equations for 
the first time, providing a principled mathematical framework. 
Although the results do not exceed GCN, it serves as a fulcrum to 
inspire follow-up research. This paper hopes to promote the 
research in this field by exploring the simple linear graph neural 
network and achieve the representation learning effect equivalent 
to the current model.

Among them, the method of constructing graph neural network 
based on simple linear structure has the following potential 
advantages: (1) The linear model has a simple structure, high 
computational efficiency, and is easier for theoretical analysis; (2) The 
analysis of the framework effect based on linear structure can deepen 
the understanding of the expression ability of graph neural network.

Under this motivation, this paper studies the construction of 
efficient linear graph neural networks only relying on simple linear 
structures without using basic neural networks such as convolution 
operations and activation functions, which promotes graph 
representation learning research and achieves comparable results with 
existing models.

The main contributions of this paper are as follows:

 (1) We propose a high-order neighbor propagation method, which 
can effectively capture and learn the representation information 
of high-order neighbor nodes without using multi-channel 
architecture and depth map neural network.

 (2) In order to capture high-quality node information, we further 
propose a multi-scale feature fusion mechanism, which 
comprehensively considers the propagation information of 
different orders.

 (3) The experimental results on multiple real data sets show that 
our proposed model is consistently superior to the state-of-
the-art methods.

2 Related work

2.1 Shallow node vector representation

The shallow node vector representation method aims to map the 
nodes in the graph to low-dimensional space and learn the vector 
representation of node attributes and structural information. The 
purpose of developing shallow representation methods is to solve key 
challenges in graph data analysis, such as coding network topology and 
improving scalability. Compared with the deep model, the shallow 
representation has the advantages of high computational efficiency and 
is easier to extend to large-scale graph data. The random walk-based 
method generates a sequence of nodes by simulating the random walk 
process on the graph, and then obtains the vector representation of the 
nodes based on the word vector learning method. Specifically, 
DeepWalk (Perozzi et al., 2014) uses random walk to generate a node 
sequence, and then obtains a node vector representation through 
Word2Vec. Its innovation lies in drawing on the concept of language 
model in NLP and treating the node sequence as a sentence. Node2vec 
(Grover and Leskovec, 2016) further balances local and global structure 
information by adjusting the proportion of breadth-first traversal and 
depth-first traversal of the walk strategy, that is, Node2vec can control 
whether the walk is more in accordance with the network neighbor 
expansion or more choices to re-hop. LINE (Tang et al., 2015) preserves 
the first-order node co-occurrence relationship and second-order node 
similarity by constructing first-order and second-order prox word 
vectors. These methods generally encode network structure information 
by walking. In summary, the shallow node vector representation 
method provides a simple and effective node representation learning 
method. The above methods are all devoted to encoding the information 
in the network topology and providing information-rich node vector 
representations for various graph analysis tasks.

2.2 Graph neural network

Graph neural network is an important technical direction in graph 
representation learning and analysis in recent years. It shows amazing 
modeling ability and expression ability in various graph learning tasks. 
The key idea is to develop a deep learning model that can effectively 
process graph structure data by referring to neural networks. For 
example, the Chebyshev graph convolutional neural network ChebyNet 
(Defferrard et al., 2016) is an early model for fusing graph convolution 
operations, where the key is the Chebyshev polynomial approximation 
graph convolution operation. ChebyNet pioneered the application of 
convolutional network ideas on graph data. GCN further proposes a 
method of convolution directly in the graph field, and performs feature 
aggregation through the Laplacian matrix. The introduction of GCN 
has promoted the wide application of direct graph convolution in 
various tasks. Based on GCN, GraphSAGE generates node 
representation by layer-by-layer aggregation of neighbor embedding, 
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which has high scalability and generalization ability and can be extended 
to large-scale graphs. The graph attention network (GAT) (Veličković 
et al., 2018) introduces an attention mechanism, which allows different 
nodes to assign different weights to neighbors, enhances the model ‘s 
ability to capture local information of graph structure, brings significant 
performance improvement for different application scenarios, and 
promotes the development of this research field. Simplify graph 
convolutional network.

Graph neural networks are used to learn the node representation of 
graph-structured data, while the current mainstream technology 
frameworks can be divided into two categories: graph convolution-based 
frameworks and graph sampling-based frameworks (Wu et al., 2019).

Table 1 shows the differences among GCN, GraphSage and Linear 
Graph Neural Network (LGNN). We  select several capabilities as 
different perspectives for comparison: whether high-order 
neighborhood information is learned during training (Higher-order 
information), whether activation function is used for transformation 
(Activation function), whether the information transmitted by multi-
order neighbors is aggregated (Multi-order neighbor propagation), 
whether the degree of influence of different order domain information 
is considered (Different order neighborhood influence), and whether 
the message passing mechanism is designed (Message 
passing mechanism).

3 Methodology

Aiming at the problem of insufficient perception of high-order 
neighborhood information in shallow linear networks, this paper 
proposes a LGNN neural network, and its structure is set as shown in 
Figure 1.

Firstly, in the graph representation and preprocessing stage, the 
input graph is subjected to symmetric normalization and feature 
normalization preprocessing to obtain a normalized adjacency matrix 
and a feature matrix. Secondly, by designing a high-order adjacency 
matrix propagation mechanism, the high-order neighbor feature 
information of the node is iteratively aggregated, and the final node 
representation information is obtained through efficient linear 
transformation mapping.

3.1 Graph representation and 
preprocessing

Considering an undirected graph G V E X� � �, , , there are nodes 
v Vi ∈  and edges V V Ei j,� �� . In order to solve the problem that a 

single-channel shallow graph neural network cannot capture high-
order structures, LGNN uses the same depth of GCN and GraphSage, 
that is, a two-layer fully connected neural network structure. In 
addition, no longer use any methods and components commonly used 
in neural network structures, such as convolution operations and 
activation functions.

For each node v Vi ∈ , there is an initial feature representation 
x Ri

d∈ , where d is the dimension of the feature. In the LGNN model, 
we use the adjacency matrix A RN N� �  to represent the topology of 
the graph, where Aij =1 denotes that there are edges between nodes vi 
and v j, and Aij = 0 denotes that there are no edges between them. In 
order to prevent the loss of information, we symmetrically normalize 
the adjacency matrix:

 A D A Dsym� � � �� 1 2 1 2/ /i �i  (1)

Among them, A A I� �  represents the self-ring matrix added on 
the basis of the adjacency matrix, D is the degree matrix, D Aii

i
ij�

�
�

0



.  

Considering the deviation of node features, removing the influence of 
node degree and obtaining more uniform representation, 
we define it as:

 
X X
�

� �
�  

(2)

Among them, X  represents the normalized feature matrix, µ  and 
δ  are the mean and standard deviation of the feature matrix X , 
respectively. Through the standardized method, different node 
features have similar scales, which improves the convergence speed 
and performance of the LGNN model.

3.2 Higher-order neighbor propagation

In order to capture the complex dependencies between nodes in 
the graph more deeply, we propose a feature learning method based 
on high-order adjacency matrix propagation. Based on the given node 
feature matrix X



 and normalized A sym� �, we  design a linear 
propagation method to explore the association between nodes at 
different orders. In k-order propagation, we  calculate the update 
equation of node characteristics as follows:

 h A xi
sym

i
k� � � �� ·  (3)

TABLE 1 Differences of GCN, GraphSage and LGNN.

Model Higher-order 
information

Activation 
function

Multi-order 
neighbor 

propagation

Different order 
neighborhood 

influence

Message passing 
mechanism

GCN

GraphSage

LGNN
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FIGURE 1

LGNN network structure.
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A Asym

i

k
sym� �� �

�

� �� ���k i

1  
(4)

Here, hi
k� � represents the k-th-order post-propagation node 

feature representation. Through this way of communication, the node 
features can capture high-order neighbor information, so as to better 
reflect the characteristics of nodes in high-order hierarchical 
relationships. In order to comprehensively utilize the propagation 
information of different orders, we introduce a multi-scale feature 
fusion mechanism. Specifically, we multiply the node features of each 
order by a corresponding weight matrix, and then stack the features 
of all orders according to the channel direction to form a multi-scale 
node feature tensor:

 
z msf h W h W h Wi i i i

k k� � ��
��

�
��
� ��

�
�

�
�
�

� � � � � � � � � � � �1 1 2 2
  

 
(5)

Among them, ( )msf   represents the multi-scale fusion method, 
W W1� � � ��, ,

k  represents the weight matrix of the corresponding order 
during propagation, and ||  represents the tensor stitching method. This 
multi-scale feature fusion mechanism allows LGNN to extract rich 
information from the propagation of different orders, thus improving 
the understanding and expression ability of graph structure. In order to 
avoid the problem of gradient disappearance during the propagation of 
multi-order adjacency matrix, we introduce a normalization method to 
maintain the stable propagation of gradient:
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(6)

Among them, ξ  is a constant to avoid divisor zero. In addition, 
we  also use multi-layer perceptron (MLP) to map features to the 
semantic space to further enhance the expression ability of features:

 
z W W u b bi i� � � �� � �2 1 1 2�

 (7)

3.3 Training and optimization

The loss function for model training consists of two parts, the first 
part is the negative log-likelihood loss function, whose 
mathematical expression:

 Loss l l� �1 2 (8)

 
l

N
softmax lgits labels

i

N
i i1

1

1

� � � �� �� �
�
� log

 
(9)

Where lgitsi is the output of the model, a tensor containing the log 
probability values of the predicted outcomes, and labelsi is the true 
labeled values. The function ( )softmax   converts the log probability 

values to probability values. This loss function calculates the difference 
between the model prediction and the true label by comparing the 
predicted probability distribution with the true label. The second part 
l2 is the L2 regularization term, which is added by adding a penalty 
term after the loss function. The purpose of this is to minimize the 
negative log-likelihood loss while constraining the weights of the 
model through the regularization term in order to improve the 
generalization ability of the model and prevent overfitting.

That is, the objective function of this paper is described as follows:

Let the training dataset be: D x y x y x yn n� � � � � � � �1 1 2 2, , ,, , , , 
where: xi d∈  represents the d-dimensional feature vector of the i-th 
training sample. y ki � �� �1 2, , ,  represents the label of the i-th training 
sample, with a total of k categories. The model parameters are denoted 
as θ . The model’s prediction probability for category yi of sample 
xi is: P y xmodel i i| ;�� �.

The loss function is the negative log-likelihood loss function:

 
L P y xmodel i ii

n� �� � � � � �� ��� log ;|
1

 
(10)

The loss function after adding the L2 regularization term is:

 
L Lreg � �

�
�� � � � � �

2 2
2

 
(11)

where λ is the regularization coefficient, � �
2

2 2

1
� �� jj

D
,  θ j  is the 

j-th element of the model parameter θ , and d is the dimension of the 
parameter θ .

Classical graph neural network approaches such as Graph 
Convolutional Network (GCN) and GraphSage achieve superior 
performance not only because of the powerful neural network 
architectures employed, but more importantly, because of the ability 
of these models to efficiently encode the structural information and 
feature representations of the input graph. In fact, recent findings have 
shown that reasonably effective structural feature engineering is no 
less important to the graph learning task than the expressive power of 
the model itself (Dwivedi and Bresson, 2020).

LGNN is a lightweight, linear graph filtering layer based on the 
Laplace matrix of graphs. Through theoretical analysis, we demonstrate 
that a simple linear operation can effectively aggregate the structural 
information of nodes. In addition, we  design a multi-layer 
superimposed network structure to enhance the representation 
capability of the model. LGNN provides a new idea for GNN model 
design, i.e., mechanisms with lower computational and spatial 
complexity should be  prioritized while maintaining the 
representation capability.

4 Experiments and discussion

4.1 Experimental datasets

The experiment used three literature citation network datasets 
of Cora, Citeseer and PubMed, and we published the datasets on 
GitHub*. All three are an undirected graph with nodes 
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representing documents (thesis documents) and edges 
representing citation relationships. Table  2 summarizes the 
statistics of the three benchmark datasets - Cora, Citeseer, and 
PubMed. We used exactly the same experimental setup on these 
three benchmark datasets as in the semi-supervised graph mining 
literature. Such as feature and data segmentation, and ran 100 
trials with 100 random seeds for all results on Cora, Citeseer, and 
PubMed reported in Section 4.

4.2 Experimental setup

The experiment uses the PyTorch framework to implement the 
LGNN model and the entire training and testing process. The 
experimental environment is Windows operating system, and the 
PyTorch version is 11.7.

The evaluation indexes used in the experiment are accuracy, 
recall, and F1 value, the specific formula is:

 
Acc

N
N
pre right

pre
= _

,

 
(12)

 
F Acc Recall

Acc Recall1

2
�

� �
�

,

 
(13)

Among them, Npre right_  is the number of correct LGNN 
predictions in the test sample, and Npre is the total number of 
test samples.

All the results on Cora, Citeseer and PubMed reported in Section 
4.1 of this paper were run 100 trials with 100 random seeds.

For all data sets, we do not use the dropout operation, and use the 
Adam optimizer to set the weight attenuation coefficient and the L2 
regularization coefficient. The number of neurons in the hidden layer 
represents the vector length, and the optimizer learning rate is shown 
in Table 3.

4.3 Comparison algorithms

In this paper, two kinds of comparative experiments are set up. 
The first kind is the traditional network representation learning 
method, such as Node2Vec and DeepWalk. The second kind is the 
graph neural network method, such as GCN, GAT, GraphSage, 
APPNP, Graph U-Net.

Take any node in the graph G, set the state of the k � � �1 2 3 4, , ,

-order propagation as shown in Figure 2, and the node characteristics 
after propagation are represented as follows:

 

h A x

h A x

h A x

h

i
sym

i

i
sym

i

i
sym

i

1 1

2 2

3 3
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�

�

�

·

·

·







ii
sym

iA x4 4� � � �� ��

�

�

�
��

�

�
�
� ·  

(14)

In this paper, several variations are proposed for the proposed 
LGNNs, which are described as follows:

LGNNoriginal: in each input feature, the representation vector of 
the node is not multiplied with A . The features of the node are 
directly input, and then a two-layer fully connected network is built 
for training.

LGNN1: in each input feature, the feature matrix of the node is 

multiplied with A
1� �

, and then a two-layer fully connected network 
is built for training.

LGNN2: in each input feature, the feature matrix of the node is 

multiplied with A
1� �

 and A
2� �

 respectively, and the result is two 
feature matrices, after which the two feature matrices are spliced 
horizontally, and each row of which is used as an input feature in the 
algorithm of this paper, and then a two-layered fully-connected 
network is constructed for training.

LGNN3: in each input feature, the feature matrix of the node is 

multiplied with A
1� �

, A
2� �

, A
3� �

, and the result is three feature 
matrices, after which these three feature matrices are spliced 
horizontally, and each row of which is used as an input feature in the 
algorithm of this paper. Then a two-layer fully connected network is 
constructed for training.

LGNN4: each time the input features, the node’s feature matrix is 

multiplied with A
1� �

, A
2� � , A

3� �
 and A

4� �
, the result is five feature 

matrices, and then these five feature matrices are spliced horizontally, 
and each row is used as an input feature in the algorithm of this paper, 
and then a two-layered fully-connected network is constructed 
for training.

4.4 Experimental results and analysis

The experiment tests the performance of the model on the public 
data set and verifies the performance and flexibility of the model. 
Table  4 shows the accuracy indicators of various baseline neural 
networks and LGNNs in Cora, Citeseer, and PubMed datasets when 
performing downstream tasks for node classification.

From the Table 4, it can be seen that on the Cora dataset, LGNN4 
performs better, reaching 82.50% accuracy, which is at the level of 

TABLE 2 Statistical data for the three benchmark datasets.

Datasets Node Edge Training/effective/
test nodes

Categories Feature

Cora 2,708 5,429 140/500/1,000 7 1,433

CiteSeer 3,327 4,732 120/500/1,000 6 3,703

PubMed 19,717 44,338 60/500/1,000 3 500
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runner-up; on the Citeseer dataset, LGNN2 reaches the level of 
champion compared with other algorithms, increasing by 
3.14% ~ 25.34%; on the PubMed dataset, LGNN3 is slightly lower than 
some comparison algorithms, but it is still competitive compared to 
other algorithms. We can get the following conclusions:

 (1) The multi-order adjacency matrix propagation of LGNN 
enables it to iteratively transmit information in the graph 
structure, so as to better capture the complex relationship 
between nodes. Multi-order adjacency matrix propagation 
enables LGNN to flexibly adapt to the topology of different 
graphs and improves the generalization of LGNN.

 (2) The connection between nodes in the Citeseer dataset is sparse, 
and the path of information transmission is relatively limited. 
Compared with other comparison models, LGNN transmits 
information on a limited path with a multi-order adjacency 
matrix, and uses multi-scale high-order feature fusion to further 
avoid the problem of excessive accumulation of information 
transmission in dense graphs.

 (3) The multi-scale feature fusion mechanism of LGNN allows the 
model to make full use of the features obtained by different 
order propagation and map them to a shared semantic space, 
so that the model can understand the semantic information in 
the graph more comprehensively. This feature fusion ability 
enables LGNN to classify nodes more accurately. The reason 
why it performs well on the Citeseer dataset is that the 
connection between nodes on the sparse dataset is sparse, and 
the path of information transmission is relatively limited. 
Compared with other comparison models, LGNN transmits 
information on a limited path with a multi-order adjacency 
matrix, and uses multi-scale high-order feature fusion to 
further avoid the problem of excessive accumulation of 
information transmission in dense graphs.

The Micro-F1 value indicators of LGNN on Cora, Citeseer and 
PubMed datasets are shown in Table 5. Observing these results, it can 
be found that different versions of LGNN show their own advantages 
in node classification tasks on different data sets.

 (1) On the Cora dataset, as LGNN is gradually improved from 
version 1 (LGNN1) to version 4 (LGNN4), the Micro-F1 value 
shows a gradual upward trend. The reason behind this 
improvement can be attributed to the increasing complexity of 
the LGNN model. With the iteration of the version, LGNN 
introduces deeper layers, higher-order adjacency matrix 
propagation and more complex feature fusion mechanism, 
which makes the model better capture the features of nodes in 

TABLE 3 Detailed parameter setting.

Dataset Training epochs Learning rate Weight decay Hidden dimension Activation function

Cora 100 0.01 5e-3 128 Relu

Citeseer 100 0.01 5e-4 256 Prelu

PubMed 500 0.01 5e-3 512 Relu

FIGURE 2

State diagram of different propagation orders.

TABLE 4 Comparison of node classification accuracies.

Methods Cora CiteSeer PubMed

GCN 81.40 70.3 79.0

Node2Vec 74.8 52.3 80.3

DeepWalk 75.7 50.5 80.5

SGC 81.60 69.1 84.8

GAT 80.20 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

APPNP 83.8 ± 0.3 71.6 ± 0.5 79.7 ± 0.3

Graph U-Net 78.9 ± 1.0 67.4 ± 0.7 77.8 ± 0.6

LGNNoriginal 66.03 ± 1.51% 62.13 ± 1.54% 66.56 ± 2.07%

LGNN1 79.53 ± 1.44% 74.56 ± 1.97% 72.01 ± 2.09%

LGNN2 81.37 ± 1.31% 75.64 ± 2.13% 75.74 ± 1.90%

LGNN3 81.47 ± 1.15% 75.54 ± 1.97% 76.23 ± 1.84%

LGNN4 82.50 ± 1.16% 74.92 ± 1.41% OOM

Bold value means best performed method.

TABLE 5 Comparison of node classification Micro-F1 values.

Methods Cora CiteSeer PubMed

LGNNoriginal 0.6603 ± 0.0139 0.6213 ± 0.0151 0.6656 ± 0.0207

LGNN1 0.7953 ± 0.0144 0.7456 ± 0.0177 0.7201 ± 0.0213

LGNN2 0.8137 ± 0.0128 0.7564 ± 0.0204 0.7574 ± 0.0190

LGNN3 0.8147 ± 0.0115 0.7554 ± 0.0190 0.7623 ± 0.0184

LGNN5 0.8250 ± 0.0116 0.7492 ± 0.0131 OOM

Bold value means best performed method.
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the Cora dataset. Finally, the Micro-F1 value of 82.5% is 
achieved in the LGNN4 version.

 (2) On the Citeseer dataset, LGNN2 performs well, and its 
performance is significantly improved compared to the 
initial version (LGNN1). This improvement is mainly due 
to the introduction of higher-order adjacency matrix 
propagation and finer feature fusion mechanism in LGNN2. 
This improvement enables LGNN2 to handle Citeseer better.

 (3) On the PubMed dataset, LGNN3 performs better than other 
versions, especially when dealing with large-scale and sparse 
graph data. This may be because the model design and feature 
learning ability of LGNN3 are stronger, so that it can better 
adapt to the characteristics of PubMed data and improve the 
accuracy of node classification.

4.5 Parameter sensitivity

In Figure 3, the training loss and verification loss of four variants 
of LGNN, LGNN1, LGNN2, LGNN3 and LGNN4, on the Cora 
dataset are compared. Compared with LGNN1, LGNN2 has more 
feature fusion of second-order neighbors, so its performance is 
improved. LGNN3 and LGNN4 have successively added higher-
order structural information, so the loss rate continues to decline. 
When the power of the adjacency matrix increases, the structural 
information that the nodes can aggregate is richer, so the model’s 

ability to model the network topology is enhanced, and the 
performance is improved.

t-SNE is a machine learning algorithm for data dimensionality 
reduction, which can capture the local structure and global structure 
in high-dimensional data and reflect the discriminative ability of node 
representation in the graph (Van Der Maaten and Hinton, 2008). 
We randomly select nodes from Cora and use t-SNE to map their 
embeddings to a two-dimensional space. These embedded 
visualizations are shown in Figure 4. It can be seen from the graph that 
the embedding distribution of DeepWalk shows an excessively 
uniform distribution in the embedding space, indicating that there is 
no clear graph structure to capture deep information well. Compared 
with DeepWalk, LGNN has made great progress, which indicates that 
the message passing mechanism is conducive to the model learning 
discriminative node representation. Compared with GCN and 
GraphSage, our method can still identify clear structures to capture 
the collaboration effect to the same extent without using graph 
convolution and activation function, and the embedding in each class 
is reasonably dispersed to reflect the feature information of the graph.

We use different dropout ratios (0.1–0.5) on the two graph node 
classification data sets of Cora and Citeseer, and conduct experiments 
on the neural network based on the LGNN4 algorithm to compare 
and analyze the impact of different dropout operations on 
node classification.

The results are shown in Table 6. We observe that on the Cora 
dataset, with the increase of dropout ratio, the classification accuracy 

FIGURE 3

Training loss and verification loss between different algorithms on Cora dataset.

DeepWalk    GCN LGNN GraphSage
FIGURE 4

Visualization of t-SNE represented by nodes on Cora. From left to right are the visualization results of DeepWalk, GCN, LGNN and GraphSage.
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increases slightly from 82.44 to 83.33%. On the Citeseer data, the 
classification accuracy varies from 75.57 to 76.10%. On the two data 
sets investigated, the following conclusions can be drawn:

 (1) On the Cora dataset, the highest accuracy of 83.33% is obtained 
when the dropout ratio is 0.3, while on the Citeseer dataset, the 
dropout ratio of 0.3 makes the accuracy reach the highest point 
of 76.10%. This shows that a moderate dropout operation helps 
to improve the robustness of LGNN, but an excessive dropout 
ratio may reduce the classification performance of LGNN.

 (2) Under the same dropout ratio, the accuracy of the Cora dataset 
is generally higher than that of the Citeseer dataset. This may 
be  because the Cora data set is relatively small and the 
relationship between nodes is more intensive, while the 
Citeseer data set is larger and the relationship between nodes 
is sparser. Therefore, for dense graph data, dropout operation 
can better improve the robustness of LGNN, thus improving 
the accuracy of node classification.

 (3) It can be seen from the standard deviation of the results that as 
the dropout ratio increases, the performance volatility of the 
model also increases. This indicates that a higher dropout ratio 
may introduce instability, which makes the performance of the 
model vary greatly in different training iterations. Therefore, 
when choosing the dropout ratio, it is necessary to choose an 
appropriate value to synthesize LGNN performance 
and stability.

5 Conclusion

Most of the current graph neural networks use traditional neural 
network components (such as convolution operations and activation 
functions) to capture the characteristics of neighbors. Therefore, 
we propose a simple and effective feature learning method LGNN for 
high-order adjacency matrix propagation. Through efficient and 
concise linear operations based only on graph Laplacian matrices, it 
is sufficient for graph neural networks to learn high-quality node 

representations without complex nonlinear convolution or aggregation 
operations. Experiments show that our method can achieve or exceed 
the effect of existing baselines on most data sets, especially for sparse 
data sets. In the future, we will further study and extend LGNN to 
large-scale data sets and focus on how to effectively model structures 
and extract effective structural information, rather than simply 
pursuing model complexity.
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