
Frontiers in Computational Neuroscience 01 frontiersin.org

LGNN: a novel linear graph neural
network algorithm
Shujuan Cao 1,2,3,4, Xiaoming Wang 2, Zhonglin Ye 1,2,3,4*,
Mingyuan Li 1,2,3,4 and Haixing Zhao 1,2,3,4

1 College of Computer, Qinghai Normal University, Xining, Qinghai, China, 2 School of Computer
Science, Shaanxi Normal University, Xi’an, Shaanxi, China, 3 The State Key Laboratory of Tibetan
Intelligent Information Processing and Application, Xining, Qinghai, China, 4 Key Laboratory of Tibetan
Information Processing, Ministry of Education, Xining, Qinghai, China

The emergence of deep learning has not only brought great changes in the field
of image recognition, but also achieved excellent node classification performance
in graph neural networks. However, the existing graph neural network
framework often uses methods based on spatial domain or spectral domain to
capture network structure features. This process captures the local structural
characteristics of graph data, and the convolution process has a large amount of
calculation. It is necessary to use multi-channel or deep neural network structure
to achieve the goal of modeling the high-order structural characteristics of the
network. Therefore, this paper proposes a linear graph neural network framework
[Linear Graph Neural Network (LGNN)] with superior performance. The model
first preprocesses the input graph, and uses symmetric normalization and feature
normalization to remove deviations in the structure and features. Then, by
designing a high-order adjacency matrix propagation mechanism, LGNN enables
nodes to iteratively aggregate and learn the feature information of high-order
neighbors. After obtaining the node representation of the network structure,
LGNN uses a simple linear mapping to maintain computational efficiency and
obtain the final node representation. The experimental results show that the
performance of the LGNN algorithm in some tasks is slightly worse than that of
the existing mainstream graph neural network algorithms, but it shows or exceeds
the machine learning performance of the existing algorithms in most graph neural
network performance evaluation tasks, especially on sparse networks.

KEYWORDS

graph neural network, linear neural network, graph deep learning, graph representation
learning, high-order structural constraint

1 Introduction

Graph neural networks have developed rapidly in node representation learning and graph
data mining in recent years. The reason why we focus on the study of graph neural networks is
that data with complex network structures are common in reality, such as social networks,
protein interaction networks, knowledge maps, etc. Effectively learning the representation of
such graph structure data is of great significance for many tasks. The early graph neural network
method is mainly based on the spectral domain or spatial domain to extract the structural
information between nodes. Representative methods include graph convolutional neural
network (GCN) based on spectral method (Defferrard et al., 2016) and graph sample and
aggregate (GraphSage) based on spatial sampling (Hamilton et al., 2017). Both of these two
methods learn node representation by aggregating node neighbor features, but there are also

OPEN ACCESS

EDITED BY

Peter Koulen,
University of Missouri–Kansas City,
United States

REVIEWED BY

Deepika Koundal,
University of Petroleum and Energy Studies,
India
Ahmed J. Obaid,
University of Kufa, Iraq

*CORRESPONDENCE

Zhonglin Ye
 yezhonglin@qhnu.edu.cn

RECEIVED 05 September 2023
ACCEPTED 07 November 2023
PUBLISHED 23 November 2023

CITATION

Cao S, Wang X, Ye Z, Li M and Zhao H (2023)
LGNN: a novel linear graph neural network
algorithm.
Front. Comput. Neurosci. 17:1288842.
doi: 10.3389/fncom.2023.1288842

COPYRIGHT

© 2023 Cao, Wang, Ye, Li and Zhao. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

TYPE Methods
PUBLISHED 23 November 2023
DOI 10.3389/fncom.2023.1288842

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2023.1288842﻿&domain=pdf&date_stamp=2023-11-23
https://www.frontiersin.org/articles/10.3389/fncom.2023.1288842/full
https://www.frontiersin.org/articles/10.3389/fncom.2023.1288842/full
mailto:yezhonglin@qhnu.edu.cn
https://doi.org/10.3389/fncom.2023.1288842
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1288842

Cao et al. 10.3389/fncom.2023.1288842

Frontiers in Computational Neuroscience 02 frontiersin.org

some limitations. Specifically, GCN relies on the calculation of the
adjacency matrix of the whole graph, and it is difficult to extend to
large-scale graphs; GraphSage needs to perform multiple sampling
and aggregation, and the computational efficiency is low.

In order to improve the efficiency and effect of node representation
learning, a variety of improvement methods are proposed in the
follow-up research. The graph neural network then draws on the
technologies in the field of neural networks, such as convolutional
networks (Kattenborn et al., 2021), recurrent networks (Yin et al.,
2017), autoencoders (Lange and Riedmiller, 2010; Liou et al., 2014;
Mushtaq et al., 2022), etc., and successively proposes recursive graph
neural networks (RecGNN) (Guangquan et al., 2022), convolutional
graph neural networks (ConvGNN) (Duvenaud et al., 2015) and other
algorithm frameworks. Although these methods extend the modeling
ability of graph neural networks, they also inherit certain
computational complexity. Therefore, exploring and constructing an
effective graph representation learning framework has become a key
goal of research.

Specifically, the linear structure is one of the simplest forms of
neural networks. Convolutional networks, recurrent networks, and
MLP (Pinkus, 1999) are all developed on this basis. Constructed
with a simple linear framework, it not only tests the expression
ability, but also ensures efficiency. Even if the performance does
not exceed all existing graph neural networks, it is equivalent to or
exceeds the mainstream models of existing graph neural networks
in most graph neural network performance evaluation tasks, and
the effectiveness of this kind of framework can be verified. For
example, GRAND (Chamberlain et al., 2021) constructed a graph
neural network from the perspective of differential equations for
the first time, providing a principled mathematical framework.
Although the results do not exceed GCN, it serves as a fulcrum to
inspire follow-up research. This paper hopes to promote the
research in this field by exploring the simple linear graph neural
network and achieve the representation learning effect equivalent
to the current model.

Among them, the method of constructing graph neural network
based on simple linear structure has the following potential
advantages: (1) The linear model has a simple structure, high
computational efficiency, and is easier for theoretical analysis; (2) The
analysis of the framework effect based on linear structure can deepen
the understanding of the expression ability of graph neural network.

Under this motivation, this paper studies the construction of
efficient linear graph neural networks only relying on simple linear
structures without using basic neural networks such as convolution
operations and activation functions, which promotes graph
representation learning research and achieves comparable results with
existing models.

The main contributions of this paper are as follows:

 (1) We propose a high-order neighbor propagation method, which
can effectively capture and learn the representation information
of high-order neighbor nodes without using multi-channel
architecture and depth map neural network.

 (2) In order to capture high-quality node information, we further
propose a multi-scale feature fusion mechanism, which
comprehensively considers the propagation information of
different orders.

 (3) The experimental results on multiple real data sets show that
our proposed model is consistently superior to the state-of-
the-art methods.

2 Related work

2.1 Shallow node vector representation

The shallow node vector representation method aims to map the
nodes in the graph to low-dimensional space and learn the vector
representation of node attributes and structural information. The
purpose of developing shallow representation methods is to solve key
challenges in graph data analysis, such as coding network topology and
improving scalability. Compared with the deep model, the shallow
representation has the advantages of high computational efficiency and
is easier to extend to large-scale graph data. The random walk-based
method generates a sequence of nodes by simulating the random walk
process on the graph, and then obtains the vector representation of the
nodes based on the word vector learning method. Specifically,
DeepWalk (Perozzi et al., 2014) uses random walk to generate a node
sequence, and then obtains a node vector representation through
Word2Vec. Its innovation lies in drawing on the concept of language
model in NLP and treating the node sequence as a sentence. Node2vec
(Grover and Leskovec, 2016) further balances local and global structure
information by adjusting the proportion of breadth-first traversal and
depth-first traversal of the walk strategy, that is, Node2vec can control
whether the walk is more in accordance with the network neighbor
expansion or more choices to re-hop. LINE (Tang et al., 2015) preserves
the first-order node co-occurrence relationship and second-order node
similarity by constructing first-order and second-order prox word
vectors. These methods generally encode network structure information
by walking. In summary, the shallow node vector representation
method provides a simple and effective node representation learning
method. The above methods are all devoted to encoding the information
in the network topology and providing information-rich node vector
representations for various graph analysis tasks.

2.2 Graph neural network

Graph neural network is an important technical direction in graph
representation learning and analysis in recent years. It shows amazing
modeling ability and expression ability in various graph learning tasks.
The key idea is to develop a deep learning model that can effectively
process graph structure data by referring to neural networks. For
example, the Chebyshev graph convolutional neural network ChebyNet
(Defferrard et al., 2016) is an early model for fusing graph convolution
operations, where the key is the Chebyshev polynomial approximation
graph convolution operation. ChebyNet pioneered the application of
convolutional network ideas on graph data. GCN further proposes a
method of convolution directly in the graph field, and performs feature
aggregation through the Laplacian matrix. The introduction of GCN
has promoted the wide application of direct graph convolution in
various tasks. Based on GCN, GraphSAGE generates node
representation by layer-by-layer aggregation of neighbor embedding,

https://doi.org/10.3389/fncom.2023.1288842
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Cao et al. 10.3389/fncom.2023.1288842

Frontiers in Computational Neuroscience 03 frontiersin.org

which has high scalability and generalization ability and can be extended
to large-scale graphs. The graph attention network (GAT) (Veličković
et al., 2018) introduces an attention mechanism, which allows different
nodes to assign different weights to neighbors, enhances the model ‘s
ability to capture local information of graph structure, brings significant
performance improvement for different application scenarios, and
promotes the development of this research field. Simplify graph
convolutional network.

Graph neural networks are used to learn the node representation of
graph-structured data, while the current mainstream technology
frameworks can be divided into two categories: graph convolution-based
frameworks and graph sampling-based frameworks (Wu et al., 2019).

Table 1 shows the differences among GCN, GraphSage and Linear
Graph Neural Network (LGNN). We select several capabilities as
different perspectives for comparison: whether high-order
neighborhood information is learned during training (Higher-order
information), whether activation function is used for transformation
(Activation function), whether the information transmitted by multi-
order neighbors is aggregated (Multi-order neighbor propagation),
whether the degree of influence of different order domain information
is considered (Different order neighborhood influence), and whether
the message passing mechanism is designed (Message
passing mechanism).

3 Methodology

Aiming at the problem of insufficient perception of high-order
neighborhood information in shallow linear networks, this paper
proposes a LGNN neural network, and its structure is set as shown in
Figure 1.

Firstly, in the graph representation and preprocessing stage, the
input graph is subjected to symmetric normalization and feature
normalization preprocessing to obtain a normalized adjacency matrix
and a feature matrix. Secondly, by designing a high-order adjacency
matrix propagation mechanism, the high-order neighbor feature
information of the node is iteratively aggregated, and the final node
representation information is obtained through efficient linear
transformation mapping.

3.1 Graph representation and
preprocessing

Considering an undirected graph G V E X� � �, , , there are nodes
v Vi ∈ and edges V V Ei j,� �� . In order to solve the problem that a

single-channel shallow graph neural network cannot capture high-
order structures, LGNN uses the same depth of GCN and GraphSage,
that is, a two-layer fully connected neural network structure. In
addition, no longer use any methods and components commonly used
in neural network structures, such as convolution operations and
activation functions.

For each node v Vi ∈ , there is an initial feature representation
x Ri

d∈ , where d is the dimension of the feature. In the LGNN model,
we use the adjacency matrix A RN N� � to represent the topology of
the graph, where Aij =1 denotes that there are edges between nodes vi
and v j, and Aij = 0 denotes that there are no edges between them. In
order to prevent the loss of information, we symmetrically normalize
the adjacency matrix:

 A D A Dsym� � � �� 1 2 1 2/ /i �i (1)

Among them, A A I� � represents the self-ring matrix added on
the basis of the adjacency matrix, D is the degree matrix, D Aii

i
ij�

�
�

0



.

Considering the deviation of node features, removing the influence of
node degree and obtaining more uniform representation,
we define it as:

X X
�

� �
�

(2)

Among them, X represents the normalized feature matrix, µ and
δ are the mean and standard deviation of the feature matrix X ,
respectively. Through the standardized method, different node
features have similar scales, which improves the convergence speed
and performance of the LGNN model.

3.2 Higher-order neighbor propagation

In order to capture the complex dependencies between nodes in
the graph more deeply, we propose a feature learning method based
on high-order adjacency matrix propagation. Based on the given node
feature matrix X



 and normalized A sym� �, we design a linear
propagation method to explore the association between nodes at
different orders. In k-order propagation, we calculate the update
equation of node characteristics as follows:

 h A xi
sym

i
k� � � �� · (3)

TABLE 1 Differences of GCN, GraphSage and LGNN.

Model Higher-order
information

Activation
function

Multi-order
neighbor

propagation

Different order
neighborhood

influence

Message passing
mechanism

GCN

GraphSage

LGNN

https://doi.org/10.3389/fncom.2023.1288842
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Cao et al. 10.3389/fncom.2023.1288842

Frontiers in Computational Neuroscience 04 frontiersin.org

FIGURE 1

LGNN network structure.

https://doi.org/10.3389/fncom.2023.1288842
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Cao et al. 10.3389/fncom.2023.1288842

Frontiers in Computational Neuroscience 05 frontiersin.org

A Asym

i

k
sym� �� �

�

� �� ���k i

1
(4)

Here, hi
k� � represents the k-th-order post-propagation node

feature representation. Through this way of communication, the node
features can capture high-order neighbor information, so as to better
reflect the characteristics of nodes in high-order hierarchical
relationships. In order to comprehensively utilize the propagation
information of different orders, we introduce a multi-scale feature
fusion mechanism. Specifically, we multiply the node features of each
order by a corresponding weight matrix, and then stack the features
of all orders according to the channel direction to form a multi-scale
node feature tensor:

z msf h W h W h Wi i i i

k k� � ��
��

�
��
� ��

�
�

�
�
�

� � � � � � � � � � � �1 1 2 2
  

(5)

Among them, ()msf  represents the multi-scale fusion method,
W W1� � � ��, ,

k represents the weight matrix of the corresponding order
during propagation, and || represents the tensor stitching method. This
multi-scale feature fusion mechanism allows LGNN to extract rich
information from the propagation of different orders, thus improving
the understanding and expression ability of graph structure. In order to
avoid the problem of gradient disappearance during the propagation of
multi-order adjacency matrix, we introduce a normalization method to
maintain the stable propagation of gradient:

ui �
�

��
�
�

�
�
� �

�

� �

�

� �

x x

x x

m

m m

i j
m

i

j
m

i j
m

i

 

 

1

1 1

1

1 1

2
��

(6)

Among them, ξ is a constant to avoid divisor zero. In addition,
we also use multi-layer perceptron (MLP) to map features to the
semantic space to further enhance the expression ability of features:

z W W u b bi i� � � �� � �2 1 1 2�

 (7)

3.3 Training and optimization

The loss function for model training consists of two parts, the first
part is the negative log-likelihood loss function, whose
mathematical expression:

 Loss l l� �1 2 (8)

l

N
softmax lgits labels

i

N
i i1

1

1

� � � �� �� �
�
� log

(9)

Where lgitsi is the output of the model, a tensor containing the log
probability values of the predicted outcomes, and labelsi is the true
labeled values. The function ()softmax  converts the log probability

values to probability values. This loss function calculates the difference
between the model prediction and the true label by comparing the
predicted probability distribution with the true label. The second part
l2 is the L2 regularization term, which is added by adding a penalty
term after the loss function. The purpose of this is to minimize the
negative log-likelihood loss while constraining the weights of the
model through the regularization term in order to improve the
generalization ability of the model and prevent overfitting.

That is, the objective function of this paper is described as follows:

Let the training dataset be: D x y x y x yn n� � � � � � � �1 1 2 2, , ,, , , ,
where: xi d∈ represents the d-dimensional feature vector of the i-th
training sample. y ki � �� �1 2, , , represents the label of the i-th training
sample, with a total of k categories. The model parameters are denoted
as θ . The model’s prediction probability for category yi of sample
xi is: P y xmodel i i| ;�� �.

The loss function is the negative log-likelihood loss function:

L P y xmodel i ii

n� �� � � � � �� ��� log ;|
1

(10)

The loss function after adding the L2 regularization term is:

L Lreg � �

�
�� � � � � �

2 2
2

(11)

where λ is the regularization coefficient, � �
2

2 2

1
� �� jj

D
, θ j is the

j-th element of the model parameter θ , and d is the dimension of the
parameter θ .

Classical graph neural network approaches such as Graph
Convolutional Network (GCN) and GraphSage achieve superior
performance not only because of the powerful neural network
architectures employed, but more importantly, because of the ability
of these models to efficiently encode the structural information and
feature representations of the input graph. In fact, recent findings have
shown that reasonably effective structural feature engineering is no
less important to the graph learning task than the expressive power of
the model itself (Dwivedi and Bresson, 2020).

LGNN is a lightweight, linear graph filtering layer based on the
Laplace matrix of graphs. Through theoretical analysis, we demonstrate
that a simple linear operation can effectively aggregate the structural
information of nodes. In addition, we design a multi-layer
superimposed network structure to enhance the representation
capability of the model. LGNN provides a new idea for GNN model
design, i.e., mechanisms with lower computational and spatial
complexity should be prioritized while maintaining the
representation capability.

4 Experiments and discussion

4.1 Experimental datasets

The experiment used three literature citation network datasets
of Cora, Citeseer and PubMed, and we published the datasets on
GitHub*. All three are an undirected graph with nodes

https://doi.org/10.3389/fncom.2023.1288842
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Cao et al. 10.3389/fncom.2023.1288842

Frontiers in Computational Neuroscience 06 frontiersin.org

representing documents (thesis documents) and edges
representing citation relationships. Table 2 summarizes the
statistics of the three benchmark datasets - Cora, Citeseer, and
PubMed. We used exactly the same experimental setup on these
three benchmark datasets as in the semi-supervised graph mining
literature. Such as feature and data segmentation, and ran 100
trials with 100 random seeds for all results on Cora, Citeseer, and
PubMed reported in Section 4.

4.2 Experimental setup

The experiment uses the PyTorch framework to implement the
LGNN model and the entire training and testing process. The
experimental environment is Windows operating system, and the
PyTorch version is 11.7.

The evaluation indexes used in the experiment are accuracy,
recall, and F1 value, the specific formula is:

Acc

N
N
pre right

pre
= _

,

(12)

F Acc Recall

Acc Recall1

2
�

� �
�

,

(13)

Among them, Npre right_ is the number of correct LGNN
predictions in the test sample, and Npre is the total number of
test samples.

All the results on Cora, Citeseer and PubMed reported in Section
4.1 of this paper were run 100 trials with 100 random seeds.

For all data sets, we do not use the dropout operation, and use the
Adam optimizer to set the weight attenuation coefficient and the L2
regularization coefficient. The number of neurons in the hidden layer
represents the vector length, and the optimizer learning rate is shown
in Table 3.

4.3 Comparison algorithms

In this paper, two kinds of comparative experiments are set up.
The first kind is the traditional network representation learning
method, such as Node2Vec and DeepWalk. The second kind is the
graph neural network method, such as GCN, GAT, GraphSage,
APPNP, Graph U-Net.

Take any node in the graph G, set the state of the k � � �1 2 3 4, , ,

-order propagation as shown in Figure 2, and the node characteristics
after propagation are represented as follows:

h A x

h A x

h A x

h

i
sym

i

i
sym

i

i
sym

i

1 1

2 2

3 3

� � � �� �

� � � �� �

� � � �� �

�

�

�

·

·

·







ii
sym

iA x4 4� � � �� ��

�

�

�
��

�

�
�
� ·

(14)

In this paper, several variations are proposed for the proposed
LGNNs, which are described as follows:

LGNNoriginal: in each input feature, the representation vector of
the node is not multiplied with A . The features of the node are
directly input, and then a two-layer fully connected network is built
for training.

LGNN1: in each input feature, the feature matrix of the node is

multiplied with A
1� �

, and then a two-layer fully connected network
is built for training.

LGNN2: in each input feature, the feature matrix of the node is

multiplied with A
1� �

 and A
2� �

 respectively, and the result is two
feature matrices, after which the two feature matrices are spliced
horizontally, and each row of which is used as an input feature in the
algorithm of this paper, and then a two-layered fully-connected
network is constructed for training.

LGNN3: in each input feature, the feature matrix of the node is

multiplied with A
1� �

, A
2� �

, A
3� �

, and the result is three feature
matrices, after which these three feature matrices are spliced
horizontally, and each row of which is used as an input feature in the
algorithm of this paper. Then a two-layer fully connected network is
constructed for training.

LGNN4: each time the input features, the node’s feature matrix is

multiplied with A
1� �

, A
2� � , A

3� �
 and A

4� �
, the result is five feature

matrices, and then these five feature matrices are spliced horizontally,
and each row is used as an input feature in the algorithm of this paper,
and then a two-layered fully-connected network is constructed
for training.

4.4 Experimental results and analysis

The experiment tests the performance of the model on the public
data set and verifies the performance and flexibility of the model.
Table 4 shows the accuracy indicators of various baseline neural
networks and LGNNs in Cora, Citeseer, and PubMed datasets when
performing downstream tasks for node classification.

From the Table 4, it can be seen that on the Cora dataset, LGNN4
performs better, reaching 82.50% accuracy, which is at the level of

TABLE 2 Statistical data for the three benchmark datasets.

Datasets Node Edge Training/effective/
test nodes

Categories Feature

Cora 2,708 5,429 140/500/1,000 7 1,433

CiteSeer 3,327 4,732 120/500/1,000 6 3,703

PubMed 19,717 44,338 60/500/1,000 3 500

https://doi.org/10.3389/fncom.2023.1288842
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Cao et al. 10.3389/fncom.2023.1288842

Frontiers in Computational Neuroscience 07 frontiersin.org

runner-up; on the Citeseer dataset, LGNN2 reaches the level of
champion compared with other algorithms, increasing by
3.14% ~ 25.34%; on the PubMed dataset, LGNN3 is slightly lower than
some comparison algorithms, but it is still competitive compared to
other algorithms. We can get the following conclusions:

 (1) The multi-order adjacency matrix propagation of LGNN
enables it to iteratively transmit information in the graph
structure, so as to better capture the complex relationship
between nodes. Multi-order adjacency matrix propagation
enables LGNN to flexibly adapt to the topology of different
graphs and improves the generalization of LGNN.

 (2) The connection between nodes in the Citeseer dataset is sparse,
and the path of information transmission is relatively limited.
Compared with other comparison models, LGNN transmits
information on a limited path with a multi-order adjacency
matrix, and uses multi-scale high-order feature fusion to further
avoid the problem of excessive accumulation of information
transmission in dense graphs.

 (3) The multi-scale feature fusion mechanism of LGNN allows the
model to make full use of the features obtained by different
order propagation and map them to a shared semantic space,
so that the model can understand the semantic information in
the graph more comprehensively. This feature fusion ability
enables LGNN to classify nodes more accurately. The reason
why it performs well on the Citeseer dataset is that the
connection between nodes on the sparse dataset is sparse, and
the path of information transmission is relatively limited.
Compared with other comparison models, LGNN transmits
information on a limited path with a multi-order adjacency
matrix, and uses multi-scale high-order feature fusion to
further avoid the problem of excessive accumulation of
information transmission in dense graphs.

The Micro-F1 value indicators of LGNN on Cora, Citeseer and
PubMed datasets are shown in Table 5. Observing these results, it can
be found that different versions of LGNN show their own advantages
in node classification tasks on different data sets.

 (1) On the Cora dataset, as LGNN is gradually improved from
version 1 (LGNN1) to version 4 (LGNN4), the Micro-F1 value
shows a gradual upward trend. The reason behind this
improvement can be attributed to the increasing complexity of
the LGNN model. With the iteration of the version, LGNN
introduces deeper layers, higher-order adjacency matrix
propagation and more complex feature fusion mechanism,
which makes the model better capture the features of nodes in

TABLE 3 Detailed parameter setting.

Dataset Training epochs Learning rate Weight decay Hidden dimension Activation function

Cora 100 0.01 5e-3 128 Relu

Citeseer 100 0.01 5e-4 256 Prelu

PubMed 500 0.01 5e-3 512 Relu

FIGURE 2

State diagram of different propagation orders.

TABLE 4 Comparison of node classification accuracies.

Methods Cora CiteSeer PubMed

GCN 81.40 70.3 79.0

Node2Vec 74.8 52.3 80.3

DeepWalk 75.7 50.5 80.5

SGC 81.60 69.1 84.8

GAT 80.20 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

APPNP 83.8 ± 0.3 71.6 ± 0.5 79.7 ± 0.3

Graph U-Net 78.9 ± 1.0 67.4 ± 0.7 77.8 ± 0.6

LGNNoriginal 66.03 ± 1.51% 62.13 ± 1.54% 66.56 ± 2.07%

LGNN1 79.53 ± 1.44% 74.56 ± 1.97% 72.01 ± 2.09%

LGNN2 81.37 ± 1.31% 75.64 ± 2.13% 75.74 ± 1.90%

LGNN3 81.47 ± 1.15% 75.54 ± 1.97% 76.23 ± 1.84%

LGNN4 82.50 ± 1.16% 74.92 ± 1.41% OOM

Bold value means best performed method.

TABLE 5 Comparison of node classification Micro-F1 values.

Methods Cora CiteSeer PubMed

LGNNoriginal 0.6603 ± 0.0139 0.6213 ± 0.0151 0.6656 ± 0.0207

LGNN1 0.7953 ± 0.0144 0.7456 ± 0.0177 0.7201 ± 0.0213

LGNN2 0.8137 ± 0.0128 0.7564 ± 0.0204 0.7574 ± 0.0190

LGNN3 0.8147 ± 0.0115 0.7554 ± 0.0190 0.7623 ± 0.0184

LGNN5 0.8250 ± 0.0116 0.7492 ± 0.0131 OOM

Bold value means best performed method.

https://doi.org/10.3389/fncom.2023.1288842
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Cao et al. 10.3389/fncom.2023.1288842

Frontiers in Computational Neuroscience 08 frontiersin.org

the Cora dataset. Finally, the Micro-F1 value of 82.5% is
achieved in the LGNN4 version.

 (2) On the Citeseer dataset, LGNN2 performs well, and its
performance is significantly improved compared to the
initial version (LGNN1). This improvement is mainly due
to the introduction of higher-order adjacency matrix
propagation and finer feature fusion mechanism in LGNN2.
This improvement enables LGNN2 to handle Citeseer better.

 (3) On the PubMed dataset, LGNN3 performs better than other
versions, especially when dealing with large-scale and sparse
graph data. This may be because the model design and feature
learning ability of LGNN3 are stronger, so that it can better
adapt to the characteristics of PubMed data and improve the
accuracy of node classification.

4.5 Parameter sensitivity

In Figure 3, the training loss and verification loss of four variants
of LGNN, LGNN1, LGNN2, LGNN3 and LGNN4, on the Cora
dataset are compared. Compared with LGNN1, LGNN2 has more
feature fusion of second-order neighbors, so its performance is
improved. LGNN3 and LGNN4 have successively added higher-
order structural information, so the loss rate continues to decline.
When the power of the adjacency matrix increases, the structural
information that the nodes can aggregate is richer, so the model’s

ability to model the network topology is enhanced, and the
performance is improved.

t-SNE is a machine learning algorithm for data dimensionality
reduction, which can capture the local structure and global structure
in high-dimensional data and reflect the discriminative ability of node
representation in the graph (Van Der Maaten and Hinton, 2008).
We randomly select nodes from Cora and use t-SNE to map their
embeddings to a two-dimensional space. These embedded
visualizations are shown in Figure 4. It can be seen from the graph that
the embedding distribution of DeepWalk shows an excessively
uniform distribution in the embedding space, indicating that there is
no clear graph structure to capture deep information well. Compared
with DeepWalk, LGNN has made great progress, which indicates that
the message passing mechanism is conducive to the model learning
discriminative node representation. Compared with GCN and
GraphSage, our method can still identify clear structures to capture
the collaboration effect to the same extent without using graph
convolution and activation function, and the embedding in each class
is reasonably dispersed to reflect the feature information of the graph.

We use different dropout ratios (0.1–0.5) on the two graph node
classification data sets of Cora and Citeseer, and conduct experiments
on the neural network based on the LGNN4 algorithm to compare
and analyze the impact of different dropout operations on
node classification.

The results are shown in Table 6. We observe that on the Cora
dataset, with the increase of dropout ratio, the classification accuracy

FIGURE 3

Training loss and verification loss between different algorithms on Cora dataset.

DeepWalk GCN LGNN GraphSage
FIGURE 4

Visualization of t-SNE represented by nodes on Cora. From left to right are the visualization results of DeepWalk, GCN, LGNN and GraphSage.

https://doi.org/10.3389/fncom.2023.1288842
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Cao et al. 10.3389/fncom.2023.1288842

Frontiers in Computational Neuroscience 09 frontiersin.org

increases slightly from 82.44 to 83.33%. On the Citeseer data, the
classification accuracy varies from 75.57 to 76.10%. On the two data
sets investigated, the following conclusions can be drawn:

 (1) On the Cora dataset, the highest accuracy of 83.33% is obtained
when the dropout ratio is 0.3, while on the Citeseer dataset, the
dropout ratio of 0.3 makes the accuracy reach the highest point
of 76.10%. This shows that a moderate dropout operation helps
to improve the robustness of LGNN, but an excessive dropout
ratio may reduce the classification performance of LGNN.

 (2) Under the same dropout ratio, the accuracy of the Cora dataset
is generally higher than that of the Citeseer dataset. This may
be because the Cora data set is relatively small and the
relationship between nodes is more intensive, while the
Citeseer data set is larger and the relationship between nodes
is sparser. Therefore, for dense graph data, dropout operation
can better improve the robustness of LGNN, thus improving
the accuracy of node classification.

 (3) It can be seen from the standard deviation of the results that as
the dropout ratio increases, the performance volatility of the
model also increases. This indicates that a higher dropout ratio
may introduce instability, which makes the performance of the
model vary greatly in different training iterations. Therefore,
when choosing the dropout ratio, it is necessary to choose an
appropriate value to synthesize LGNN performance
and stability.

5 Conclusion

Most of the current graph neural networks use traditional neural
network components (such as convolution operations and activation
functions) to capture the characteristics of neighbors. Therefore,
we propose a simple and effective feature learning method LGNN for
high-order adjacency matrix propagation. Through efficient and
concise linear operations based only on graph Laplacian matrices, it
is sufficient for graph neural networks to learn high-quality node

representations without complex nonlinear convolution or aggregation
operations. Experiments show that our method can achieve or exceed
the effect of existing baselines on most data sets, especially for sparse
data sets. In the future, we will further study and extend LGNN to
large-scale data sets and focus on how to effectively model structures
and extract effective structural information, rather than simply
pursuing model complexity.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

SC: Conceptualization, Methodology, Software, Writing – original
draft. XW: Supervision, Writing – review & editing. ZY: Funding
acquisition, Supervision, Writing – review & editing. ML: Writing –
review & editing. HZ: Supervision, Writing – review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work is
supported by the National Key Research and Development Program
of China (no. 2020YFC1523300) and Innovation Platform
Construction Project of Qinghai Province (no. 2022-ZJ-T02).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

References
Chamberlain, B., Rowbottom, J., Gorinova, M. I., Bronstein, Michael, Webb, Stefan,

and Rossi, Emanuele (2021). GRAND: graph neural diffusion, Proceedings of the 38th
international conference on machine learning, 18–24 July.1407–1418.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural
networks on graphs with fast localized spectral filtering Proceedings of the 30th
conference on neural information processing system, Barcelona 3844–3852.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T.,
Aspuru-Guzik, A., et al. (2015). “Convolutional networks on graphs for learning

molecular fingerprints” in Proceedings of the 28th international conference
on neural information processing systems (Red Hook, NY: Curran Associates, Inc.),
2224–2232.

Dwivedi, V. P., and Bresson, X. (2020). A generalization of transformer networks to
graphs. arXiv [Preprint], arXiv:2012.09699.

Grover, A., and Leskovec, J. (2016). node2vec: scalable feature learning for networks,
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, San Francisco 855–864.

TABLE 6 Analysis of the effect of dropout on node classification on Cora
and CiteSeer datasets.

Dropout Cora CiteSeer

0.1 82.44 ± 0.70% 75.57 ± 1.15%

0.2 82.79 ± 0.75% 75.93 ± 0.75%

0.3 83.33 ± 0.96% 76.10 ± 0.69%

0.4 83.25 ± 0.75% 76.03 ± 0.56%

0.5 82.90 ± 1.25% 76.00 ± 0.66%

https://doi.org/10.3389/fncom.2023.1288842
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Cao et al. 10.3389/fncom.2023.1288842

Frontiers in Computational Neuroscience 10 frontiersin.org

Guangquan, Si., Xu, Shangxu, Li, Zhenjiang, and Zhang, Jingyun (2022). Rec-GNN:
research on social recommendation based on graph neural networks. Proceedings of the
2022 international conference on computer science, information engineering and digital
economy, Amsterdam Atlantis Press 478–485.

Hamilton, W., Ying, R., and Leskovec, J. (2017). Inductive representation learning on
large graphs. Proceedings of the 31st conference on neural information processing
systems, Long Beach, CA 1024–1034.

Kattenborn, T., Leitloff, J., Schiefer, F., and Hinz, S. (2021). Review on convolutional
neural networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote
Sens. 173, 24–49. doi: 10.1016/j.isprsjprs.2020.12.010

Lange, S., and Riedmiller, M. (2010). Deep auto-encoder neural networks in
reinforcement learning. Proceedings of the 2010 IEEE international joint conference on
neural networks, Barcelona, 1–8.

Liou, C. Y., Cheng, W. C., Liou, J. W., and Liou, D. R. (2014). Autoencoder for words.
Neurocomputing 139, 84–96. doi: 10.1016/j.neucom.2013.09.055

Mushtaq, E., Zameer, A., Umer, M., and Abbasi, A. A. (2022). A two-stage intrusion
detection system with auto-encoder and LSTMs. Appl. Soft Comput. 121:108768. doi:
10.1016/j.asoc.2022.108768

Perozzi, B., Al-Rfou, R., and Skiena, S., (2014). DeepWalk: online learning of social
representations, Proceedings of the 20th ACM SIGKDD international conference on
knowledge discovery and data mining, New York 701–710.

Pinkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta
Numer. 8, 143–195. doi: 10.1017/S0962492900002919

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q (2015). LINE: large-scale
information network embedding, Proceedings of the 24th international conference on
world wide web Florence 1067–1077.

Van Der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.
Learn. Res. 9:11.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018).
Graph attention networks, Proceedings of the 6th international conference on learning
representations, Vancouver, BC 10–48550.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K (2019). Simplifying
graph convolutional networks, Proceedings of the International conference on machine
learning, Long Beach, CA 6861–6871. doi: 10.1609/aaai.v35i11.17203

Yin, W., Kann, K., Yu, M., and Schütze, H. (2017). Comparative study of CNN and RNN
for natural language processing. arXiv preprint arXiv:1702.01923

https://doi.org/10.3389/fncom.2023.1288842
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/10.1016/j.neucom.2013.09.055
https://doi.org/10.1016/j.asoc.2022.108768
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1609/aaai.v35i11.17203

	LGNN: a novel linear graph neural network algorithm
	1 Introduction
	2 Related work
	2.1 Shallow node vector representation
	2.2 Graph neural network

	3 Methodology
	3.1 Graph representation and preprocessing
	3.2 Higher-order neighbor propagation
	3.3 Training and optimization

	4 Experiments and discussion
	4.1 Experimental datasets
	4.2 Experimental setup
	4.3 Comparison algorithms
	4.4 Experimental results and analysis
	4.5 Parameter sensitivity

	5 Conclusion
	Data availability statement
	Author contributions

	 References

