
TYPE Original Research

PUBLISHED 05 January 2024

DOI 10.3389/fncom.2023.1334436

OPEN ACCESS

EDITED BY

Yi Zhu,

Yangzhou University, China

REVIEWED BY

Yuanting Yan,

Anhui University, China

Yonglong Zhang,

Yangzhou University, China

Shaojing Sheng,

Hefei University of Technology, China

*CORRESPONDENCE

ShengWei Ji

jisw@hfuu.edu.cn

RECEIVED 07 November 2023

ACCEPTED 11 December 2023

PUBLISHED 05 January 2024

CITATION

Xu Q, Gu H and Ji S (2024) Text clustering based

on pre-trained models and autoencoders.

Front. Comput. Neurosci. 17:1334436.

doi: 10.3389/fncom.2023.1334436

COPYRIGHT

© 2024 Xu, Gu and Ji. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Text clustering based on
pre-trained models and
autoencoders

Qiang Xu, Hao Gu and ShengWei Ji*

School of Artificial Intelligence and Big Data, Hefei University, Hefei, Anhui, China

Text clustering is the task of grouping text data based on similarity, and it

holds particular importance in the medical field. sIn healthcare, medical data

clustering is a highly active and e�ective research area. It not only provides

strong support for making correct medical decisions from medical datasets

but also aids in patient record management and medical information retrieval.

With the development of the healthcare industry, a large amount of medical

data is being generated, and traditional medical data clustering faces significant

challenges. Many existing text clustering algorithms are primarily based on the

bag-of-words model, which has issues such as high dimensionality, sparsity,

and the neglect of word positions and context. Pre-trained models are a deep

learning-based approach that treats text as a sequence to accurately capture word

positions and context information. Moreover, compared to traditional K-means

and fuzzy C-means clustering models, deep learning-based clustering algorithms

are better at handling high-dimensional, complex, and nonlinear data. In particular,

clustering algorithms based on autoencoders can learn data representations and

clustering information, e�ectively reducing noise interference and errors during

the clustering process. This paper combines pre-trained language models with

deep embedding clustering models. Experimental results demonstrate that our

model performs exceptionally well on four public datasets, outperforming most

existing text clustering algorithms, and can be applied to medical data clustering.

KEYWORDS

text clustering,medical, deep learning, pre-trainedmodels, autoencoder, deep embedded

clustering model

1 Introduction

With the rapid development of big data in the healthcare industry, there has been a

dramatic increase in the amount of available medical text information generated, which

covers many forms of data such as medical records, clinical reports, scientific literature,

medical forum posts and patient feedback, and much of it is unstructured, which is a serious

challenge in how to use this information (Woo et al., 2019). Recently, with considerable

advances in new neural networks and deep learningmethods for natural language processing

(NLP) (Li et al., 2022), the application of natural language processing in the field of

medicine has received increasing attention, and text clustering is one of the important

techniques to help process the huge amount of unstructured text data in the medical field

that contains valuable medical information. By grouping similar text documents into the

same category, text clustering technology helps healthcare practitioners and researchers to

better understand, manage, and utilize this information. Bu et al. (2020) has developed a C-

means algorithm based on a cloud-edge computing system, which enables the aggregation

of medical data from different hospitals. Jaya Mabel Rani and Pravin (2022) has proposed a

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1334436
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2023.1334436&domain=pdf&date_stamp=2024-01-05
mailto:jisw@hfuu.edu.cn
https://doi.org/10.3389/fncom.2023.1334436
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1334436/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xu et al. 10.3389/fncom.2023.1334436

hybrid optimization technique based on K-means, effectively

assisting doctors in aggregating medical data related to heart

disease to find the best solution.

According to prior research, text clustering essentially

involves categorizing texts based on their similarity in effective

representations, comprising two primary modules: text feature

representation and clustering (Aggarwal and Zhai, 2012). A

common approach in text clustering is to map texts into a

feature vector space and then employ clustering algorithms.

Although traditional TF-IDF (Ramos et al., 2003) methods

are capable of representing real-valued vectors, they fail

to capture textual sequence and contextual information,

particularly for shorter texts where sparse features hinder

semantic inference. Word2Vec (Mikolov et al., 2013), a word

embedding-based technique, employs neural networks to learn

continuous vector representations for each word, thus capturing

semantic relationships and contextual information between

vocabulary words, effectively addressing issues posed by the

bag-of-words model. Nonetheless, these models still rely on

feature space and do not resolve the problem of semantic

understanding discrepancies. In recent years, text representation

models rooted in deep learning, such as BiLSTM (Conneau

et al., 2017) and BERT (Devlin et al., 2018), have gained

widespread application. They excel in handling text sequences

and contextual information, making them well-suited for text

clustering tasks.

A clustering algorithm is employed to partition a document

collection into distinct clusters or categories. Documents within

the same cluster should exhibit maximum similarity, while

those in different clusters should be as dissimilar as possible

(Bhattacharjee and Mitra, 2021). Traditional clustering methods

encompass K-means, hierarchical clustering, and density-based

clustering. Over the past years, an increasing number of

researchers have delved into the integration of deep learning-

based text representation models with conventional clustering

algorithms. Xu et al. (2017) proposed a deep short text clustering

method using RecNN+K-means. However, this model pretrains

a convolutional neural network on unlabeled short text data

to learn word co-occurrences, which might lead to word

representations not aligning well with their actual semantics.

Guan et al. (2020) introduced a BiLSTM+K-means deep clustering

framework, which exhibited improvement over BERT+K-means.

Yin et al. (2023) proposed a method that combines SentenceBERT

model with improved k-means algorithm, which improves the

efficiency of clustering scientific and technological literature

bibliographic information, so that we can better obtain the key

information of scientific and technological literature. However,

K-means is sensitive to outliers and can be disrupted by

them. Furthermore, as data dimensionality increases, calculating

distances between samples becomes progressively challenging,

resulting in diminished clustering effectiveness. Deep clustering

algorithms based on autoencoders obviate the need for preset

cluster centers, autonomously learn data representations, and

perform clustering, thereby mitigating reliance on initial values.

Moreover, these algorithms can use autoencoders to perform

dimensionality reduction, addressing not only high-dimensional

clustering but also removing noise and outlier interference (Xie

et al., 2016). High-dimensional sparsity refers to the fact that

when dealing with text data, due to the large number of features

and wide distribution of samples, most features do not contribute

to the model and only produce noise signals. This characteristic

makes the data appear sparse in high-dimensional space, and the

similarity between any two samples is close to zero. Noise can

be considered as random errors or changes added to the original

signal. When dealing with text data, various types of noise may

be encountered, such as spelling errors, grammar errors, stop

words, etc.

Hence, we propose a novel deep learning-based text

clustering framework named pre-trained Encoder-Encoder

Clustering (TCBPMA), by amalgamating deep pre-trained

language models with autoencoder-based deep clustering

algorithms. As shown in the Figure 1, this framework

enhances text clustering from two facets: text vectorization

and clustering. In contrast to feature-based text representation

methods, pre-trained deep encoders offer enriched semantic

representations and alleviate feature sparsity issues. Building

on this foundation, we leverage the autoencoder in the deep

clustering algorithm for feature learning and clustering,

further elevating clustering effectiveness. Moreover, as both

models rely on deep learning techniques, they inherently

possess scalability. When confronted with large-scale text data,

improvements in clustering can be achieved by augmenting

training data and adjusting model parameters. We benchmark

our model against classic text clustering models, and

experimental results demonstrate its superiority across nearly

all considered datasets.

Our contributions in this study are as follows:

1. We introduce autoencoder-based clustering algorithms to short

text clustering, proposing a novel deep learning-based text

clustering framework (TCBPMA). By combining pre-trained

models and autoencoder clustering algorithms, we capture

text semantic features more accurately, leading to improved

clustering results.

2. Extensive experiments (on five datasets, with seven comparative

methods, and using three different metrics) demonstrate

that the proposed framework significantly outperforms the

SOTA competitor.

3. We organize a novel dataset containing content from

government complaint phone calls, applying our framework

and achieving favorable results. Furthermore,we can better

understand and address real-world government complaints,

improve problem-solving efficiency, and provide the

government with more informed recommendations for

policies and services.

2 Related work

We categorize related work into three main domains: the

first introduces existing deep feature extraction methods, the

second discusses the BiLSTM-based ELMO model, and the third

covers autoencoders.

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334436
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xu et al. 10.3389/fncom.2023.1334436

FIGURE 1

Relationship between motivation and contribution in this paper.

2.1 Deep learning-based feature extraction
methods

Deep learning-based feature extraction methods involve

employing deep neural networks to learn representations of input

data in order to better capture data features and structures. Deep

learning models use multiple layers of nonlinear transformations

to gradually abstract and refine useful information within the

data, generating higher-level representations (Dara and Tumma,

2018). Neurons are the fundamental units of deep neural

networks, receiving input signals and generating output signals

by learning neuron strategies. Analogous to the structure of the

brain, raw information is progressively processed and feature-

extracted through interconnected hidden neuron layers. Deep

neural networks utilize numerous neurons to process input data,

attaining higher-level representations and abstractions.

Convolutional Neural Networks (CNNs) (Kowsari et al., 2019)

are widely used deep learning models in NLP. Comprising

convolutional layers, pooling layers, and fully connected layers,

CNNs efficiently extract local features from images. Pooling layers

reduce feature dimensions while maintaining positional invariance,

and fully connected layers map the extracted features to the final

output. Recurrent Neural Networks (RNNs) (Kowsari et al., 2019)

are deep learning models suited for sequential data. Introducing

recurrent connections within the network enables RNNs to handle

temporal information within sequences. At each time step, an RNN

receives input and the hidden state from the previous time step,

allowing it to capture contextual information and extract relevant

features. Jia et al. (2022) proposed a feature extraction method

based on Doc2Vec and CNN. The sentence vector was obtained

through the DM model training of Doc2Vec and used as the input

of CNN to finally obtain the text feature vector. Long Short-Term

Memory (LSTM) (Yu et al., 2019) networks are a variation of

RNNs that address issues of gradient vanishing and exploding by

introducing mechanisms such as memory cells, input gates, forget

gates, and output gates. Wan et al. (2020) proposed a short text

clustering model ST-CNN. BiLSTM+CNN was used to mine the

context information of short texts and obtain deep semantic text

feature vectors.

2.2 ELMO model

The ELMOmodel is essentially a two-layer bidirectional LSTM

language model (Peters et al., 2018). The forward language model

learns the semantic information of a word within its following

context, and similarly, the backward language model learns the

semantic information of the word within its preceding context.

The objective function of the entire model involves maximizing

the likelihood of both forward and backward language models. The

structure is illustrated in Figure 2.

ELMO consists of three mainmodules: the bottom bluemodule

is the Embedding module, the middle green module consists of a

dual-layer LSTM, and the top orange module is the word vector

representation module. The Embedding module employs CNN

to encode the character-level model, essentially obtaining a word

embedding vector as the network’s bottom-layer input. The dual-

layer LSTM module is divided into a forward LSTM network and a

backward LSTM network. For the forward LSTM, given N tokens

(t1, t2, . . . , tn), the Language Model calculates the probability of the

k-th token appearing based on the token sequence of the previous

k-1 positions, forming the forward dual-layer LSTMmodel, and the

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334436
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xu et al. 10.3389/fncom.2023.1334436

FIGURE 2

Architecture diagram of ELMO model.

same principle applies to the backward LSTM. The formula for the

forward LSTMmodel is:

p (t1, t2, ..., tn) =
n
∏

k=1

p
(

tk
∣

∣t1, t2, ..., tk−1

)

(1)

The formula for the backward LSTMmodel is:

p (t1, t2, ..., tn) =
n
∏

k=1

p
(

tk
∣

∣tk+1, tk+2, ..., tn
)

(2)

The objective function is to maximize the log likelihood of both

forward and backward probabilities, expressed as follows:

n
∑

k=1

(

logp
(

tk
∣

∣t1, t2, ..., tk−1

)

+ logp
(

tk
∣

∣tk+1, tk+2, ..., tn
))

(3)

By using the above formula, we can obtain a token’s forward

vector and backward vector, which are then combined to

form the token’s final output vector (Merity et al., 2017). The

ELMO language model is designed to dynamically update word

representation vectors to address the issue of polysemy in different

contexts. The core idea of ELMO is as follows: Initially, traditional

language models are employed to train word embeddings on a

large corpus. These static word embeddings cannot distinguish

polysemous meanings. Subsequently, the trained data is used with

the ELMOmodel to capture context information, yielding dynamic

word embeddings based on the contextual information.

Deep representation learning is conducted using the two-

layer bidirectional LSTM language model of ELMO. Dynamic

word embeddings obtained through training with the ELMO

language model offer several advantages over traditional static

word embeddings. First, ELMO’s word embeddings are context-

specific and dynamic, allowing for different representations of the

same word in different contexts. This capability better captures

the relationships between words and their contexts. ELMO’s word

embeddings result from the summation of the outcomes of the

bidirectional language model. In supervised NLP tasks, ELMO

embeddings can be directly appended to the word vector input of

task-specific models or their highest-level representations.

2.3 Clustering algorithm based on
autoencoder

Autoencoders are a type of unsupervised learning neural

network model used for feature extraction and reconstruction

of data. They work by compressing input data into a lower-

dimensional encoding space and then attempting to reconstruct

the input data from this encoding space, with the goal of learning

useful features present in the data. An autoencoder consists of

two parts: the encoder and the decoder. The encoder maps the

input data to a lower-dimensional encoding representation, also

known as the latent representation. The decodermaps the encoding

representation from the latent space back to the reconstructed data,

aiming to restore the original input as closely as possible. The

structure is depicted above.

DEC (Deep Embedded Clustering) is a clustering algorithm

based on autoencoders (Xie et al., 2016). It iteratively learns data

vector representations and performs clustering tasks. Assuming

we have a dataset with n data points {x1, x2, . . . , xn} and the task

is to divide these data points into k clusters, each represented

by a center µj, where j = 1,. . .,k. Unlike traditional clustering

methods, DEC first applies a nonlinear mapping to the data,

transforming it from the feature space X to the latent feature

space Z, where θ is the parameter to be learned. This mapping

process is parameterized using a neural network structure. The

DEC model consists of an encoder and a clustering layer.

The DEC algorithm is divided into two main stages: first,

the initialization of the autoencoder θ and cluster centers µj,

forming the foundation of the entire process. Then, it enters the

second stage, optimizing θ and µj simultaneously to obtain more

accurate data representations and more stable clustering results.

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334436
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xu et al. 10.3389/fncom.2023.1334436

FIGURE 3

Architecture diagram of DEC model.

This approach, which combines autoencoders and clustering, has

significant advantages, particularly suitable for handling high-

dimensional data and complex nonlinear data distributions. The

model framework is shown in the Figure 3.

3 Proposed model

Our model framework figure as shown in Figure 4. Given a

corpus D = {x1, x2, . . . , xn}, where each x1 is a piece of text, our

objective is to partition the texts into several clusters. For each text

x1, we first employ the Bi-LSTM-based ELMO model for feature

extraction. Normalization techniques are then applied to ensure

feature stability and adherence to a normal distribution. Finally,

the normalized feature vectors are fed into the selected clustering

algorithm, DEC, to produce results.

3.1 Feature extractor module

We train text representation vectors using the ELMO model

based on the bidirectional LSTM language model. The language

model aims to estimate the probability function of word sequences

from a large unlabeled corpus. Given a sequence of n words

[h1, h2, . . . , hn] in a text, the pre-trained languagemodel transforms

it into vectors [h1, h2, . . . , hn]. Due to the variability in sentence

or document lengths, we can’t directly input the context features

[h1, h2, . . . , hn] into subsequent modules. Thus, it’s necessary to

fuse the context features and the text representation vectors

into fixed-size feature vectors.n this paper, we employ two

pooling strategies:

(1) Max Pooling (Hirschberg and Manning, 2015): Max pooling

selects themaximum value on each dimension of the d-dimensional

context feature vectors [h1, h2, . . . , hn] to construct the text

representation. The figure below illustrates how max pooling

considers the highest value as the most significant feature.

h[k] = max
i=1...n

hik (4)

(2) Average Pooling (Huang et al., 2019): The d-dimensional

context feature vectors [h1, h2, . . . , hn] are averaged to obtain the

feature vector. The concept behind average pooling is that all

context feature vectors contribute to representing the entire text,

and the average of these vectors reduces noise in the model. The

formula is illustrated below.

h[k] =
1

n

∑

i=1...n

hik (5)

After feature extraction, we perform feature normalization on

the vector representations obtained from the feature extraction

strategies. Feature normalization is essential to ensure that fixed-

size vector representations possess normality or stability. We utilize

four normalization strategies: identity normalization, standard

normalization, layer normalization, and min-max normalization.

In this paper, we select layer normalization as the baseline

experiment for comparison with other strategies.

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334436
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xu et al. 10.3389/fncom.2023.1334436

FIGURE 4

Proposed modeling framework.

(1) Identity Normalization (Guan et al., 2020): Identity

normalization is a unit function, defined by the formula:

f (h) = h (6)

(2) Standard Normalization (Guan et al., 2020): Standard

normalization is a common feature normalization method. It

transforms input feature vectors into vectors with a unit norm using

the following formula. After transformation, the Euclidean distance

between two feature vectors equals their cosine distance.

hi =
hi
∣

∣

∣

∣hi
∣

∣

∣

∣

(7)

(3) Layer Normalization (Ba et al., 2016): Layer normalization

is a strategy that helps mitigate the problem of covariate shift

during neural network training. The normalization layer applies the

function shown in the figure below.

hi =
hi − ϕi

σi
(8)

(4) Min-Max Normalization (Han et al., 2022): Min-max

normalization is a strategy that maintains the original distribution

of feature vectors while normalizing. The formula is as follows:

hi =
hi −mind(hid

)

maxd(hid
)

−mind(hid
) (9)

3.2 Clustering module

First, we use the feature-extracted vectors as input to train

the autoencoder component. The objective of the autoencoder is

to minimize the error between the input and its reconstruction,

thereby learning a compact representation of the data. In this

stage, the autoencoder’s weight parameters are updated using

backpropagation. After training, we extract the output from the

encoder, which represents the latent feature vectors. These vectors

serve as the new representation of the data features. Subsequently,

we initialize the feature vectors using k-means clustering to create

the initial cluster centers. Based on the current cluster centers, we

assign the feature vectors to the nearest cluster. Here, we use a

student-t distribution to measure the similarity between embedded

nodes and cluster centers, as expressed by the following formula:

qij =

(

1+ ‖zi−µi‖2
α

)
α+1
2

∑

j
′

(

1+ ‖zi−µi‖2
α

)
α+1
2

(10)

Where zi is the embedded vector of xi after mapping, α

represents the degrees of freedom, which we set to 1. qij is the

probability of assigning sample i to cluster j. Subsequently, we use

the minimization of KL divergence as the objective function, as

shown in the following formula:

L = KL (P||Q) =
∑

i

∑

j

pijlog
pij

qij
(11)

Where pij is the auxiliary distribution of qij. Based on the above,

we update the cluster centers to minimize the squared error within

the clusters. Finally, we iterate through these steps until reaching

the convergence criteria or the maximum iteration limit.

Our parameter settings are as follows: The neural network

architecture follows the default settings in the original paper (Xie

et al., 2016). The maximum number of iterations for pretraining is

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334436
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xu et al. 10.3389/fncom.2023.1334436

set to 500. During the optimization phase, the values for α, batch

size, and update interval are all the same, which are 1, 256, and 30,

respectively. The graphics card we used is NVIDIA-GeForce-RTX-

3090, the cuda version is 11.6, the pytorch version is 1.12.0, and the

code tool is Pycharm.

4 Experiments

4.1 Comparison method

TF-IDF: TF-IDF is a weighted calculation representing the

importance of a word in a text. TF represents the frequency

of a word in the text, where a higher TF value implies greater

representativeness. For instance, in a text centered around “mobile

phones,” the word “mobile” would have a high frequency and strong

representation. However, frequently used words like “of,” “you,”

and “I” also have high frequencies. Therefore, relying solely on TF

values might not accurately gauge a word’s importance in the text.

To address this, this paper introduces IDF tomeasure words.When

a word is frequently used in the current text but less so in other

texts, its IDF value is higher, indicating greater importance to the

current text.

Word2Vec: Word2Vec is a neural network-based word vector

generation model designed to map words to low-dimensional

vectors for use in machine learning algorithms. It learns by

analyzing extensive text data and employs two models, Skip-gram

and CBOW, to generate vector representations for each word.

Word2Vec’s central idea is to predict a word’s probability based

on its context (other words in a text), thus learning word vector

representations. These vectors have strong semantic and contextual

relevance, making them suitable for various natural language

processing tasks.

BERT: BERT, short for Bidirectional Encoder Representation

from Transformers, is a pre-trained model based on Transformers.

Researchers designed the BERT model using Transformers as a

foundation and trained it on a large corpus through two tasks.

The first task involves masking certain words in the text and

predicting them based on the context of the other unmasked

words. The second task predicts whether two sentences are

consecutive. Through these tasks, the BERT pre-trained model

excels in capturing both semantic and contextual information from

text data, achieving remarkable results in various natural language

processing tasks.

4.2 Datasets

We selected a total of four representative datasets and

conducted five experiments. Table 1 is a brief summary of

these databases.

AGNews (Zhang and LeCun, 2015): AGNews is a news

classification corpus. It consists of four categories: World,

Sports, Business, and Technology. Yahoo! Answers (Zhang and

LeCun, 2015): Each text in this corpus includes a question

and its corresponding answer. There are ten categories: Society

and Culture, Science and Mathematics, Health, Education and

Reference, Sports, Business and Finance, Entertainment and

TABLE 1 Dataset basic information.

Dataset Number of class Total number of data

AGNews 4 30,000

Yahoo! Answers 10 140,000

R2 2 5,859

R5 5 6,803

CCTC dataset 22 45,452

Music, Family and Relationships, Computers and Internet, Politics

and Government.

Reuters-21578 Corpus: Initially collected and labeled by

the Carnegie Group and Reuters, this corpus contains 21,578

documents categorized into 135 classes. Unlike other corpora, this

dataset is highly imbalanced, with some classes having thousands

of examples while others only have a few. Based on previous

research (Cai et al., 2010), we selected two clustering corpora, R2

and R5, which include the two and five largest classes, respectively.

The classes in corpus R2 are “earn” and “acq.” The classes in

corpus R5 are “earn,” “acq,” “cude,” “trade,” and “money fx.” In

the upcoming experiments, we utilize these imbalanced corpora to

evaluate our model.

Government Complaint Telephone Content Dataset: We

compiled a dataset consisting of 45,452 government complaint

telephone content entries across 22 categories, including epidemic

prevention and control, civil affairs, enterprise services, technology

and information industry, education and sports, community

cadres’ conversations, rural agriculture, organizational personnel,

labor and social security, land and resources management, party

and government affairs, business and trade tourism, environmental

protection inspection, economic management, environmental

protection, discipline inspection and supervision, transportation,

health and family planning, political and legal, urban and rural

construction, and others. The numbers of instances vary, with

the largest category being business and trade tourism with 22,518

entries, and the smallest being party and government affairs with 41

entries. The dataset content is similar to this: “The caller reported

the loss of a mobile phone and identity card in Hall 3 of the XX

Convention Center. They complained to the Convention Center

Organizing Committee and the Committee’s leader, Mr. Zhou,

stating that there were no reminders for visitors to take care of their

personal belongings. After citizens raised concerns, they also shifted

responsibility. Please handle the matter.”

In the AGNews, Yahoo! Answers, and CCTC Dataset, we

extracted 1000 samples for each class. This choice was made to

achieve a small but balanced dataset, as it has been observed that

a small yet balanced dataset can yield models similar to those

trained on the original data (Wang et al., 2016). Sampling 1000

samples per class significantly reduces the computational load

while maintaining a reasonable impact on model performance. In

the R2 dataset, we randomly selected 2,000 instances from each

class, resulting in a total of 4000 instances. For the R5 dataset,

we added the remaining three classes to the R2 dataset, totaling

6,803 instances. For the English datasets, we performed simple

preprocessing, which included merging all lines within a document

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334436
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xu et al. 10.3389/fncom.2023.1334436

into one, removing special symbols and stopwords, and performing

lemmatization. As for the Chinese dataset, we conducted basic

preprocessing such as tokenization and stopwords removal.

4.3 Evaluation metrics

We chose three evaluation metrics in total to assess the model

performance using different criteria.

Clustering Accuracy (ACC) (Xu et al., 2003): The clustering

accuracy is defined as follows:

ACC = max
m

∑n
i=1 1

{

li = m (ci)
}

n
(12)

where li is the true label of document i,Ci is the predicted label from

the clustering algorithm, and m() is a one-to-one mapping between

cluster labels and ground truth labels. The function 1 {} outputs 1
when the equation inside the curly brackets is true and 0 otherwise.

Normalized Mutual Information (NMI) (Strehl and Ghosh,

2002): The normalized mutual information is given by:

NMI(L,C) =
MI(L,C)

√
H(L)H(C)

(13)

where L represents the true labels and C represents the predicted

labels from the clustering algorithm. MI(L, C) is the mutual

information between L and C, measuring their relationship. NMI

scales the MI(L, C) value between 0 and 1.

Adjusted Rand Index (ARI) (Yeung and Ruzzo, 2001): The

Adjusted Rand Index is calculated as:

ARI =

∑

i,j

(

ni,j
2

)

−

[

∑

i

(

ni.
2

)

∑

j

(

n.j
2

)]

/

(

n

2

)

1
2

[

∑

i

(

ni.
2

)

+
∑

j

(

n.j
2

)]

−

[

∑

i

(

ni.
2

)

∑

j

(

n.j
2

)]

/

(

n

2

)

(14)

where n is the total number of instances, ni,j is the number of

instances that appear in both the i-th predicted label and the j-

th true label. ARI computes the similarity between ground truth

labels and clustering algorithm predicted labels, and normalizes it

between [0,1].

4.4 Results and discussion of the
comparative analysis with other methods

The table provided above presents the results of all models on

all five datasets. I, LN, N, MM stand for Identity Normalization,

Layer Normalization, Standard Normalization, and Min-Max

Normalization feature transformation strategies, respectively. For

each dataset, three evaluation metrics are used to assess the

clustering results. We ran each model 1,000 times and recorded the

best results. As a result, we obtained 15metrics for the four datasets.

As shown in Tables 2–5, our model outperforms classical bag-

of-words models, word embedding models, and traditional

clustering models based on pre-trained models, proving

TABLE 2 Cluster evaluation on AGNews.

Methods ACC NMI ARI

AGNews

TFIDF+k-means 0.568 0.330 0.300

Word2Vec+k-means 0.567 0.485 0.494

ELMO+k-means (Guan et al., 2020) 0.807 0.591 0.582

DEC 0.470 0.124 0.115

TFIDF+DEC (Subakti et al., 2022) 0.721 0.386 0.414

Word2Vec+DEC 0.784 0.499 0.532

BERT+DEC (Subakti et al., 2022) 0.803 0.538 0.570

TCBPMA 0.844 0.586 0.644

The bold value indicates that the Acc value is the highest.

TABLE 3 Cluster evaluation on Yahoo! Answers.

Methods ACC NMI ARI

Yagoo! Answers

TFIDF+k-means 0.319 0.187 0.165

Word2Vec+k-means 0.227 0.344 0.263

ELMO+k-means 0.466 0.328 0.314

DEC 0.142 0.120 0.110

TFIDF+DEC 0.402 0.217 0.162

Word2Vec+DEC 0.439 0.326 0.192

BERT+DEC 0.475 0.290 0.233

TCBPMA 0.524 0.370 0.275

The bold value indicates that the Acc value is the highest.

TABLE 4 Cluster evaluation on R2.

Methods ACC NMI ARI

R2

TFIDF+k-means 0.739 0.348 0.348

Word2Vec+k-means 0.871 0.554 0.551

ELMO+k-means 0.843 0.498 0.484

DEC 0.760 0.374 0.369

TFIDF+DEC 0.859 0.506 0.515

Word2Vec+DEC 0.894 0.608 0.653

BERT+DEC 0.849 0.504 0.489

TCBPMA 0.916 0.634 0.692

The bold value indicates that the Acc value is the highest.

the effectiveness of the TCBPMA model. Specifically, the

ELMO+Mean+LN+DEC model performs the best on all datasets.

For instance, on the AGNews dataset, it achieves an accuracy of

84.4%, which is 3.7% higher than the best comparative method

ELMO+K-means.

Among all comparative models, BERT+DEC is one of the

strongest, but it still lags behind our deep clustering model

TCBPMA, especially on the R2 dataset. This is because although

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334436
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xu et al. 10.3389/fncom.2023.1334436

TABLE 5 Cluster evaluation on R5.

Methods ACC NMI ARI

R5

TFIDF+k-means 0.522 0.410 0.410

Word2Vec+k-means 0.129 0.583 0.623

ELMO+k-means 0.557 0.459 0.458

DEC 0.379 0.222 0.185

TFIDF+DEC 0.587 0.425 0.468

Word2Vec+DEC 0.713 0.542 0.535

BERT+DEC 0.723 0.549 0.529

TCBPMA 0.760 0.554 0.614

The bold value indicates that the Acc value is the highest.

TABLE 6 Cluster evaluation on CCTC dataset.

Methods ACC NMI ARI

CCTC dataset

TFIDF+k-means 0.127 0.432 0.230

Word2Vec+k-means 0.242 0.283 0.181

ELMO+k-means 0.196 0.365 0.258

DEC 0.275 0.167 0.071

TFIDF+DEC 0.501 0.389 0.271

Word2Vec+DEC 0.465 0.353 0.244

BERT+DEC 0.526 0.486 0.439

TCBPMA 0.518 0.426 0.374

The bold value indicates that the Acc value is the highest.

the BERT model excels in handling long texts and cross-text

tasks, it may suffer from information scarcity when dealing with

shorter texts. One possible reason is that the word embeddings

of the ELMO model are context-dependent, while BERT’s word

embeddings are generated based on the entire sentence. For

shorter texts, where context is limited, using the ELMO model can

better capture the semantic information of individual words. The

ELMOmodel can generate multi-level word vector representations,

including lexical, sentence-level, and contextual levels. In short text

clustering, using different levels of word vector representations

helps capture diverse semantic information. BERT’s training

requires sentence pairs as input, which can be challenging to find

for short texts. Therefore, in the clustering of shorter texts, ELMO’s

performance is better than BERT’s, but for longer texts, BERT’s

performance is still superior to ELMO’s, as shown in Table 6.

Additionally, BERT demands extensive pre-training and consumes

more computational resources and time. These factors contribute

to our model’s superior performance in short text clustering.

Regarding the traditional clustering algorithm K-means,

whether combined with feature-based text representations or pre-

trained deep learning models, its performance is not as good

as the deep clustering algorithm DEC. Especially on the R5

dataset, the accuracy difference is around 20%. While K-means

is versatile and computationally efficient, it is highly sensitive

TABLE 7 Evaluation of ablation experiments on AGNews.

Methods ACC NMI ARI

AGNews

ELMO+MAX+I+DEC 0.527 0.220 0.185

ELMO+MAX+N+DEC 0.264 0.005 0.004

ELMO+MAX+MM+DEC 0.250 0.000 0.000

ELMO+MAX+LN+DEC 0.823 0.550 0.590

ELMO+Mean+I+DEC 0.388 0.077 0.068

ELMO+Mean+N+DEC 0.250 0.000 0.000

ELMO+Mean+MM+DEC 0.395 0.097 0.072

ELMO+Mean+LN+DEC 0.844 0.586 0.644

The bold value indicates that the Acc value is the highest.

TABLE 8 Evaluation of ablation experiments on Yahoo! Answers.

Methods ACC NMI ARI

Yahoo! Answers

ELMO+MAX+I+DEC 0.340 0.201 0.134

ELMO+MAX+N+DEC 0.100 0.000 0.000

ELMO+MAX+MM+DEC 0.135 0.018 0.006

ELMO+MAX+LN+DEC 0.487 0.339 0.250

ELMO+Mean+I+DEC 0.132 0.014 0.007

ELMO+Mean+N+DEC 0.100 0.000 0.000

ELMO+Mean+MM+DEC 0.138 0.016 0.008

ELMO+Mean+LN+DEC 0.524 0.370 0.275

The bold value indicates that the Acc value is the highest.

to noise and outliers and does not perform well on high-

dimensional data. Furthermore, short texts are inherently sparse

due to their limited length, leading to noise and spelling errors,

such as “4u” instead of “for you,” or “thx” instead of “thank

you.” Hence, traditional clustering algorithms are not directly

applicable to short text clustering. K-means’s accuracy in short text

clustering tends to be lower than in long text clustering. On the

other hand, DEC is an end-to-end unsupervised deep clustering

model that learns low-dimensional feature representations using

autoencoders and performs clustering in a fine-tuning stage on

those representations. This approach effectively addresses the

challenges of high dimensionality and sparsity.

4.5 Results and discussion of ablation
experiments

In this experiment, we conducted a comparison using four

different feature normalization methods as ablation experiments.

In the neural language model, as shown in the previous section,

two methods are used to fuse all features into fixed-sized features.

From the Tables 7–11, it can be observed that average pooling yields

better experimental results than max pooling. Compared to max

pooling, average pooling can better capture the overall information

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334436
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xu et al. 10.3389/fncom.2023.1334436

TABLE 9 Evaluation of ablation experiments on R2.

Methods ACC NMI ARI

R2

ELMO+MAX+I+DEC 0.869 0.526 0.544

ELMO+MAX+N+DEC 0.500 0.000 0.000

ELMO+MAX+MM+DEC 0.743 0.185 0.235

ELMO+MAX+LN+DEC 0.894 0.602 0.621

ELMO+Mean+I+DEC 0.518 0.002 0.001

ELMO+Mean+N+DEC 0.500 0.000 0.000

ELMO+Mean+MM+DEC 0.517 0.002 0.001

ELMO+Mean+LN+DEC 0.916 0.634 0.692

The bold value indicates that the Acc value is the highest.

TABLE 10 Evaluation of ablation experiments on R5.

Methods ACC NMI ARI

R5

ELMO+MAX+I+DEC 0.530 0.423 0.363

ELMO+MAX+N+DEC 0.200 0.000 0.000

ELMO+MAX+MM+DEC 0.405 0.170 0.125

ELMO+MAX+LN+DEC 0.549 0.520 0.405

ELMO+Mean+I+DEC 0.405 0.018 0.030

ELMO+Mean+N+DEC 0.200 0.000 0.000

ELMO+Mean+MM+DEC 0.440 0.017 0.029

ELMO+Mean+LN+DEC 0.760 0.554 0.614

The bold value indicates that the Acc value is the highest.

TABLE 11 Evaluation of ablation experiments on CCTC dataset.

Methods ACC NMI ARI

CCTC dataset

ELMO+MAX+I+DEC 0.411 0.304 0.183

ELMO+MAX+N+DEC 0.125 0.000 0.000

ELMO+MAX+MM+DEC 0.352 0.228 0.135

ELMO+MAX+LN+DEC 0.417 0.290 0.180

ELMO+Mean+I+DEC 0.453 0.359 0.244

ELMO+Mean+N+DEC 0.125 0.000 0.000

ELMO+Mean+MM+DEC 0.476 0.348 0.220

ELMO+Mean+LN+DEC 0.518 0.426 0.324

The bold value indicates that the Acc value is the highest.

of the text, rather than just focusing on local information. For a

sentence, average pooling can better reflect the overall semantic

meaning of the sentence, while max pooling only considers the

most important words, potentially overlooking other important

information. Additionally, average pooling is relatively more stable

compared to max pooling, which can mitigate biases in word

selection by the model.

In our TCBPMA model, feature transformation is performed

before inputting the feature vectors into the clustering algorithm.

Layer normalization is the most effective strategy when configuring

feature fusion based on average pooling. Compared to the

configuration of ELMO+Mean+I+DEC, the configuration

of ELMO+Mean+LN+DEC shows significant performance

improvement. ELMO itself is a model with layer normalization,

which uses residual connections and layer normalization to address

the vanishing and exploding gradient problems in deep neural

networks. Therefore, when using ELMO for text representation,

layer normalization is more adaptive, allowing better retention

of ELMO’s features. On the other hand, the poor performance

of min-max normalization might be due to the presence of

outliers or anomalies in the data, which significantly affect the

calculation of the minimum and maximum values, causing

issues with the normalization of the entire dataset. Additionally,

the simplicity of min-max normalization’s calculation, without

considering correlations across different feature dimensions,

might also contribute to its performance decline. In contrast, layer

normalization can better consider correlations across different

feature dimensions, whereas identity normalization might not

adapt well to various data distribution scenarios. In some cases,

the value of NMI is zero. This could be because the feature vectors

obtained by combining feature extraction with max pooling

and feature normalization in the feature extraction module may

not effectively capture useful information in the data, especially

information related to clustering. In the clustering module,

improper selection of hyperparameters for the DEC algorithm

based on autoencoders may also lead to poor clustering results.

Here, we used uniform hyperparameters, which could potentially

result in an NMI of zero.

4.6 Results visualization

The experimental results from the previous section

indicate that our clustering model outperforms traditional

text clustering models based on features and generative models.

This improvement can be attributed to the fact that the distributed

text representations constructed by deep models position similar

texts closer together, with the Euclidean distances between text

features representing semantic relationships. To better visualize the

experimental results, we employ the t-SNE visualization method

(Van derMaaten andHinton, 2008). t-SNE is based on probabilistic

distributions of similarity to map data from high-dimensional

space to a lower-dimensional space, preserving the relative

distances between similar data points in the lower-dimensional

space and retaining the local structure of the original data as much

as possible.

For visualization in a two-dimensional space, we set the

output dimensions of t-SNE to 2. We select the AGnews and

R2 datasets for feature visualization.The results are as shown in

Figures 5, 6. After referring to the original t-SNE paper, we set the

random seed to 30, the learning rate to 200, and the number of

iterations to 1,000. We experimentally test a range of perplexity

values from 5 to 50 and ultimately choose 30 based on the

visualization results. The left figure shows the visualization result

of word2vec+K-means, and the right figure shows the visualization

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334436
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xu et al. 10.3389/fncom.2023.1334436

FIGURE 5

AGNews visualization.

FIGURE 6

R2 visualization.

FIGURE 7

Nemenyi test graph.

result of our TCBPMAmodel. It’s evident that our model performs

better in text clustering. In Figure 1, blue, orange, green, and

red represent World, Sports, Business, and Sci/Tech categories

respectively. In Figure 2, blue represents the “earn” category, and

orange represents the “acq” category.

4.7 Nemenyi test graph analysis

We extracted precision values of different methods across five

datasets and employedMATLAB to generate the Nemenyi test plot.

The results are as shown in Figure 7. Through the analysis of this

plot, our framework’s advantages became more evident, with our

approach ranking first, followed by BERT+DEC, and the original

DEC performing the least effectively.

5 Conclusion

This article introduces a deep learning-based text clustering

framework that combines pre-trained models with deep clustering

algorithms, effectively enhancing the accuracy and efficiency

of text clustering. Experimental results demonstrate that this

model performs exceptionally well across various datasets and

exhibits greater robustness compared to traditional text clustering

algorithms. Furthermore, this model is flexible and scalable and

can be applied to medical data clustering. The proposed framework

has some limitations. For instance, the framework relies on context

and may not be sufficiently adaptable to dynamic or continuously

changing data streams. When handling real-time or dynamic

data, additional mechanisms may be necessary to maintain

the stability of the model. Additionally, our model framework

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334436
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xu et al. 10.3389/fncom.2023.1334436

involves several adjustable hyperparameters, such as the number

of clusters and learning rate. The selection of hyperparameters

can significantly impact the performance of the framework, but

identifying suitable hyperparameters typically requires extensive

experimentation and tuning.

In the medical field, our clustering framework can be utilized

for disease diagnosis. By analyzing patients’ medical records,

our clustering framework classifies patients, assisting doctors in

more accurate disease diagnoses. For instance, patients can be

categorized into different disease classes such as flu, pneumonia,

gastritis, etc., based on their medical history, symptoms, and

examination results. Additionally, it can contribute to drug

development by analyzing drug components and mechanisms

of action. This aids researchers in discovering new drug targets

and combinations. Moreover, the framework can be employed

to screen potential drug candidates, enhancing the efficiency of

drug development.

In other industries, our clustering framework finds diverse

applications. In the financial sector, it can analyze customer

credit risks, assisting financial institutions in categorizing and

managing clients. In marketing, through analyzing consumer

purchasing behavior and preferences, our clustering framework

helps businesses identify different consumer segments, enabling the

formulation of more effective marketing strategies.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

QX: Conceptualization, Data curation, Funding acquisition,

Investigation, Methodology, Software, Supervision, Writing –

original draft, Writing – review & editing. HG: Conceptualization,

Data curation, Formal analysis, Methodology, Project

administration, Supervision, Validation, Writing – original

draft, Writing – review & editing. SJ: Funding acquisition, Project

administration, Resources, Supervision, Visualization, Writing –

review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Anhui University Natural Science Key Research

Project under Grant No. KJ2021A0994 and the Natural Science

Research Project of Anhui Educational Committee under Grant

No. 2023AH052180.

Acknowledgments

We would like to thank all reviewers and editor for their

comments on this study. The authors are equally grateful to the

Hefei University Arithmetic Platform for providing support.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Aggarwal, C. C., and Zhai, C. (2012). “A survey of text clustering algorithms,” in
Mining text data, 77–128. doi: 10.1007/978-1-4614-3223-4_4

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Bhattacharjee, P., and Mitra, P. (2021). A survey of density based clustering
algorithms. Front. Comput. Sci. 15, 1–27. doi: 10.1007/s11704-019-9059-3

Bu, F., Hu, C., Zhang, Q., Bai, C., Yang, L. T., and Baker, T. (2020). A cloud-
edge-aided incremental high-order possibilistic c-means algorithm for medical data
clustering. IEEE Trans. Fuzzy Syst. 29, 148–155. doi: 10.1109/TFUZZ.2020.3022080

Cai, D., He, X., and Han, J. (2010). Locally consistent concept factorization
for document clustering. IEEE Trans. Knowl. Data Eng. 23, 902–913.
doi: 10.1109/TKDE.2010.165

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bordes, A. (2017). Supervised
learning of universal sentence representations from natural language inference data.
arXiv preprint arXiv:1705.02364. doi: 10.18653/v1/D17-1070

Dara, S., and Tumma, P. (2018). “Feature extraction by using deep
learning: A survey,” in 2018 Second International Conference on Electronics,
Communication and Aerospace Technology (ICECA) (IEEE), 1795–1801.
doi: 10.1109/ICECA.2018.8474912

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Guan, R., Zhang, H., Liang, Y., Giunchiglia, F., Huang, L., and Feng, X. (2020). Deep
feature-based text clustering and its explanation. IEEE Trans. Knowl. Data Eng. 34,
3669–3680. doi: 10.1109/TKDE.2020.3028943

Han, J., Pei, J., and Tong, H. (2022). Data Mining: Concepts and Techniques.
Burlington, MA: Morgan kaufmann.

Hirschberg, J., andManning, C. D. (2015). Advances in natural language processing.
Science 349, 261–266. doi: 10.1126/science.aaa8685

Huang,W., Chen, E., Liu, Q., Chen, Y., Huang, Z., Liu, Y., et al. (2019). “Hierarchical
multi-label text classification: An attention-based recurrent network approach,” in
Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, 1051–1060. doi: 10.1145/3357384.3357885

Jaya Mabel Rani, A., and Pravin, A. (2022). Clustering by hybrid k-means-based
rider sunflower optimization algorithm for medical data. Adv. Fuzzy Syst. 2022,
7783196. doi: 10.1155/2022/7783196

Jia, J., Wang, H., Ren, K., and Kang, W. (2022). Research on text clustering based on
sentence vectors and convolutional neural networks. Comput. Eng. Applic. 58, 123–128.

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334436
https://doi.org/10.1007/978-1-4614-3223-4_4
https://doi.org/10.1007/s11704-019-9059-3
https://doi.org/10.1109/TFUZZ.2020.3022080
https://doi.org/10.1109/TKDE.2010.165
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.1109/ICECA.2018.8474912
https://doi.org/10.1109/TKDE.2020.3028943
https://doi.org/10.1126/science.aaa8685
https://doi.org/10.1145/3357384.3357885
https://doi.org/10.1155/2022/7783196
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Xu et al. 10.3389/fncom.2023.1334436

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., and
Brown, D. (2019). Text classification algorithms: a survey. Information 10, 150.
doi: 10.3390/info10040150

Li, I., Pan, J., Goldwasser, J., Verma, N.,Wong,W. P., Nuzumlalı, M. Y., et al. (2022).
Neural natural language processing for unstructured data in electronic health records:
a review. Comput. Sci. Rev. 46, 100511. doi: 10.1016/j.cosrev.2022.100511

Merity, S., Keskar, N. S., and Socher, R. (2017). Regularizing and optimizing lstm
language models. arXiv preprint arXiv:1708.02182.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). “Distributed
representations of words and phrases and their compositionality,” in Advances in
Neural Information Processing Systems, 26.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., et
al. (2018). Deep contextualized word representations. arXiv preprint arXiv:1802.
05365.

Ramos, J. (2003). “Using tf-idf to determine word relevance in document queries,”
in Proceedings of the First Instructional Conference on Machine Learning (Citeseer),
29–48.

Strehl, A., and Ghosh, J. (2002). Cluster ensembles–a knowledge reuse framework
for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617.

Subakti, A., Murfi, H., and Hariadi, N. (2022). The performance of bert as
data representation of text clustering. J. Big Data 9, 1–21. doi: 10.1186/s40537-022-
00564-9

Van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-sne. J. Mach.
Learn. Res. 9, 2579–2605.

Wan, H., Ning, B., Tao, X., and Long, J. (2020). “Research on chinese
short text clustering ensemble via convolutional neural networks,” in
Artificial Intelligence in China: Proceedings of the International Conference on
Artificial Intelligence in China (Springer), 622–628. doi: 10.1007/978-981-15-
0187-6_74

Wang, Z., Mi, H., and Ittycheriah, A. (2016). Semi-supervised clustering for short
text via deep representation learning. arXiv preprint arXiv:1602.06797.

Woo, H., Kim, K., Cha, K., Lee, J.-Y., Mun, H., Cho, S. J., et al. (2019). Application of
efficient data cleaning using text clustering for semistructured medical reports to large-
scale stool examination reports: methodology study. J. Med. Internet Res. 21, e10013.
doi: 10.2196/10013

Xie, J., Girshick, R., and Farhadi, A. (2016). “Unsupervised deep embedding
for clustering analysis,” in International Conference on Machine Learning (PMLR),
478–487.

Xu, J., Xu, B., Wang, P., Zheng, S., Tian, G., and Zhao, J. (2017). Self-taught
convolutional neural networks for short text clustering. Neural Netw. 88, 22–31.
doi: 10.1016/j.neunet.2016.12.008

Xu, W., Liu, X., and Gong, Y. (2003). “Document clustering based on non-
negative matrix factorization,” in Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in Informaion Retrieval, 267–273.
doi: 10.1145/860435.860485

Yeung, K. Y., and Ruzzo, W. L. (2001). Details of the adjusted rand index and
clustering algorithms, supplement to the paper an empirical study on principal
component analysis for clustering gene expression data. Bioinformatics 17, 763–774.
doi: 10.1093/bioinformatics/17.9.763

Yin, B., Zhao, M., Guo, L., and Qiao, L. (2023). “Sentence-bert and k-means
based clustering technology for scientific and technical literature,” in 2023 15th
International Conference on Computer Research and Development (ICCRD) (IEEE),
15–20. doi: 10.1109/ICCRD56364.2023.10080830

Yu, Y., Si, X., Hu, C., and Zhang, J. (2019). A review of recurrent neural
networks: Lstm cells and network architectures. Neural Comput. 31, 1235–1270.
doi: 10.1162/neco_a_01199

Zhang, X., and LeCun, Y. (2015). Text understanding from scratch. arXiv preprint
arXiv:1502.01710.

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334436
https://doi.org/10.3390/info10040150
https://doi.org/10.1016/j.cosrev.2022.100511
https://doi.org/10.1186/s40537-022-00564-9
https://doi.org/10.1007/978-981-15-0187-6_74
https://doi.org/10.2196/10013
https://doi.org/10.1016/j.neunet.2016.12.008
https://doi.org/10.1145/860435.860485
https://doi.org/10.1093/bioinformatics/17.9.763
https://doi.org/10.1109/ICCRD56364.2023.10080830
https://doi.org/10.1162/neco_a_01199
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	Text clustering based on pre-trained models and autoencoders
	1 Introduction
	2 Related work
	2.1 Deep learning-based feature extraction methods
	2.2 ELMO model
	2.3 Clustering algorithm based on autoencoder

	3 Proposed model
	3.1 Feature extractor module
	3.2 Clustering module

	4 Experiments
	4.1 Comparison method
	4.2 Datasets
	4.3 Evaluation metrics
	4.4 Results and discussion of the comparative analysis with other methods
	4.5 Results and discussion of ablation experiments
	4.6 Results visualization
	4.7 Nemenyi test graph analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

