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Information bottleneck-based
Hebbian learning rule naturally
ties working memory and
synaptic updates

Kyle Daruwalla1* and Mikko Lipasti2

1Cold Spring Harbor Laboratory, Long Island, NY, United States, 2Electrical and Computer Engineering

Department, University of Wisconsin-Madison, Madison, WI, United States

Deep neural feedforward networks are e�ective models for a wide array of

problems, but training and deploying such networks presents a significant energy

cost. Spiking neural networks (SNNs), which are modeled after biologically

realistic neurons, o�er a potential solution when deployed correctly on

neuromorphic computing hardware. Still, many applications train SNNs o	ine,

and running network training directly on neuromorphic hardware is an ongoing

research problem. The primary hurdle is that back-propagation, which makes

training such artificial deep networks possible, is biologically implausible.

Neuroscientists are uncertain about how the brain would propagate a precise

error signal backward through a network of neurons. Recent progress addresses

part of this question, e.g., the weight transport problem, but a complete solution

remains intangible. In contrast, novel learning rules based on the information

bottleneck (IB) train each layer of a network independently, circumventing the

need to propagate errors across layers. Instead, propagation is implicit due the

layers’ feedforward connectivity. These rules take the form of a three-factor

Hebbian update a global error signal modulates local synaptic updates within

each layer. Unfortunately, the global signal for a given layer requires processing

multiple samples concurrently, and the brain only sees a single sample at a time.

We propose a new three-factor update rule where the global signal correctly

captures information across samples via an auxiliary memory network. The

auxiliary network can be trained a priori independently of the dataset being

used with the primary network. We demonstrate comparable performance to

baselines on image classification tasks. Interestingly, unlike back-propagation-

like schemes where there is no link between learning and memory, our rule

presents a direct connection between working memory and synaptic updates.

To the best of our knowledge, this is the first rule to make this link explicit.

We explore these implications in initial experiments examining the e�ect of

memory capacity on learning performance. Moving forward, this work suggests

an alternate view of learning where each layer balances memory-informed

compression against task performance. This view naturally encompasses several

key aspects of neural computation, including memory, e�ciency, and locality.

KEYWORDS

neuromorphic computing, Neural Network, learning rule, information bottleneck,

back-propagation

1 Introduction

The success of deep learning demonstrates the usefulness of large feedforward neural

networks for solving a variety of tasks, but the energy cost associated with such networks

presents an ongoing problem (Strubell et al., 2019). Neuromorphic computing platforms

and spiking neural networks (SNNs), which model the power efficient properties of

biological neural networks, offer a possible solution (Christensen et al., 2022). While recent

advances allow SNNs to be trained offline (Neftci et al., 2019), these approaches only
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benefit from energy-efficient inference even though training

continues to be the dominant energy bottleneck for deep

learning. Though there are many strategies for training SNNs,

it is widely believed that the most effective technique will

be a biologically plausible learning rule (Zenke et al., 2021).

While reproducing biology is not a strict requirement, the

engineering constraints of neuromorphic hardware naturally align

with biological constraints. Namely, we identify three defining

properties of biologically plausible learning rules that directly

impact energy efficiency: locality, asynchrony, and real-time

processing. These three properties reduce the communication

overhead and coordination required by a neuromorphic chip which

are large sources of power consumption (Christensen et al., 2022).

Unfortunately, training spiking neural networks directly on

hardware is challenging, since the driving factor behind deep

learning’s success—back-propagation—is not considered to be

biologically plausible (Lillicrap et al., 2020). Specifically, it is unclear

how neurons might propagate a precise error signal within a

forward/backward pass framework like back-propagation. A large

body of work has been devoted to establishing plausible alternatives

or approximations for this error propagation scheme (Balduzzi

et al., 2015; Scellier and Bengio, 2017; Akrout et al., 2019; Lillicrap

et al., 2020). While these approaches do address some of the

issues with back-propagation, implausible elements, like separate

inference and learning phases, still persist in many cases.

Our work joins a body of recent literature that addresses

biological plausibility by suggesting fundamentally different

approaches to training networks from back-propagation (Payeur

et al., 2021; Meulemans et al., 2022; Aceituno et al., 2023).

These approaches modulate local Hebbian updates using top-

down signals based on alternative objectives such as optimizing

a control policy. Our work is similar in that we propose a

dramatically different training objective. In contrast, we rely on

recent advances in deep learning that train feedforward networks

by balancing an information bottleneck objective (Ma et al., 2019).

Unlike back-propagation, where an error signal computed at the

end of the network is propagated to the front (see Figure 1A),

this method, called the Hilbert-Schmidt Independence Criterion

(HSIC) bottleneck, applies the information bottleneck to each

layer in the network independently. Layer-wise optimization is

biologically plausible as shown in Figure 1B. Compared to related

work, where the performance of the final layer affects training

of prior layers through top-down signals, our objective is fully

localized at each layer.

Our contributions include:

1. We show that optimizing the HSIC bottleneck via gradient

descent emits a three-factor learning rule (Frémaux and

Gerstner, 2016) composed of a local Hebbian component and

a global layer-wise modulating signal.

2. The HSIC bottleneck depends on a batch of samples, and this is

reflected in our update rule. Unfortunately, the brain only sees a

single sample at a time. We show that the local component only

requires the current sample, and that the global component can

be accurately computed by an auxiliary network. The auxiliary

networks acts as a working memory with post-processing, and

the effective “batch size” corresponds to its capacity.

3. We demonstrate the empirical performance of our update

rule by comparing it against baselines on synthetic datasets

as well as MNIST (LeCun et al., 1998) and CIFAR-10

(Krizhevsky, 2009).

4. To the best of our knowledge, our rule is the first tomake a direct

connection between working memory and synaptic updates. We

explore this connection in some initial experiments on memory

size and learning performance.

1.1 Preliminaries and related work

Several works have presented approximations to back-

propagation. Variants of feedback alignment (Lillicrap et al.,

2014; Liao et al., 2016; Akrout et al., 2019) address the weight

transport problem. Target propagation (Ahmad et al., 2020;

Frenkel et al., 2021) and equilibrium propagation (Scellier and

Bengio, 2017) propose alternative mechanisms for propagating

error. Yet, all these methods require separate inference (forward)

and learning (backward) phases. More recently, deep feedback

control methods (Meulemans et al., 2022; Aceituno et al.,

2023) use top-down signaling from a controller to optimize

forward and backward weights concurrently. Unlike prior methods

which address biological plausibility piecemeal, these techniques

are plausible by design. We follow this approach to creating

plausible learning rules, but we differ by focusing on layer-

wise objectives instead of top-down control. Table 1 shows a

comprehensive comparison between learning rule definitions.

Only direct feedback control (DFC) and our work satisfy all

objectives, but they represent two different solutions to the

problem of biologically plausible learning rules. DFC is framed

as a control problem with continuous dynamics, and the

resulting weight update requires multi-compartment neurons. The

authors note that this makes their work better suited for analog

neuromorphic hardware. In contrast, our rule can be mapped

to both digital or analog hardware, since time is denoted by

sequences of samples and not physical time. Additionally, we

do not put constraints on the neurons required to implement

the rule.

Layer-wise objectives (Belilovsky et al., 2019; Nøkland and

Eidnes, 2019), like the one used in this work, offer an alternative

that avoids the weight transport problem entirely. Moreover,

our objective emits a biologically plausible three-factor learning

rule which can be applied concurrently with inference. Pogodin

and Latham (2020) draw similar intuition in their work on the

plausible HSIC (pHSIC) learning rule. But in order to make

experiments with the pHSIC computationally feasible, the authors

used an approximation where the network receives a batch of

256 samples at once. In contrast, their proposed biologically

plausible rule only receives information from two samples—the

current one and previous one—which reduces the accuracy of

the HSIC estimate. This motivates our work, in which we derive

an alternate rule where only the global component depends on

past samples, while the local component only requires the current

pre- and post-synaptic activity. Furthermore, we show that this

global component can be computed using an auxiliary network.

This allows us to achieve performance much closer to back-

propagation without compromising the biological plausibility of

the rule.
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FIGURE 1

(A) Sequential (explicit) error propagation requires precise information transfer backwards between layers. (B) Parallel (implicit) error propagation

uses only local information in combination with a global modulating signal. Biological rules of this form are known as three-factor learning rules

(Frémaux and Gerstner, 2016).

TABLE 1 A comparison of various learning algorithms categorized by four properties.

Learning algorithm Weight transport-free? Local? Asynchronous? Real-time?

Back-propagation (BP) ✗ ✗ ✗ ✗

Feedback alignment (FA) ✓ ✗ ✗ ✗

Direct FA (DFA) ✓ ✓ ✗ ✗

Single sparse DFA (SDFA) ✓ ✓ ✓ ✗

Equilibrium propagation (EP) ✓ ✓ ✗ ✗

Target propagation (TP) ✓ ✓ ✗ ✗

Direct random TP (DRTP) ✓ ✓ ✓ ✗

Plausible HSIC (pHSIC) ✓ ✓ ✓ ✗

Direct feedback control (DFC) ✓ ✓ ✓ ✓

Our work ✓ ✓ ✓ ✓

Weight transport-free rules do not require separate forward and backward networks with aligned weight parameters. Local rules utilize only locally available information. Asynchronous rules do

not require a full forward pass before updating the weights of each layer. Real-time rules operate on samples arriving sequentially in time (not batches).

1.1.1 Other uses of information theoretic
objectives for spiking neural networks

Information bottleneck and other information theoretic

quantities have been used in the context of training SNNs

before. Yang and Chen (2023a,b) utilize an information bottleneck

objective in the final layer of an SNN to train networks that

are robust to noisy input distributions. Yang and Chen (2023a)

improves on the standard information bottleneck by considering

higher order terms. Similarly, Yang et al. (2022) trains networks

with an additional minimum entropy criterion to promote robust

learning in SNNs. Still, all works rely on back-propagation through

time (BPTT) and surrogate gradient descent to train their SNNs.

1.1.2 Hardware substrates for implementing
biological neural networks

While our work does not directly deal with hardware

implementations of biological networks, our contributions are
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motivated by the possible power efficiency benefits of biologically

plausible learning rules. As such, we will briefly discuss various

platforms for physical realization of neuromorphic computing.

The landscape of neuromorphic hardware is vast and varied.

At one extreme, platforms like Intel’s Loihi (Davies et al., 2018,

2021) use conventional CMOS technologies to create a digital

array of biological neurons. While such systems are useful for

exploring SNN applications, it is widely accepted that the primary

power efficiency of neuromorphic hardware will come from novel

device technologies. The most common devices are memristors

(Yan et al., 2023) and resistive memory (Bianchi et al., 2023).

Less common substrates based on metal-organic transistors (Wang

et al., 2023) and thermal-guiding structures (Loke et al., 2016) exist

as well. These devices are designed to mimic various functions

of a biological synapse especially its plastic conductance. While

the specifics differ, all devices have electrical properties that allow

the conductance to be adjustable. Successful demonstrations of

neuromorphic device arrays show their ability to simulate SNNs at

a much lower power consumption than conventional computing.

Yet, all rely on purely local update rules which fail to scale to very

deep networks. Circumventing this limitation requires non-local

circuitry, and the goal of any biologically plausible rule, including

ours, is to limit the power overhead of these components.

1.1.3 Notation
We will briefly introduce the notation used in the paper.

• Vectors are indicated in bold and lower-case (e.g., x).

• Matrices are indicated in bold and upper-case (e.g.,W).

• Superscripts refer to different layers of a feedforward network

(e.g., zℓ is the ℓ-th layer).

• Subscripts refer to individual samples (e.g., xi is the

i-th sample).

• Brackets refer to elements within a matrix or vector (e.g., [x]i
is the i-th element of x).

2 Methods and materials

In this section, we describe our learning rule and its derivation

in detail. Section 2.1 introduces the information bottleneck for deep

networks. Then in Section 2.2, we derive a gradient descent rule

for this objective, as well as introduce reasonable approximations

such that the final rule is a three-factor Hebbian update. Lastly, in

Section 2.2.1 we describe how the modulating factor in our rule can

be computed using an auxiliary network.

2.1 The information bottleneck

Given an input random variable, X, an output label random

variable, Y , and hidden representation, T, the information

bottleneck (IB) principle is described by Equation (1)

min
PT|X

I(X;T)− γI(Y;T) (1)

where I(A;B) is the mutual information between two random

variables. Intuitively, this expression adjusts T to achieve a balance

between information compression and output preservation.

Since computing the mutual information of two random

variables requires knowledge of their distributions, Ma et al. (2019)

propose using the Hilbert-Schmidt Independence Criterion (HSIC)

as a proxy for mutual information. Given a finite number of

samples, N, a statistical estimate, shown in Equation (2), for the

HSIC (Gretton et al., 2005) is

HSIC(X,Y) = (N − 1)−2tr(KXHKYH)

≤
1

(N − 1)2

N
∑

p=1

k̄(xp, xp)k̄(yp, yp)
(2)

[KXH]tpq = k̄(xp, xq)

= k(xp, xq)−
1
N

∑N
n=1 k(xp, xn) (3)

[KX]pq = k(xp, xq) = exp

(

−
‖xp − xq‖

2

σ 2

)

(4)

where Equations (3) and (4) define the centered and uncentered

kernel matrices, respectively.

Using these definitions Ma et al. (2019) define the HSIC

objective—a loss function for training feedforward neural networks

by balancing the IB at each layer. Consider a feedforward neural

network with L layers where the output of layer ℓ is

zℓ = f (θℓ, zℓ−1)

where f describes the forward computation (including nonlinear

activation) of a single layer given parameters, θℓ, and inputs, zℓ−1.

For example, a fully-connected layer of artificial neurons with a

ReLU activation is described by θℓ = {Wℓ, bℓ} and f (θℓ, zℓ−1) =

relu(Wℓzℓ−1 + bℓ). In this work we will define f for both artificial

neuron layers and rate-encoded leaky-integrate neuron layers.

We train the network to minimize

LHSIC(X,Y ,Z
ℓ) = HSIC(X,Zℓ)− γHSIC(Y ,Zℓ)

∀ℓ ∈ {1, . . . , L}
(5)

where Z = {Zℓ}Lℓ=1 are the output distributions at each hidden

layer. Note that there is a separate objective for each layer. As a

result, there is no explicit error propagation across layers, and the

error propagation is implicit due to forward connectivity as shown

in Figure 1.

2.2 Deriving a biologically plausible rule for
the HSIC bottleneck

In this work, we seek to derive biologically plausible rule for

optimizing Equation (5). Computing this quantity requires a batch

of N samples, but we want a rule that operates on single samples

arriving sequentially over time. So, we will make a minor notational

change to the indexing in Equation (5) for clarity. Our indices will

range over {0,−1, . . . ,−(N− 1)} instead of {1, 2, . . . ,N}, so that x0
refers to the current input sample, x−1 refers to the previous input
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sample, etc. We operate onN samples, but we are explicit that these

samples arrive at different points in time.

Now, we take the gradient of LHSIC with respect to θℓ and

applying gradient descent. Doing this, we obtain the following

update rule:

1θℓ ∝ ∇θℓLHSIC =
1

(N − 1)2

−(N−1)
∑

p=0

[

k̄(xp, xp)− γk̄(yp, yp)
]

∇θℓ k̄(zℓ
p, z

ℓ
p)

∇θℓ k̄(zℓ
p, z

ℓ
p) =

2

Nσ 2

−(N−1)
∑

n=0

k(zℓ
p, z

ℓ
n)(z

ℓ
p − zℓ

n)(∇θℓzℓ
p −∇θℓzℓ

n)

=
2

Nσ 2

−(N−1)
∑

n=0

k(zℓ
p, z

ℓ
n)(z

ℓ
p − zℓ

n)(∇θℓ f (θℓ, zℓ−1
p )

−∇θℓ f (θℓ, zℓ−1
n ))

(6)

where∇θℓ f (θℓ, zℓ−1
p ) describes how the post-synaptic activity varies

as a function of pre-synaptic activity. We call N, the batch size in

the deep learning, the effective batch size in our work. This rule

is similar to the basic rule in Pogodin and Latham (2020), except

that they replace k̄(xp, xp) with k̄(zp, zp) and do not use a centered

kernel matrix.

Without modifications, Equation (6) is not biologically

plausible. ∇θℓ k̄(zℓ
p, z

ℓ
p) cannot be called Hebbian when p is not

equal to zero, since it depends on non-local information from the

past. We solve this by making a simplifying approximation. We

assume that ∇θℓ f (θℓ, zℓ−1
p ) = 0 when p 6= 0. In other words, the

weights at the current time step do not affect past outputs. With

this assumption, we find that

∇θℓ k̄(zℓ
p, z

ℓ
p)

=

{

2
Nσ 2

∑−(N−1)
n=1 k(zℓ

0, z
ℓ
n)(z

ℓ
0 − zℓ

n)∇θℓ f (θℓ, zℓ−1
0 ) p = 0

2
Nσ 2 k(z

ℓ
0, z

ℓ
p)(z

ℓ
0 − zℓ

p)∇θℓ f (θℓ, zℓ−1
0 ) p 6= 0

Notably, the local term, ∇θℓ f (θℓ, zℓ−1
0 ), does not depend on the

summation indices and can be factored out. This leads us to our

final three-factor update:

1Wℓ ∝ β ⊙ ξ

β = ∇θℓ f (θℓ, zℓ−1
0 )

ξ =
2

σ 2N(N − 1)2





−(N−1)
∑

p=1

[

k̄(xp, xp)− γk̄(yp, yp)
]

α(zℓ
p)+

−(N−1)
∑

n=1

α(zℓ
n)
[

k̄(x0, x0)− γk̄(y0, y0)
]





α(zℓ
p) = k(zℓ

0, z
ℓ
p)(z

ℓ
0 − zℓ

p)

(7)

Note that β is now a local term that only depends on the current

pre- and post-synaptic activity. ξ is a modulating term that adjusts

the synaptic update layer-wise. This establishes a three-factor

learning rule for Equation (5). In the next section, we discuss how

ξ , despite appearing complex, is easy to compute using an auxiliary

network of neurons.

FIGURE 2

The overall network architecture. Each layer has a corresponding

auxiliary reservoir network. The synaptic update, β in Equation (7), is

modulated by a layer-wise error signal, ξ , that is the readout from

the reservoir.

To understand the behavior of our rule, we begin by focusing

on α(zℓ
p). This term drives together the layer representations zℓ

0 and

zℓ
p, but the strength is weighted by the similarity kernel, k(zℓ

0, z
ℓ
p).

This similarity drive is modulated by the term k̄(xp, xp)−γk̄(yp, yp).

Note that we are specifically focused on the diagonal terms of the

centered kernel matrices. This takes a special form:

k̄(xp, xp) = 1−
1

N

−(N−1)
∑

n=0

k(xp, xn)

The summation measures the average similarity of xp to other

samples. As a result, k̄(xp, xp) acts as a “surprise” signal. If xp is

identical to all other samples, then k̄(xp, xp) = 0. Conversely, if

xp is unlike any other sample, then k̄(xp, xp) → 1. When taken

together, the full term k̄(xp, xp)−γk̄(yp, yp) measures surprise along

a decision boundary. If both the input and output is surprising or

not surprising, this term goes to zero (where the relative surprise

signals are balanced by γ). On the other hand, if the input is

surprising, but the output is not, then the similarity drive of α(zℓ
p) is

strengthened. In effect, this compresses away the differences in the

input distribution andmore closely matches the desired output. For

the opposite case, when the input is not surprising, but the output

is, the sign is reversed on α(zℓ
p). As expected, this forces the layer to

drive the output representations apart.

2.2.1 Computing the modulating signal with an
auxiliary network

In order to compute ξ in Equation (7), we require a neural

circuit capable of storing information for future use. Recurrent

networks can provide such functionality, and Sussillo and Abbott

(2009) demonstrate how a reservoir network can be trained to

compute complex signals using a local update rule.

For each layer, we construct an auxiliary network of rate-

encoded leaky-integrate neurons whose dynamics are governed by
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Equation (8)

τr
dur

dt
= −ur + λWrr+Wiri +Wfbro

r = tanh(ur)

ro = Wour

(8)

where ur are the recurrent neuron membrane potentials, ri is the

input signal activity, and ro is the readout activity. λ is a hyper-

parameter that controls the chaos level of the recurrent population.

Following Sussillo and Abbott (2009), we train the auxiliary

network using a least mean squares (LMS) FORCE learning rule

shown below in Equation (9) (which is a local update),

1Wo ∝ (ro − ξ )r⊤ (9)

where ξ is the true global error signal in Equation (7).

Training of the reservoir can be done a priori so that the

reservoir is fixed during the primary learning phase. Alternatively,

we can also compute ξ without needing to train the auxiliary

network. Instead, a set of buffers can be constructed to remember

that last N inputs, targets, and current layer’s activity. This can be

achieved using a delay line circuit where populations of neurons are

connected with the appropriately chosen synaptic delay. Given the

output of these buffers, computing ξ is trivial since k̄, α, and the

summation are all implementable functions using neurons.

Figure 2 illustrates the full design of the proposed learning

scheme. The reservoir serves as a working memory where the

capacity of the memory determines the effective batch size. To

the best of our knowledge, our rule is the first to modulate the

Hebbian updates of a synapse based on past information stored

in a working memory. Furthermore, having a controllable effective

batch size means we can study the effect of memory capacity on the

learning convergence.

2.2.2 Extensions to convolutional neural
networks and spiking neural networks

When feasible, we use fully-connected layers in this work,

because they are biologically plausible. Unfortunately, the best

performing artificial networks for visual tasks utilize convolution

layers. A biologically plausible implementation of convolution itself

is an open topic of research (Pogodin et al., 2021). Still, we can

support convolutional layers in our rule, since the local term β

in Equation (7) is agnostic to the layer function, f . The resulting

update is not biologically plausible, but any issues stem from f , not

the learning rule.

Similar to how we extend our rule to convolution neural

networks, we can extend it to other network types including

spiking neural networks. For spiking neural networks, the primary

challenge is the non-linearity of the spike threshold function.

Standard techniques such as surrogate gradients or probabilistic

threshold functions can be used to correctly derive β (Neftci

et al., 2019). Another important feature of SNNs is recurrence

or feedback connections. Traditionally, this is handled by back-

propagation-like algorithms by unrolling the network evaluations

over time and treating the temporal dimension spatially. A similar

approach could be done with our rule, but unlike back-propagation

through time, the HSIC update does not introduce coupling

TABLE 2 Reservoir experiment parameters.

Parameter name Symbol Value

Simulation time step 1t 1ms

Neuron time constant τr 5ms

Sample time constant 1tsample 20ms

Reservoir recurrent strength λ 1.2

Effective batch size N 10

HSIC balance parameter γ 2

HSIC scale parameter σ 0.5

Learning rate η 5× 10−4

Num. of epochs T 10

across timesteps. In this way, we are able to remain biologically

plausible even in the presence of recurrence. Yet, when dealing with

recurrent connections, the stability of weight updates is always a

concern. It is not immediately clear that our rule as given should be

stable. The analysis and potential augmentations to our approach

for recurrent networks is out of the scope of this paper, and we leave

it for future work.

3 Results

We test our approach on a variety of synthetic and benchmark

datasets. The code to reproduce each experiment is available at

https://github.com/darsnack/biological-hsic/

along with instructions. Since our method processes samples one

at a time, training networks can be a computationally intensive

process. To make experimentation tractable, our evaluation is

broken down into three stages:

1. We test the ability for a reservoir network to learn to compute

the global modulatory signal, ξ , in Equation (7) as describe in

Section 2.2.1.

2. We train multi-layer networks of rate-encoded leaky-integrate

neurons on small synthetic datasets. We avoid simulating the

reservoir for computational efficiency.

3. We train deep multi-layer networks of artificial neurons

on larger scale machine learning benchmark datasets. We

use artificial neurons instead of biological neurons for

computational efficiency.

3.1 Reservoir experiments

First, we verify the ability for the reservoir to reproduce the

true signal ξ in Equation (7). We use a recurrent population of

2,000 leaky-integrate neurons with τr = 5ms and λ = 1.2 (as

described in Section 2.2.1). For the input and output signals, we use

a hundred random samples from MNIST. Corresponding random

hidden activation signals, Z ∈ R
10×100, are drawn from Unif(0, 1).

Each sample is presented to the network for 10ms and the network

is trained for 10 epochs. For evaluation, we generate a hundred new

inputs and process them with the network with all parameters fixed
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FIGURE 3

The reservoir output when learning ξ in Equation (7). Each sub-panel column displays the output during a di�erent time interval of testing. The rows

in a given sub-panel correspond to each element of true/predicted ξ . In all cases, the predicted output signal matches the target signal closely.

(i.e., no learning). A complete list of experimental parameters is in

Table 2.

The results can be seen in Figure 3 which shows the reservoir

output for all elements of the predicted modulatory signal against

the target modulatory signal, ξ . The network is able to close match

the target shortly after learning begins, and it is able to persist its

performance long after learning stops. Note that this demonstrates

how the auxiliary network can be pre-trained to compute ξ—it

is not learning a data-specific computation, it is learning how to

buffer N samples of its input and post-process them to compute ξ .

3.2 Small dataset experiments

Now, we show that our learning rule is capable of training

multi-layer networks of leaky-integrate neurons to solve “small

scale” tasks. For computational efficiency, we no longer simulate

the reservoir network, but compute its readout, ξ , directly. All

networks in this set of experiments use the following neuron model

in Equation (10):

τm
duℓ

dt
= −uℓ +Wℓzℓ−1 + bℓ

zℓ = relu(uℓ)

(10)

where τm is the neuron time constant, and Wℓ and bℓ are

parameters. A full description of the experimental parameters is in

Table 3.

We consider two synthetic datasets consisting of a thousand

samples each (a hundred samples are held out for testing). First,

we generate a linearly separable set of labeled points drawn from

Unif([0, 1]×[0, 1]) and train a networkwith a single hidden layer on

them [shown in Figure 4 (top left)]. Since only a linear classifier is

required to predict this dataset, we also generate a non-linear XOR

dataset and train a network with two hidden layers on it [shown in

Figure 4 (bottom left)]. The final layer of both networks is trained

TABLE 3 Small dataset experiment parameters.

Parameter name Symbol Value

Simulation time step 1t 1ms

Neuron time constant τm 5ms

Sample time constant 1tsample 20ms

Effective batch size N 64

HSIC balance parameter γ 10

HSIC input scale

parameter

σx 0.3

HSIC layer scale

parameter

σz 2

HSIC output scale

parameter

σy 0.25

Learning rate η 1× 10−4

Num. of epochs N/A 25

Num. of random seeds N/A 30

against a task-specific cross-entropy objective. The results on both

datasets are shown in Figure 4. Within a few epochs, our rule is able

to achieve nearly 100% accuracy on both datasets. Additionally,

we also show the value of the HSIC bottleneck (Equation 5) in the

rightmost column of Figure 4 during training. This demonstrates

that our rule does reduce the HSIC bottleneck across all layers, and

this reduction corresponds to an improvement in test accuracy on

the task.

3.3 Large dataset experiments

Finally, we test our rule on two standard machine learning

benchmark vision datasets—MNIST and CIFAR-10. We use
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FIGURE 4

Our learning rule applied to two synthetic datasets with multi-layer feedforward networks of leaky-integrate neurons (see Equation 10). (Top) A

linearly separable dataset drawn from Unif([0, 1]× [0, 1]). The network trained on this dataset consists of a single hidden layer with four neurons.

(Bottom) A non-linear XOR dataset with small Gaussian noise added around each input cluster. The network trained on this dataset consists of two

hidden layers of size ten and four, respectively. For both datasets, our models converge to nearly 100% accuracy, and this coincides with decreasing

the HSIC bottleneck at every layer.

TABLE 4 Large scale experiment parameters.

Parameter
name

Symbol MNIST
value

CIFAR-10
value

Back-propagation

learning rate

N/A 1× 10−3 5× 10−4

Our rule learning

rate

N/A 1× 10−4 5× 10−5

Effective batch size N 8 4

HSIC balance

parameter

γ 2 50

HSIC input scale

parameter

σx 0.5 1

HSIC layer scale

parameter

σz 1 0.5

HSIC output scale

parameter

σy 0.1 0.1

Num. of epochs N/A 25 50

Num. of random

seeds

N/A 30 15

feedforward networks of artificial neurons with a ReLU activation

function (this is done to keep our experiments tractable). Our rule

is compared against a back-propagation baseline.

We use a multi-layer fully-connected network on MNIST with

architecture FC(128) → FC(64) → FC(10). For CIFAR-10, we use

a convolutional neural network with architecture Conv(3 × 3 ×

128) → Avg. Pool(2) → Conv(3 × 3 × 256) → Avg. Pool(2) →

FC(10). Both the baseline and our rule are trained using an

Adam optimizer with default hyper-parameters. A complete list of

experiment parameters is in Table 4.

Figure 5 shows the test performance over the course of training.

Even though learning occurs more slowly, our rule reaches

comparable the performance with the back-propagation baseline.

While the gap between back-propagation and our rule widens on

CIFAR-10, it does reach 60% test accuracy which is higher than

training just the last layer (this reaches only 39%). Given that

each layer in our method has no explicit information about the

performance of other layers, the fact that hierarchical learning is

possible is remarkable.

3.4 E�ects of memory capacity

One of the novel features of our rule is the ability to control

the memory capacity of the update. To explore this parameter,

we repeat the same CIFAR-10 experiments as before for various

effective batch sizes. The results are shown in Figure 6. Not only

does the final training performance increase as a function of

batch size, the rate of learning also increases. Unfortunately, this

improvement is logarithmic, leading to diminishing returns.

4 Discussion

In this work, we proposed a three-factor learning rule for

training feedforward networks based on the information bottleneck
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FIGURE 5

Average test accuracy over many trials on MNIST and CIFAR-10 for back-propagation and our method. The MNIST network is an MLP with 128 and

64 hidden neurons. The CIFAR-10 network is a CNN with 128 and 256 features followed by a single fully-connected output layer. Our rule reaches

above 91% accuracy on MNIST (within 7% of the baseline). Our rule reaches around 61% accuracy on CIFAR-10 (within 19% of the baseline).

FIGURE 6

The train accuracies on CIFAR-10 for varying number of epochs and

e�ective batch sizes. We see that accuracy improves logarithmically

as a function of batch size.

principle. The rule is biologically plausible, and we are able

to scale up to reasonable performance on MNIST. We do this

by factoring our weight update into a local component and

global component. The local component depends only on the

current synaptic activity, so it can be implemented via Hebbian

learning. In contrast to prior work, our global component uses

information across many samples seen over time. We show that

this content can be stored in an auxiliary reservoir network, and

the readout of the reservoir can be used to modulate the local

weight updates. To the best of our knowledge, this is the first

biological learning rule to tightly couple the synaptic updates with

a working memory capacity. We verified the efficacy of our rule

on synthetic datasets, MNIST, and CIFAR-10, and we explored

the effect of the size of the working memory capacity on the

learning performance.

Even though our rule does perform reasonably well, there

is room for improvement. The rule performs best when it is

able to distinguish between different high dimensional inputs.

The resolution at which it separates inputs is controlled by the

parameter, σ , in the kernel function (Equation 4). The use of a

fixed σ is partly responsible for the slow down in convergence

in Figure 5. In Ma et al. (2019), the authors propose using

multiple networks trained with the different values of σ and

averaging the output across networks. This allows the overall

network to separate the data at different resolutions. Future

work can consider a population of networks with varying σ

to achieve the same effect. Addressing the resolution issue will

be important for improving the speed and scalability of the

learning method.

Additionally, our rule is strongly supervised. While the

mechanism for synaptic updates is biologically plausible, the overall

learning paradigm is not. Note that the purpose of the label

information in the global signal is to indicate whether the output for

the current sample should be the same or different from previous

samples. In other words, it might be possible to replace the term

k̄(y0, yp) in Equation (7) with a binary teaching signal. This would

allow the rule to operate under weak supervision. Alternatively,

we could use contrastive learning, where output distribution, Y , is

replaced by the output of a different network. Ideally, this other

network should process a different, but related modality (e.g., a

visual network and auditory network that are trained against each

other using a contrastive approach).

Most importantly, while our rule is certainly biologically

plausible, it remains to be seen if it is an accurate model for circuitry

in the brain. Since rules based on the information bottleneck

are relatively new, the corresponding experimental evidence must

still be obtained. Yet, we note that our auxiliary reservoir serves

a similar role to the “blackboard” circuit proposed in Mumford

(1991). This circuit, present in the thalamus, receives projected

connections from the visual cortex, similar to how each layer

projects its output onto the reservoir. Furthermore, Mumford

suggests that this circuit acts as a temporal buffer and sends signals
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that capture information over longer timescales back to the cortex

like our reservoir.

So, while it is uncertain whether our exact rule and

memory circuit are present in biology, we suggest that an

in-depth exploration of memory-modulated learning rules

is necessary. Even in the absence of a biological counter-

part, our rule captures important properties necessary for

neuromorphic hardware—locality, asynchrony, and real-time

processing. We achieve this by suggesting a fundamentally

different objective training deep neural networks, in line

with recent work. We hope this work prompts further

exploration of novel, non-back-propagation-based approaches

for learning.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: http://yann.lecun.com/exdb/mnist/.

Author contributions

KD derived the theory and learning rule and performed the

simulations. ML helped design the experiments and provided

feedback on the theory. KD and ML contributed to writing the

manuscript. All authors contributed to the article and approved the

submitted version.

Funding

This work was funded by the US Air Force Research Laboratory

and the National Science Foundation.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Aceituno, P. V., Farinha, M. T., Loidl, R., and Grewe, B. F. (2023). Learning cortical
hierarchies with temporal Hebbian updates. Front. Comput. Neurosci. 17:1136010.
doi: 10.3389/fncom.2023.1136010

Ahmad, N., van Gerven, M., and Ambrogioni, L. (2020). GAIT-prop: a biologically
plausible learning rule derived from backpropagation of error. Adv. Neur. Inf. Process.
Syst. 33, 10913–10923.

Akrout, M., Wilson, C., Humphreys, P., Lillicrap, T., and Tweed, D. B. (2019). Deep
learning without weight transport. Adv. Neur. Inf. Process. Syst. 31, 9.

Balduzzi, D., Vanchinathan, H., and Buhmann, J. (2015). “Kickback cuts Backprop’s
red-tape: biologically plausible credit assignment in neural networks,” in Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, 7.

Belilovsky, E., Eickenberg,M., andOyallon, E. (2019). Greedy layerwise learning can
scale to ImageNet. Proc. Mach. Learn. Res. 97, 583–593. doi: 10.48550/arXiv.1812.11446

Bianchi, S., Muñoz-Martin, I., Covi, E., Bricalli, A., Piccolboni, G., Regev, A., et al.
(2023). A self-adaptive hardware with resistive switching synapses for experience-based
neurocomputing. Nat. Commun. 14:1565. doi: 10.1038/s41467-023-37097-5

Christensen, D. V., Dittmann, R., Linares-Barranco, B., Sebastian, A., Le Gallo, M.,
Redaelli, A., et al. (2022). 2022 roadmap on neuromorphic computing and engineering.
Neuromorp. Comp. Eng. 2:022501. doi: 10.1088/2634-4386/ac4a83

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G. A. F., Joshi, P.,
et al. (2021). Advancing neuromorphic computing with loihi: a survey of results and
outlook. Proc. IEEE 109, 911–934. doi: 10.1109/JPROC.2021.3067593

Frémaux, N., and Gerstner, W. (2016). Neuromodulated spike-timing-dependent
plasticity, and theory of three-factor learning rules. Front. Neural Circ. 9:85.
doi: 10.3389/fncir.2015.00085

Frenkel, C., Lefebvre, M., and Bol, D. (2021). Learning without feedback: fixed
random learning signals allow for feedforward training of deep neural networks. Front.
Neurosci. 15:629892. doi: 10.3389/fnins.2021.629892

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). “Measuring
statistical dependence with Hilbert-Schmidt Norms,” in Algorithmic Learning Theory,

Vol. 3734, eds. D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell (Berlin, Heidelberg: Springer Berlin Heidelberg), 63–77.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images, 60.
Available online at: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

LeCun, Y., Cortes, C., and Burges, C. J. (1998).MNIST Handwritten Digit Database.
Available online at: http://yann.lecun.com/exdb/mnist/ (accessed April 26, 2024).

Liao, Q., Leibo, J. Z., and Poggio, T. (2016). “How important is weight symmetry
in backpropagation?,” in Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, 1837–1844.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2014). Random
feedback weights support learning in deep neural networks. arXiv [preprint].
arXiv:1411.0247 [cs, q-bio].

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., and Hinton, G.
(2020). Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346.
doi: 10.1038/s41583-020-0277-3

Loke, D., Skelton, J.M., Chong, T.-C., and Elliott, S. R. (2016). Design of a nanoscale,
CMOS-integrable, thermal-guiding structure for boolean-logic and neuromorphic
computation. ACS Appl. Mater. Interf. 8, 34530–34536. doi: 10.1021/acsami.6b10667

Ma, W.-D. K., Lewis, J. P., and Kleijn, W. B. (2019). The HSIC Bottleneck: deep
learning without back-propagation. arXiv [preprint]. arXiv:1908.01580 [cs, stat].

Meulemans, A., Farinha,M. T., Cervera, M., Sacramento, J., and Grewe, B. F. (2022).
“Minimizing control for credit assignment with strong feedback,” in Proceedings of the
39th International Conference on Machine Learning (Baltimore, MD: PMLR).

Mumford, D. (1991). On the computational architecture of the neocortex: I. The
role of the thalamo-cortical loop. Biol. Cybernet. 65, 135–145. doi: 10.1007/BF00202389

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Nøkland, A., and Eidnes, L. H. (2019). Training neural networks with local error
signals. Proc. Mach. Learn. Res. 97, 4839–4850.

Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A., and Naud, R. (2021). Burst-
dependent synaptic plasticity can coordinate learning in hierarchical circuits. Nat.
Neurosci. 24, 1010–1019. doi: 10.1038/s41593-021-00857-x

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2024.1240348
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.3389/fncom.2023.1136010
https://doi.org/10.48550/arXiv.1812.11446
https://doi.org/10.1038/s41467-023-37097-5
https://doi.org/10.1088/2634-4386/ac4a83
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.3389/fncir.2015.00085
https://doi.org/10.3389/fnins.2021.629892
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1021/acsami.6b10667
https://doi.org/10.1007/BF00202389
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1038/s41593-021-00857-x
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Daruwalla and Lipasti 10.3389/fncom.2024.1240348

Pogodin, R., and Latham, P. E. (2020). Kernelized information bottleneck leads to
biologically plausible 3-factor Hebbian learning in deep networks. Adv. Neural Inf.
Process. Syst. 33:12.

Pogodin, R., Lillicrap, T. P., Mehta, Y., and Latham, P. E. (2021). “Towards
biologically plausible convolutional networks,” in 35th Conference on Neural
Information Processing Systems (NeurIPS 2021), 13.

Scellier, B., and Bengio, Y. (2017). Equilibrium propagation: bridging the gap
between energy-based models and backpropagation. Front. Comput. Neurosci. 11:24.
doi: 10.3389/fncom.2017.00024

Strubell, E., Ganesh, A., and McCallum, A. (2019). “Energy and policy
considerations for deep learning in NLP,” in Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (Florence: Association for Computational
Linguistics), 3645–3650.

Sussillo, D., and Abbott, L. (2009). Generating coherent patterns of activity from
chaotic neural networks. Neuron 63, 544–557. doi: 10.1016/j.neuron.2009.07.018

Wang, Q., Zhao, C., Sun, Y., Xu, R., Li, C.,Wang, C., et al. (2023). Synaptic transistor
with multiple biological functions based on metal-organic frameworks combined

with the LIF model of a spiking neural network to recognize temporal information.
Microsyst. Nanoeng. 9:96. doi: 10.1038/s41378-023-00566-4

Yan, X., Jia, X., Zhang, Y., Shi, S., Wang, L., Shao, Y., et al. (2023). A low-power
Si:HfO2 ferroelectric tunnel memristor for spiking neural networks. Nano Energy
107:108091. doi: 10.1016/j.nanoen.2022.108091

Yang, S., and Chen, B. (2023a). Effective surrogate gradient learning with high-order
information bottleneck for spike-based machine intelligence. IEEE Transact. Neural
Netw. Learn. Syst. 1–15. doi: 10.1109/TNNLS.2023.3329525

Yang, S., and Chen, B. (2023b). SNIB: improving spike-based machine learning
using nonlinear information bottleneck. IEEE Transact. Syst. Man Cybernet. 53,
7852–7863. doi: 10.1109/TSMC.2023.3300318

Yang, S., Tan, J., and Chen, B. (2022). Robust spike-based continual meta-
learning improved by restricted minimum error entropy criterion. Entropy 24:455.
doi: 10.3390/e24040455
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