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Introduction: The Swarm Intelligence Based (SIB) method has widely been

applied to e�cient optimization in many fields with discrete solution domains. E-

commerce raises the importance of designing suitable selling strategies, including

channel- and direct sales, and the mix of them, but researchers in this field

seldom employ advanced metaheuristic techniques in their optimization problem

due to the complexities caused by the high-dimensional problems and cross-

dimensional constraints.

Method: In this work, we introduce an extension of the SIB method that can

simultaneously tackle these two challenges. To pursue faster computing, CPU

parallelization techniques are employed for algorithm acceleration.

Results: The performance of the SIB method is examined on the problems of

designing selling schemes in di�erent scales. It outperforms the Genetic Algorithm

(GA) in terms of both the speed of convergence and the optimized capacity as

measured using improvement multipliers.

KEYWORDS

supply chain management, swarm intelligence, tensor-type particle, CPU parallelization,

selling scheme

1 Introduction

As technology and human knowledge have advanced, industrial and scientific

investigators attempt to solve large-scale complex optimization problems that mostly fall in

the category of NP-hard. The complexity comes not only from the high-dimensional solution

domain that tests the computational capacity of hardware and software but also from

cross-dimensional constraints. Since most traditional optimization methods are inefficient,

if not infeasible, for these large-scale problems in today’s real world, researchers search

for new algorithms that can balance efficiency and accuracy. Metaheuristic algorithms

sacrifice a part of accuracy to pursue extra efficiency and provide reasonable solutions

to optimization problems using adequate resources. These algorithms typically sample a

subset of the solution space that is too large to be completely enumerated. Metaheuristic
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algorithms can also handle multi-dimensional real-values problems

without relying on the gradient of the objective functions, which

enables them to search over solution spaces that are non-

continuous, noisy, or changing over time.

As its primary class, nature-inspired metaheuristics can

be further categorized into two main categories. Evolutionary

algorithms, such as Genetic Algorithm (GA) (Goldberg, 2003),

Genetic Programming (GP) (Cramer, 1985), Differential Evolution

(DE) (Storn and Price, 1997), and many others, are inspired

by Darwin’s evolutional theory that allows only those with the

fittest characteristics to survive in a competition among species

members when individual variations randomly occur and are

hereditary. On the other hand, swarm algorithms, such as Ant

Colony Optimization (ACO) (Dorigo and Gambardella, 1997),

Artificial Bee Colony (Dervis and Basturk, 2007), Particle Swarm

Optimization (PSO) (Kennedy and Eberhart, 1995; Kennedy,

2010), Swarm Intelligence Based (SIB) method (Phoa et al., 2016;

Phoa, 2017), and many others, mimic the collective behavior

of self-organized and decentralized systems for characteristics

improvements. Among all, PSO is one of the most representative

swarm intelligence algorithms in engineering problems and some

scientific research in the past decades. With well-defined physical

meanings, it efficiently tackles high-dimensional optimization

problems in continuous solution spaces, but it may not be the

first choice for non-continuous solution spaces that commonly

appear in mathematics, statistics, and many other fields, even

via the remedy of a simple round-off (Kim et al., 2010). As a

result, the SIB method (Phoa, 2017) was proposed for this manner

with a wide range of applications, including the constructions

of optimal experimental designs (Phoa et al., 2016), the uniform

distribution of testing points (Phoa and Chang, 2016; Huang and

Phoa, 2023), supercomputing scheduling (Lin and Phoa, 2019),

hot spot determination (Hsu and Phoa, 2018), traveling salesman

problem (Yen and Phoa, 2021), and many others.

First introduced in 1982, the concept of supply chain

management (SCM) is to organize the flow of goods and services,

including all processes from obtaining raw materials to delivering

final products to customers. As the connection between suppliers

and customers, SCM aims to minimize total costs within a

supply chain and maximize a company’s net profits. It increases

a company’s profit and gains its competitive advantage over the

market. More about the basics of SCM are referred to Fredendall

and Hill (2001) and Mentzer et al. (2001). Nonetheless, there is a

growing gap between advanced optimization techniques and real

applications in SCM. Even though advanced methods have been

available in computer science and engineering for decades, many

applications still use traditional optimization methods such as

linear programming (Delloite, 2022).Without advanced techniques

that can significantly reduce the computational cost, researchers

in SCM confront difficulty in developing large-scale data analysis

systems for optimizing multi-supplier selling schemes, a many-

to-many network where products are delivered directly from

multiple suppliers to multiple customers. Moreover, optimization

in the SCM usually suffers from both the high-dimensional

solution domain and cross-dimensional constraints. Without the

latter constraint, the former complexity may simply be solved by

decomposing the high-dimensional solution space into multiple

low-dimensional ones and then optimizing each low-dimensional

space once at a time. The existence of cross-dimensional constraints

breaks the independency assumption among the decomposed

low-dimensional domains; thus, the simple divide-and-conquer

approach is no longer applicable for simplifying the problem.

This work introduces a metaheuristic optimization method

via swarm intelligence that can solve high-dimensional problems

and deal with cross-dimensional constraints simultaneously.

Section 2 briefly reviews three nature-inspired metaheuristic

optimization techniques related to our work. Section 3 introduces

the implementation details of the SIB method for the optimization

problem of multi-supplier selling schemes. Then, the proposed

method is evaluated with several simulated supply chains on

different scales and compared with the Genetic Algorithm (GA) in

Section 4. Finally, some conclusions are in the last section.

2 Nature-inspired metaheuristics
optimization methods

2.1 Genetic algorithm

The Genetic Algorithm (GA), proposed in Holland (1975),

is one of the oldest and the most popular nature-inspired

metaheuristic algorithms. Based on the mechanics of the natural

selection procedure, it follows the concept of “the survival of the

fittest,” where the stronger individuals tend to survive while the

weak ones approach extinction. Like many other metaheuristics,

GA starts with a population consisting of a group of particles.

A particle, called a “chromosome” or a “genotype,” represents a

possible solution to the target problem, and its parameters are

called “genes.” Each iteration, known as a generation, comprises

crossover, mutation, and survivor selection to simulate the

hereditary phenomenon. Moreover, to implement the survival of

the fittest concept, there is a parent selection at the beginning of

each iteration.

After randomly selecting an initial population from the solution

space, the objective function evaluates the particles and ranks

them by their performances. The particles with higher ranks are

considered in the candidate pool for parent selection. With two

or more particles selected from the pool, a crossover randomly

exchanges their genes, which results in one or two children

particles. In addition, a mutation occurs randomly on the particles

in each iteration to mimic random genetic perturbations. At the

end of an iteration, some lower-rank particles are eliminated to

maintain the size of the population (survivor selection). This

iterative process continues until the fulfillment of the pre-defined

stopping criterion, and the particle with the top rank is the

optimized output of GA.

2.2 Particle swarm optimization algorithm

PSO (Kennedy and Eberhart, 1995; Kennedy, 2010) is prevalent

in many industrial and scientific optimization fields due to its easy

implementation and efficiency in terms of memory and speed.

It is designed to mimic the social behavior of a flock of birds,

which contains a leader and several members. While the leader’s

movement affects all the members (group effect), each member
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has their individual thoughts about their own movement (personal

effect). In a PSO algorithm, an initial swarm, consisting of several

particles, corresponds to the initial state of a flock, and the position

of a particle represents a possible solution to the target optimization

problem. In addition, Local Best (LB) particles and the Global

Best (GB) particle are determined based on a pre-defined objective

function. Each particle has its own LB, which is the best position it

has encountered so far, while the GB is the best solution the whole

swarm has encountered.

A velocity is assigned to a particle for implementing the group

and personal effects. The position of a particle is influenced by

its LB and the GB through its velocity in each iteration. The

updating formula of a velocity and a position can be expressed as

the following equations:

vt+1i ← avti + b(xlb,ti − xti )+ c(x
gb,t
i − xti )

xt+1i = xti + vti ,

where t denotes the number of iterations, i indicates the number

of dimensions, v is the velocity of the particle, x is the particle’s

position, xlb is the LB position of the particle, xgb is the GB position

of the swarm, and a, b, c are scalars. A velocity consists of three parts

corresponding to the inertia, the personal effect, and the group

effect. The three scalars indicate the weight given to each part. The

update process continues until a user-defined termination criterion

is fulfilled, and the final GB position is the optimized output.

2.3 Swarm intelligence based algorithm

The SIB method (Phoa et al., 2016; Phoa, 2017) can be

considered a hybrid algorithm that takes advantage of both the GA

and the PSO. Specifically, it preserves the general framework of

the PSO that includes the initial group of particles, the local best

and group best, and the communication among particles after the

updates (called MOVE operation in SIB). In order to adapt to the

discrete nature of the solution domain, SIB gives up the velocity and

position updates in the PSO and embraces the update procedures

like crossover (called MIX operation in SIB) and mutation (called

random jump in SIB).

In specific, after initializing a swarm, SIB enters an iteration

loop consisting of MIX, MOVE, and a stopping criterion. In the

MIX operation, every particle is mixed with its own LB and the

GB, which returns two new particles, called mixwLB and mixwGB,

respectively. To “mix” a particle with the best particle, a given

proportion of entries is modified according to the corresponding

values in the best particle. The implementation of this operation is

flexible and can be designed according to the target optimization

problem. It is a rule-of-thumb to allow a smaller proportion of

entries to be modified by the global best particle than by the local

best particle to avoid premature convergence without sufficient

domain explorations. Once the new particles are generated, the

MOVE operation decides which one of the three particles, the

original particle, mixwLB, and mixwGB, is selected as the update.

It is straightforward to update the particle if either of the mixed

particles has the best objective function value. If the MIX operation

fails to improve the original particle, a random jump, in which a

given proportion of entries are altered randomly to create a new

particle, is operated to avoid trapping in the local optimum.

Some stopping criteria for the algorithm should be defined

beforehand. Most of the time, the target problem comes with

adequate stopping criteria. If there is no specific one, a maximum

number of iterations and convergence toward a pre-defined

threshold range of GB are common choices of stopping criteria.

3 Method and implementation

As a popular selling strategy in E-commerce nowadays, multi-

supplier selling is a process of selling products frommany suppliers

to many customers. This strategy is a kind of direct sales with no

dealers or intermediaries in the selling scheme, and products are

sold and delivered to the customers directly from the suppliers. A

direct sale market structure not only increases suppliers’ profits and

decreases the prices of products for customers but also simplifies

the complexity of the target optimization problem. However, even

with a direct sale, the optimization task on multi-supplier selling

schemes is still complicated due to high-dimensional solution space

and cross-dimensional constraints. Thus, the SIB method is chosen

to solve this optimization problem.

Denote a selling scheme with N customers, K product types,

and M suppliers, and a tensor X with dimensions N × K × M to

represent this selling scheme. Figure 1A illustrates the definition

of a particle while the C-, S-, and P-axes correspond to customers,

suppliers, and product types. Each entry xnkm indicates the number

of the kth product sold to the nth customer by themth supplier, and

each column (Figure 1B) withK entries indicates the selling scheme

between a customer and a supplier.

The following assumptions are made for this work. First, the

quantities of supply and demand are known in advance, and

the supply is less than the demand to create a more challenging

situation where prescriptive analytics is needed. Second, no further

complications on resale, buy-back, or others exist. Third, customers

are willing to purchase an identical product from multiple

suppliers. Finally, each customer pays a constant price for each

product, called the willingness to pay in economics. In real markets,

a shortage in supply, which is the first assumption, is likely to make

customers pay the maximum prices they are willing to pay.

In a SCM task, the objective function is generally the profit that

a selling scheme can make, equal to the difference between sales

and costs. The sales component is the products’ prices multiplied

by their quantities. Among all potential costs, this work only

considers delivery and purchase costs. To calculate the delivery cost,

participants of a supply chain are categorized into two geographical

locations: North and South. The transportation cost per product

between a specific combination of locations is a constant. The

purchase cost per product from a specific supplier is also a constant.

Mathematically, the objective function can be written as

Profit = Sale− Cost

Sale =
∑

(Quantity× Price)

Cost =
∑

(Delivery+ Purchase)

A supply constraint is that a supplier must have a maximum

production capacity, and a demand constraint is that a customer
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FIGURE 1

Visualization of particle definition and constraints. (A) Particle definition. (B) A column and constraints.

TABLE 1 The SIB algorithm.

1: Initialize a swarm of particles.

2: Evaluate the objective function values of each

particle.

3: Determine the Local Best (LB) and the Global

Best (GB) for each particle.

4: while STOPPING CRITERIA NOT

FULFILLED

5: Do MIX operation.

6: Do MOVE/Random Jump operation.

7: Update the LB and the GB particles.

8: Check the conditions of convergence.

must have the desired quantity for each product. Both constraints

are cross-dimensional in nature.

Table 1 is the pseudo-code of the proposed SIB algorithm for

the SCM optimization. In the initialization part, a set of valid selling

schemes (particles) are randomly generated and evaluated by the

objective function. Then, the initial LBs are defined as the initial

positions, and the GB is the best among all LBs. In the iteration part,

theMIX operation generates new selling schemes bymixing current

selling schemes with the best ones, and the MOVE operation

picks the best among three candidate schemes for update if the

newly generated schemes provide better objective function values,

or a perturbed scheme via random jump otherwise. The iteration

continues until the pre-defined stopping criteria are fulfilled, which

can be the maximum number of iterations, achieving a pre-

defined objective function value, or converging with pre-defined

rules. The final GB is considered the optimal multi-supplier selling

scheme suggested by the proposed SIB algorithm. The following

subsections provide a more detailed description of every step of the

SIB method.

3.1 Initialization

Figure 1B shows the demand and supply constraints in this

problem. To implement these cross-dimensional constraints in the

algorithm, most operations are designed in a column-by-column

fashion with continuous tracking of remaining demand and supply

quantities. Specifically, an N × K matrix records the remaining

demand, and an M × K matrix records the remaining supply. In

the initialization part, each column is generated separately and

combined into a complete particle. The entries in a particle are

random integers chosen from 0 to the minimum between the

remaining supply and demand of the target entries. Notice that the

remaining quantity matrices must be updated after generating each

slice of a particle. The entry should be 0 when the remaining supply

or demand is 0. To increase the variations among initial particles,

the generating order is shuffled in both the column and slice levels.

At the end of the initialization, the best particles are set according

to the particles’ objective function values.

3.2 Iteration

3.2.1 MIX operation
Each particle is mixed with its own LB and the GB for

each iteration, which returns two particles denoted as mixwLB

and mixwGB, respectively. Similar to the initialization, the MIX

operation is in a column-by-column fashion with two remaining

quantity matrices. At the beginning of a MIX operation, the

remaining quantity matrices are calculated based on the original

particle. A pair of columns, one from the original particle and

another from the best particle (either the LB or the GB), is dealt

with at a time. For each pair, entries are examined if their values

in the original particle are smaller than those in the best particle

and if the corresponding remaining demand and supply are both

positive. In other words, if an entry has no remaining quantity in

either demand or supply, it will not be modified in this operation.
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TABLE 2 The setting of scales.

Scale no. 1 2 3 4 5 6 7 8 9 10 11

Suppliers 1 10 20 30 40 50 60 70 80 90 100

Customers 10 10 20 30 40 50 60 70 80 90 100

Product types 3 3 3 6 6 6 8 8 8 10 10

TABLE 3 Statistics of improvement multiplier after 100, 200, and 300 steps.

Scale no . 1 2 3 4 5 6 7 8 9 10 11

After 100 steps

Mean SIB 0.217 0.030 0.071 0.045 0.142 0.157 0.342 0.274 0.398 0.315 0.164

GA 0.119 0.010 0.056 0.025 0.107 0.124 0.332 0.253 0.334 0.241 0.116

Std.a SIB 0.054 0.008 0.007 0.003 0.004 0.010 0.013 0.010 0.008 0.016 0.002

GA 0.066 0.008 0.007 0.002 0.005 0.010 0.011 0.009 0.006 0.014 0.003

After 200 steps

Mean SIB 0.222 0.031 0.071 0.047 0.144 0.159 0.349 0.279 0.408 0.324 0.167

GA 0.125 0.011 0.057 0.026 0.110 0.130 0.341 0.259 0.344 0.249 0.123

Std.a SIB 0.055 0.008 0.007 0.003 0.004 0.010 0.012 0.011 0.007 0.016 0.002

GA 0.070 0.008 0.007 0.002 0.004 0.010 0.012 0.008 0.007 0.013 0.006

After 300 steps

Mean SIB 0.224 0.031 0.071 0.047 0.145 0.160 0.350 0.280 0.409 0.324 0.167

GA 0.130 0.012 0.058 0.026 0.111 0.133 0.345 0.261 0.347 0.252 0.127

Std.a SIB 0.055 0.008 0.007 0.003 0.004 0.010 0.012 0.010 0.007 0.016 0.002

GA 0.058 0.007 0.007 0.002 0.004 0.010 0.012 0.009 0.007 0.013 0.005

aThe standard deviations of centralized improvement multiplier. Notice that, corresponding to ten initial particle sets, we have ten improvement multipliers for each run with each configuration.

First, these ten improvement multipliers are centralized on the same run by subtracting their mean. Then a total of 100 improvement multipliers are collected for the same configuration. Finally,

the standard deviation among those 100 values is reported. Bold values indicate the best values in comparison.

Then, a given proportion (qLB or qGB) of those identified entries

are randomly chosen, and the values in the original particle are

replaced with the corresponding values in the best particle. In the

experiments (Section 4), qLB is 0.6 and qGB is 0.4.While only entries

with larger values in the best particle can be selected, the objective

function value will only increase or remain the same in this process,

and this condition is added to achieve convergence faster.

3.2.2 MOVE and random jump operation
The implementation of the MOVE operation is identical

to the standard SIB algorithm. The two particles, mixwLB and

mixwGB, given by theMIX operation, are evaluated by the objective

function, and their performances are compared to that of the

original particle. If either of the mixed particles outperforms the

original particle, the particle’s new position is the best among

the three particles. If the original particle has the best objective

function value, a Random Jump operation must be executed. The

Random Jump operation also uses remaining quantities matrices

and column-by-column fashion. However, in the Random Jump

operation, the product quantities assigned by the column should

be released first, i.e., the values are added back to the remaining

demand and supply. This action enhances the capability of Random

Jump to bring a particle out of a local attractive trap. After

calculating the remaining quantity matrices, half of the entries with

non-zero demand in a column are chosen and assigned with a

random integer between 0 and the minimum within the remaining

demand and supply.

3.3 Acceleration by CPU parallelization

An advantage of the SIB method is its parallelizability,

which is important for the proposed SIB method due to the

time-consuming computation property among tensors. The CPU

parallelization techniques are implemented with the Python

package Multiprocessing for algorithm acceleration. While the

data, including positions and profit values, of pairs of particles

and their LB is stored in different CPUs, the data of the GB is

stored in the shared memory for easy access from every individual

CPU. When the MIX and MOVE operations are performed, the

particles are assigned to different CPUs, and the outcomes of

MOVE operations are compared with the GB individually. The data

of GB will only be modified when the outcome particles perform

better than the GB. However, false results may occur when multiple

CPUs try to modify the data in the shared memory simultaneously.

To avoid this common issue in parallel computing, a Lock is used

to protect the data in the shared memory. Moreover, to keep the
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FIGURE 2

Progress trend of GB’s profit.

TABLE 4 Computing time (seconds).

No CPU parallelization CPU parallelization

Config. Mean Std. Min Median Max Mean Std. Min Median Max

1 7.316 0.015 7.296 7.317 7.348 2.353 0.121 2.176 2.336 2.558

4 541.46 41.17 471.34 539.47 596.72 38.30 0.54 37.27 38.36 38.96

8 2891.6 109.0 2742.2 2895.2 3071.9 639.2 2.8 634.1 639.2 644.2

Bold values indicate the best values in comparison.
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process synchronous, Barriers hold the complete sub-process until

all the others are completed.

4 Experiment and result

The proposed SIB method has been applied to the small

single-supplier and large multi-supplier supply chains (Phoa

et al., 2021). This section evaluates the SIB method with supply

chains in different scales and compares the performance with

the GA algorithm. Moreover, the effect of the parallelization

technique will be illustrated by showing the execution

time.

To test the algorithm’s general performance, supply chains’

configurations in 11 different scales, including one-to-many scale,

are used to set up several experiments; the detailed settings of

the scales are listed in Table 2. For each scale, ten configurations

are manually generated, containing different demand and supply

constraints and different geographical locations for suppliers and

customers. Specifically, there are some simulated supply chains in

the egg market. In addition to the category and location details of

suppliers and customers, the data consists of the supply amount of

each supplier, the demand amount of each customer, the type of

product that each supplier supplies, the cost of purchasing products

from suppliers, the transport cost permile for each egg, and product

prices that are different among customers.

A specific metric is used to evaluate the optimization results

and to compare the results among different configurations and

scales. Singh et al. (2022) defined an improvement multiplier that

can measure the progress of an algorithm from the initial random

values to the end of the iterations. The following equation can

calculate the improvement multiplier:

I = 1+
(objf − obj0)

obj0

where objf is the objective function value of the optimized outcome,

and obj0 is the objective value of the best individual among all the

initial particles.

In the first experiment, ten initial particle sets are generated

based on each configuration and used as initial swarms in the GA

and SIB algorithms for a fair comparison. Each algorithm is run for

300 iterations without stopping early, and the performance of the

two algorithms is compared at different iterations. Table 3 shows

the optimized results of two algorithms on each scale after 100,

200, and 300 iterations. According to the results, the SIB method

outperforms the GA in all scales. The mean of the improvement

given by the SIB is a multiple of that given by the GA, like over

1.7x, 2.5x, and 1.8x respectively in Configs. 1, 2, and 4. Furthermore,

the SIB method improves faster than the GA in the early stage and

converges. The means of the improvement multipliers given by the

SIB in all the scales have already outperformed the GA’s results after

100 steps and become stable in the rest of the steps. In contrast,

the GA results start at a lower level and keep increasing until the

200th step or even the 300th step. The profit progress trend of one

experiment on each scale is visualized in Figure 2, which shows our

observations in an easy-understanding way.

The second experiment tests the effect of parallel computing

for large data scales. Two versions of the SIB method are

implemented, one with the parallelization techniques and one

without. Three configurations, No. 1, No. 4, and No. 8, are chosen

to test the effect’s difference in data scales. The experiments are

individually run on a server with 104 cores. Table 4 summarizes

the computation time in seconds. With a significantly smaller

mean, the parallelization helps reduce the computing time in all

three configurations. While the computing time only reduces to

one-third of the time without parallel on configuration No. 1,

the parallelization reduces the computing time to almost one-

fifth of the time without parallel on configuration No. 8. This

may result from the complexity of the computation in terms

of the particle size. Since parallelization costs additional time

to copy data from one CPU to another CPU, it is worthier

to use this technique in experiments with higher computation

complexity.

5 Conclusion

This paper proposes a SIB method to handle the multi-

supplier-multi-customer supply chain management problem. A

modified MIX operation is designed to handle the high-

dimensional solutions; the remaining quantity matrices that

store additional information help to handle cross-dimensional

constraints. Moreover, parallelization techniques accelerate the

program to obtain the desired results within a reasonable

time. The experiments show that the SIB method, compared

to the GA method, offers better-optimized solutions in a

shorter time. One must consider more practical factors if

this method is applied. For example, prices and costs in

the real world vary based on the quantities of demand and

supply, and they require a predictive marketing model before

optimization. Moreover, the proposed method is not limited

only to the SCM optimization problems, but also to similar

optimization problems with high-dimensional domains and

cross-dimensional constraints.
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