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Neurocomputational
mechanisms underlying
perception and sentience in the
neocortex

Andrew S. Johnson1 and William Winlow1,2*

1Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Napoli, Italy, 2Institute of Ageing

and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom

The basis for computation in the brain is the quantum threshold of “soliton,”

which accompanies the ion changes of the action potential, and the refractory

membrane at convergences. Here, we provide a logical explanation from the

action potential to a neuronal model of the coding and computation of the

retina. We also explain how the visual cortex operates through quantum-

phase processing. In the small-world network, parallel frequencies collide into

definable patterns of distinct objects. Elsewhere, we have shown how many

sensory cells aremeanly sampled from a single neuron and that convergences of

neurons are common. We also demonstrate, using the threshold and refractory

period of a quantum-phase pulse, that action potentials di�ract across a

neural network due to the annulment of parallel collisions in the phase ternary

computation (PTC). Thus, PTC applied to neuron convergences results in a

collective mean sampled frequency and is the only mathematical solution within

the constraints of the brain neural networks (BNN). In the retina and other sensory

areas, we discuss how this information is initially coded and then understood

in terms of network abstracts within the lateral geniculate nucleus (LGN) and

visual cortex. First, by defining neural patterning within a neural network, and

then in terms of contextual networks, we demonstrate that the output of

frequencies from the visual cortex contains information amounting to abstract

representations of objects in increasing detail. We show that nerve tracts from

the LGN provide time synchronization to the neocortex (defined as the location

of the combination of connections of the visual cortex, motor cortex, auditory

cortex, etc.). The full image is therefore combined in the neocortex with other

sensory modalities so that it receives information about the object from the

eye and all the abstracts that make up the object. Spatial patterns in the visual

cortex are formed from individual patterns illuminating the retina, and memory

is encoded by reverberatory loops of computational action potentials (CAPs).

We demonstrate that a similar process of PTC may take place in the cochlea

and associated ganglia, as well as ascending information from the spinal cord,

and that this function should be considered universal where convergences of

neurons occur.

KEYWORDS

nerve impulse, physiological action potential, soliton, action potential pulse,

computational action potential, reverberatory circuits, perception, sentience
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1 Introduction

According to Ahissar and Assa (2016), “perception of external

objects is a closed loop dynamical process encompassing loops

that integrate the organism and its environment” and thus provide

a probable basis for understanding perception and sentience.

Furthermore, neocortical functions are dependent on bidirectional

thalamic communications via cortico-thalamic-cortical (CTC)

loops interlinked to one another by cortico-cortical (CC) circuits,

forming extended chains of loops for communication within

the cortex (Shepherd and Yamawaki, 2021). These findings are

based on the painstakingly researched physiological connections

of neurons within the brains of experimental mammals, such as

mice, where many neurons communicate by action potentials and

synaptic terminals, either chemical or electrical, although some

neurons are spikeless and devoid of action potentials. However,

action potentials themselves are known to have three independent

functions, namely, communication, modulation, and computation

(Winlow and Johnson, 2021), and are the primary elements

underlying sentience (Johnson and Winlow, 2018). Furthermore,

an individual action potential is an ensemble of three inseparable

concurrent states, as shown in Figure 1 (Winlow and Johnson,

2021).

Here, we focus on computational action potentials (CAPs)

generated from sensory inputs and how they are computed from

sensory areas. We discuss artificial intelligence (AI) and its values

as an analogy for brain computation. Computational models of

the action potential usually describe it as a binary event, but

we have provided evidence that it is a quantum ternary event

FIGURE 1

The nerve impulse is an ensemble of three inseparable, concurrent

states of the action potential. What an observer will perceive

depends on their investigational perspective. The physiological

action potential is the orthodox action potential described in detail

by Hodgkin and Huxley (1952). The action potential pulse is the

mechanical pressure wave for which substantial evidence has been

presented elsewhere (Winlow and Johnson, 2021), and the

computational action potential is first described by Johnson and

Winlow (2017). From Bioelectricity, 3, 161–170, with permission.

(Johnson and Winlow, 2021), whose temporal fixed point is the

threshold (Johnson andWinlow, 2017, 2019; Winlow and Johnson,

2020), rather than the plastic action potential peak used in other

models. In AI, the diffraction of pathways through a network is

predetermined by programming each step, but we demonstrate

that brain neural network CAPs annul on phase asymmetry, thus

leading to distinct network patterning and frequency outputs.

We also provide evidence that reverberatory loops of CAPs,

each containing 1 trit of information (Johnson and Winlow,

2019, 2021), can provide immediate active memory for every

connection in the network, synchronized by phase, thus providing

circuit memory. The decoding of the visual cortex is described

by first explaining how CAPs affect the patterning of distinct

pathways in response to stimulation. A logical examination of the

connectome of the visual cortex neurons in response to quantum-

phase ternary CAPs demonstrates that timing separates the image

from the eye into abstracts, which the neocortex can recognize

as objects.

Using the same technique, we show that there is a logical

explanation for the actions of the cortex (defined as the convergence

of all sensory abstracts). The cortex takes sensory information in the

form of abstracts containing all sensory information and therefore

contains all the live action, sight, touch, feel, taste, hearing, smell,

proprioception, etc., and combines them as action sequences. The

cortex may be compared with playing a video with sensation

and thus recording live memory. We postulate that the prefrontal

neocortex (which we define in terms of connectivity) takes these

events and contextualizes them by importance. Thus, the prefrontal

neocortex can compare events in the past to the present and can

categorize them by context. The brain is, therefore, able to both

compare events by time and also by the objects/abstracts within.

Further examination of the brain connectome using knowledge of

how the brain neural network works should eventually reveal its

full functionality.

The cortex is a neural network with random latencies, formed

during development from the layered positioning of groups of

neurons and synapses with differing connectivity. The neocortex

contains many events indexed primarily by time where impactful

(repetition and change of context) events become learned. In the

frontal lobes of the neocortex, we suggest that present perceptions

from other cortical areas are then stored contextually by events and

the abstracts within. Therefore, through contextual abstracts, we

may view connected past events and imagine future ones. Human

thought is a process of comparing the present with past abstractions

of what we know of the past and predicting the future from what

we know.

2 Does the brain work through turing
computation?

Computational theories for the brain rely on analogies with

conventional Turing computation. A fundamental feature of

Turing computing is the requirement for set-processing (an

abstract machine that manipulates symbols on a strip of tape

according to a sequential table of rules), usually facilitated by a

central timer. However, there is no form of timer in the human

brain with the precision to compute action potentials at the rate
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necessary in the reaction time available (Johnson and Winlow,

2021). Sensory receptors including muscle spindles, rods, cones,

etc., all modulate action potential (CAP) frequency in response to

the sensation. Similarly, precise activation of muscle is performed

by varying frequencies of stimulation; these frequencies are often

connected, by convergence, onto interneurons, coding many

neuronal outputs into one. However, both the brain and Turing

machines comply with basic computation rules. At its simplest,

computation is the resolving of unique inputs with appropriate

outputs (Figure 2A).

3 The computational action potential

Conventional Turing computers process inputs sequentially

according to the timing of a gate-directing output and its

programming (Figure 2B). The division of time is absolute between

operations. The brain, however, computes frequencies rather than

time (Figure 2C). To confirm the computational functions of

the human brain, it is necessary to fulfill the requirements of

computation, explain how this takes place within the limitations of

a living neural network, and measure the behavioral properties of

neurons and their connections.

Conventional computing, and more recently, artificial

intelligence (AI), have evolved because binary chips became

commercially available, providing a platform that had not existed

previously. The gated mechanism of a transistor is fundamentally

different from that of a neuron, with the first acting at nearly

light speed and neurons at a leisurely 0.5–10 m/s in unmyelinated

axons and up to 120 m/s in myelinated axons. Conventional

computing and AI assume that the action potential is binary and

that computation is facilitated through the synapses. We disagree

and have previously argued that such a mechanism would be too

slow, unstable, and error-prone (Johnson and Winlow, 2018) for

neurocomputation. It is, therefore, necessary to review the platform

of the nervous system from the complexity and positioning of the

brain areas down to the fundamental unit of the action potential

and to form a hypothesis from the evidence of the demonstrated

neuron behavior.

In a conventional computer and in AI, the gating of current is

performed by a program defining 0 or 1 (Figure 2B). In Johnson

and Winlow’s studies (Johnson and Winlow, 2017, 2019), we

described how the action potential colliding at convergences can

result in similar patterns across a neural network. This form of

computation had not been previously described and yet forms an

intrinsic property of a neuron. Thus, an action potential can be

better described as a quantum pulse with a threshold and peak.

As an action potential propagates across a membrane, a refractory

period occurs where the pulse has traveled, blocking subsequent

CAPs. The mathematics are of quantum processing and depend

upon the phase of the colliding CAPs (Figure 2D). In Johnson and

Winlow’s study (Winlow and Johnson, 2020), we demonstrated that

the spike of an action potential is not sufficiently precise to use

in computation, but that the threshold had appropriate precision.

This supports our view that the CAP is an electromechanical

pulse, the APPulse (Johnson, 2015; Johnson and Winlow, 2018,

2021; Winlow and Johnson, 2020), where a pressure pulse soliton

(Heimburg and Jackson, 2005; El Hady and Machta, 2015; Perez-

Camacho and Ruiz-Suarez, 2017; Ling et al., 2018; Mussel and

Schneider, 2019) is the marker for computation rather than the

spike. The accuracy, precision, and speed of the CAP are therefore

defined by the quantum threshold (Figure 2E). The threshold is

the moment of propagation and is at the point where the CAP

moves across the membrane. The CAP is therefore composed of

a binary signal with a phase element (Johnson and Winlow, 2019,

2021). It is the phase shift when collisions occur (Shrivastava et al.,

2018) that changes the frequency of the outputs (Figure 2E). This

is very important when considering frequency computation, as

the soliton is precise to microseconds. In addition, in Johnson

and Winlow’s studies (Johnson, 2015; Johnson and Winlow, 2017),

we explain how parallel information in a quantum-phase system

automatically redacts error, this is especially important when

considering noise within the nervous system, and forms concurrent

circuit (loop) memory.

4 Sensory inputs to the CNS

Complex nervous systems have substantial neuronal

redundancy and multiple feedback systems to multiple specialized

command lines driving central pattern generators (CPGs) (Mussel

and Schneider, 2019). The computation of sensory inputs,

eventually leading to motor outputs, is most likely achieved by

parallel distributed processing, achieved from complex interacting

networks in which the CPGs are also embedded. There are

innumerable sensory inputs into the mammalian CNS, many

of which have been physiologically described but which need

to be understood in computational terms, as we have set out

in Figure 3, in relation to retinal processing. Figures 3A–D are

deconstructed illustrations of the basic connectivity of a converging

neural network and the observed results (Johnson and Winlow,

2019). The refractory period of the action potential is dependent

on the ability of the membrane to recover. The frequency of

action potentials is limited in neurons, with most in the range

of 0–100Hz, but some may generate high-frequency bursts (see

below). Observations of frequencies of input in all converging

systems of neurons demonstrate that frequencies of inputs are

proportional to outputs (Figure 3C), as we commented on in

our paper on the neural transactions of the retina (Johnson and

Winlow, 2019). The resolution of this mechanism mathematically,

within the constraints of a neuron, is the key to understanding

its coding. In Johnson and Winlow’s study (Johnson and Winlow,

2019), we suggested that the only possible mechanism for this

universal effect was interference when the refractory period of the

membrane after an initial action potential blocked all others over

the same surface for a set period (Figure 3C). After elucidating

the mechanism, we then applied this code to the retina. The

retina, in common with many other sensory neural networks

(auditory, taste, and skin), has similar connectivity of converging

activity where regular neural networks from adjacent receptive

fields, each supplying a nerve, overlap (Figure 3D). In each case,

the initial CAP frequencies are determined by sensory cells (for

example, rods and cones). CAPs then converge with interneurons,

for example, retinal bipolar cells (RBC). An additive effect of

the increasing number of convergences (5 cones to 1 RBC or

20 rods to 1 RBC) has not been observed. Experimentally, the

result of the convergence of firing neurons is the mean of the

inputs (Figures 3A–D). In Figures 3A–D all the CAPs are in
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FIGURE 2

Basic computation rules. (A) Inputs must match outputs. (B) Turing computers use timing. (C) In neural networks, frequency inputs must match their

respective outputs. (D) The quantum threshold of the action potential (red) propagates to the convergence (P). As the quantum threshold passes the

membrane at point P, the membrane becomes refractory, blocking further CAP. The second CAP is therefore destroyed, leading to a reduction of

CAP according to phase. (E) The action potential showing the threshold area (orange vertical dotted lines) forms the beginning of the quantal soliton

with rising and falling currents across the membrane.

phase, and so the result is a collective mean sampling of the input

frequencies. Thus, in the retina, the resulting frequency of the

bipolar cell is the mean firing frequency of all its connected light

receptors. Therefore, each bipolar cell frequency is the mean

representative of a receptive field; where fields overlap, adjacent

receptive fields program the light variations and gradients from

the bisections (Figures 3A–D). Thus, the bipolar cells effectively

code 5–20 photosensitive rods or cones into one bipolar cell. The

frequency of CAPs leaving each bipolar cell represents the amount

of light activating its respective receptive field. Bipolar cells with

adjacent, overlapping fields contain information on light gradients

across both fields. Gradient information between three or more

overlapping photocells contains all the necessary information by

cross-indexing to precisely detect the variations of light across the

whole retina. By using gradients, the information from the 5–20

cones is the same as if each cone had its own bipolar cells and optic

nerve neurons. Horizontal cells add information from other bipolar

cells in adjacent overlapping gradients, coding detail and similarity

into the existing frequency. Coding in the ganglion cells follows the

same mechanism.

5 The visual cortex: what does it do?

Coded, parallel, and independent frequencies of CAPs travel

along corresponding optic nerve neurons. Before the visual cortex,

CAPs are processed by the lateral geniculate nucleus (LGN),

which has fast connections to the prefrontal cortex. The LGN

can be described within the context of the visual cortex and its

function of synchronization. The LGN connects to layer 4 of the

primary visual cortex (Espinosa and Stryker, 2012) (Figure 5B).

The appearance of the visual cortex is that of neurons of many

types grouped into layers with many synapses to many areas,

with some neuron types like L5 pyramidal neurons processing

many layers. Other types of neurons have been noted with specific

morphologies and connectivities that connect within the layers of

the visual cortex. Differences in morphology and connectivity are

of huge importance in considering computation, as each variation

of connection in the connectome will have different latencies.

The cortico-thalamic-cortical loops, featuring fast connections and

synchronized CAPs, permit the central brain to react to fast-motion

objects (like a ball being thrown), without first having to recognize

the detailed object. Information from obscured but visible objects as

to speed and position are sent simultaneously to the thalamus and

to the primary visual cortex. This permits directional recognition

of an object and its abstract properties (size, material, and danger)

before detailed recognition (texture and weight). Action potentials

travel at most 10 m/s in the unmyelinated neurons of the brain.

Without the cortico-thalamic-cortical loop, tracking an object,

such as a ball, would require geometric calculation. These loops,

therefore, provide the brain with not only synchronicity of action

potentials but also a method by which activity can be predicted

by learned experience. The sensory neural networks of the retina,

like the other sensory networks, are regular neural networks
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FIGURE 3

The sensory coding of neurons. (A–D) Are deconstructed illustrations of the basic connectivity of a converging neural network. The refractory period

of the action potential is dependent on the ability of the membrane to recover. The frequency of action potential is therefore limited in neurons, with

most in the range of 0–60Hz. Observations of the frequencies of input in all converging systems of neurons demonstrate that the frequencies of

inputs are proportional to outputs. (A, B) Show two and four synapses converging, respectively. Each of the pairs of CAPs arrives in phase and thus

neither adds nor subtracts. (C, D) Show that an increased frequency is always the result of collective mean sampling. (E) Shows details of the CAP

cancellation at the convergence. (F) Shows the creation of coded sensory gradients in the retinal bipolar cells.

permitting the coding of the CAP frequencies, as mentioned.

The visual cortex is a layered but otherwise randomly formed

network, where both the positioning of synapses and neurons are

spaced so that latencies of CAPs are randomly defined. There is

also plasticity in the neurons, their connections, and synapses,

thus changing CAP latencies over time (Winlow, 1989; Espinosa

and Stryker, 2012), which is important in the context of the

neural network as it permits memory circuits (Figures 4D, 5A)

to be fluid within the network. Plasticity is therefore a functional

benefit to the network, permitting potential details of the abstracts

to expand.

5.1 How does a random neural network in
the visual cortex deconstruct/make sense
of information from the optic nerves?

In the visual cortex, input frequencies produce defined

patterns within the random neural network by interfering with

convergences and therefore changing the patterns of output

frequencies (Figures 3C, 4A). As the CAPs collide, the patterns

they form within the visual cortex will always reflect the output

from the retina. The information coded into the optic nerve’s

100,000 neurons is a combination of information from adjacent
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FIGURE 4

Action potentials travel slowly in comparison to electricity in the unmyelinated neurons, between 0.1 and 1 m/s. In a random neural network, parallel

CAPs interfere (Johnson and Winlow, 2019). (A) Randomly formed neural network showing quantum APPulse. Frequency inputs match

corresponding frequency outputs. (B) A contextual network. From the left, a vehicle is formed from a description of some and more details. (C)

Directionally the object is described by the z-x axis, while the detail is described along the y-axis. (D) Three neurons with a circulating CAP contain 1

trit of memory, 2 CAP 9 trits, and 3 CAP 27 trits. A new CAP at “d” will change the phase of the first if it collides with the changing memory. Repetition

enables synchronization and error redaction.

(visual) gradients. The information contains all the details needed

to reconstruct the full image from the outline to the detailed

similar patterning. In the retina, frequencies from the bipolar

cells travel to the retinal ganglion cells (RGC), ensuring that all

the information is encoded across all the optic neurons by the

collisions and subsequent phase and frequency changes in the

RGC. Assuming the optic nerve connections are formed randomly,

the output from a few hundred of the optic nerve neurons

therefore contains the information of large abstracts – basic color,

hue, definition, and change. Each neuron within the optic nerve

contains first and foremost the information from its own receptive

areas (those directly connected by bipolar cells to cones or rods)

(Johnson and Winlow, 2019), forming the main frequency outputs

in each case. Information is then combined with the horizontal

cells connected to other receptive areas. Frequency is modified

by phase by the horizontal cells to reflect the output of all other

connected light cells. This computation is phase-dependent and

results in a distinct pattern of frequency being computed. This

contains all the information regarding similar contexts of light,

including hue, color, and saturation, being coded by the location

of overlapping similarities. The resultant patterning of frequency

codes represents the abstract patterns on the retina. The frequency

and change of phase of each optic nerve, therefore, contains, first,

the information of its own connected cells and, second, phase
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FIGURE 5

(A) An illustration of a random neural network where latencies between nodes are formed from convergence and divergence. Phase ternary

computation creates memory circuits or loops of trits within the circulating CAP. (B) A simplified illustration of the function of the cortex and

neocortex showing areas of progressive perception. Attribution: Society for Neuroscience for the 3D Brain Image.

changes reflecting patterned similar abstractions (lines, corners,

etc.). The information from thousands of inputs, larger abstract

shapes, and clearer definitions are thus all coded by frequency

and phase change. The selection of two or more optic neurons

with overlapping receptive fields contains all the information

about objects and abstracts within those fields. As the number

of neurons increases, so does the complexity. Thus, the relatively

small connection between the LGN and thalamus contains enough

information to synchronize large abstracts. As the information

passes into the network of the visual cortex, more intricate abstracts

are revealed in its pathway. The information from all the neurons

gives the complete picture. Thismirrors the function of a contextual

network (Figure 4B). We propose that the patterning of the visual

cortex in response to stimuli is a result of activity being directed

by quantum-phase ternary collisions along defined pathways that

respond to shapes on the retina. Patterning within the visual

cortex has been observed (Kim et al., 2020; Chatterjee et al., 2021),

concurring with our hypothesis. The implications of this only

become apparent when considering the computation within the

spatial dimension and the connectivity of the visual cortex itself.

The computational role of bursting, which can be generated

by neurons in the visual cortex (Shai et al., 2015) and in the

lateral geniculate nucleus of primates (Martinez-Conde et al., 2002),

encoding specific visual stimuli or behavioral states, has been

observed elsewhere (Reinagel et al., 1999; Martinez-Conde et al.,

2002). Therefore, bursting may be relevant in the computation

performed by visual areas. The frequencies of action potentials

generated within the LGN (Shai et al., 2015) and primary visual

cortex in the L5 pyramidal neurons are likely integrators in the

cortical column (Shai et al., 2015). The bursts of frequency timing

may therefore be a representation of whole object recognition over

time, for example, as abstract shapes from smaller objects form a

recognizable image.

Regarding the L5 pyramidal neurons, these are some of the

largest neurons spanning many layers where they receive input.

Because of the physical dimensions of the membrane and the

threshold of action potential quanta being smaller, interference

of action potentials may take place over the surface membrane,

resulting from the computation of one or more colliding action

potentials. Interference patterns of threshold quanta of action

potentials collide to modify frequency outputs. In our view, each

single pyramidal cell may act as a single computation element,

as shown in Figure 2C. In the visual cortex, pyramidal cells

connect layers to output. Thus, they are not storing information
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but computing it. When pyramidal cell activity is decreased

during anesthesia (Suzuki and Larkum, 2020), computation and

consciousness decrease, while the brain retains memory in the rest

of the neural network layers of the cortex.

For an analogy in a contextual network, see Figures 4B, C. In the

context of the label “vehicle,” the labels “wheels, windscreen, metal”

are positioned so that we can understand without the label what the

object is. We can add detail to this to specify a car or a bus, and the

initial perception can be added to by specifying detail. If we assume

the object is a “vehicle,” then “car, windscreen, etc.,” are all abstracts

making up “vehicle.” Each object is an abstract of other objects; each

can be combined and subtracted to form other objects. We can also

guess what an object is in relation to its abstracts. In addition, if

the object is a moving “car” and we have already seen it, we can

remember the details from a previous memory. In the visual cortex,

a similar deconstruction of recognizable abstracts takes place, each

placed within the network. Notice that to see the car moving, it is

only necessary to recognize it once; movement can then be tracked

separately by the object, and we propose that this occurs in the brain

via the LGN.

5.2 Spatial memory

In terms of object recognition, the formation of patterns

passing through the network can be better understood if the

random neural network is drawn according to the timing of CAP.

In Figure 4B, the context is gained by cognition as we discover the

network reading from left to right so that a complete understanding

of the object takes time to examine first the larger object (the

vehicle) and then the detail of the vehicle (Figure 4C). Spatially,

information being filtered by a network will have directional

processing where X and Z coordinates code for each abstract

and the Y coordinate for increasing detail. The Y coordinate

is important because, in the brain, it is synonymous with the

time taken for computation to take place. Y is relative to each

individual and their physiology. We propose that the visual cortex

functions as a contextual network and can be thought of as a space

where information flows directionally, as described in Figure 4.

Optic nerve information after entering the visual cortex at the

LGN is spread between 100,000 parallel neurons. The small-world

random network creates a system where the time taken for CAPs

to propagate from a synapse to a convergence or other synapse can

be measured in terms of phase differences. Thus, if the threshold

precision or latency (proposed to be the beginning of the soliton) is

1 µs (1 × 10−6s), then the distance occupied will be 1 × 10−6 m.

It is the differing latencies of neurons and synapses that create the

random neural network. As CAPs interact, any converging CAPs

will be annulled, and there will be an effective phase change if CAPs

are <1 × 10−6s separation. This results in the diffraction of CAPs

through the random network, as shown in Figures 4A, B, 5A.

The frequency-modulated parallel output from the optic nerve

distributes itself through the LGN-visual cortex, forming a pattern

of excitation (Figure 5A). The random architecture ensures that

some of the paths are circuits (Figure 5A). In the coding of the

retina, patterns formed from the computing frequencies spread

according to the timing of the pathways. The optic nerve output

passes this information into the visual cortex neural network. The

random latencies of the neural connections disperse the output

into a distinct pattern of separated, dissimilar abstracts (Figure 4B).

CAPs follow discrete network patterns as frequencies pass deeper

into the network, reflecting an increasingly complex deconstruction

of the pattern of abstracts constituting the image. As information is

retrieved, it is passed into the cortex.

If Figure 4C is changed to reflect the direction of time through

the random neural network (Figure 4C), we can see that the

patterns of activity form abstracts. As patterns progress through

the network, the vector Y describes time, and X and Y describe

the abstracts and objects, respectively. For a complete image, from

the first pattern formation to the last, abstracts of increasing

complexity are passed to higher areas, becoming clearer over

time. Furthermore, the increase in frequencies may be responsible

for bursting (Shai et al., 2015) as synchronization occurs. The

implication is that the visual cortex deconstructs the signal into

recognizable objects over time that can be sent by parallel CAP

frequencies. The LGN passes basic information on the image to

the cortex directly, passing on the most rudimentary information

on changes. In the visual cortex, the memory of each change is

simultaneously formed so that future recognition of abstracts and

object labels can occur.

5.3 Circuit memory

Circuit memory occurs in a random brain neural network

with frequency-modulated inputs and occurs because of recursive

CAPs following circuitous routes (Figure 5A). The action potential

is a ternary quantum object that, when acting in parallel, can be

considered as a trit of information+1,−1, 0 (Johnson andWinlow,

2017, 2018, 2019; Winlow and Johnson, 2021). A single action

potential following a circuit passes 1 trit of information; two CAPs

store 2 trits, 32; and three trits, 33. This is shown in red in Figure 5A.

In a random network, circulatory loops of information can both

store memory from changes in phase and redact errors as the

network will synchronize and stabilize the output. Theoretically,

there is no limit to the number of circulating CAPs or the number

of neurons within which the CAPs circulate. In a circulatory path

with one CAP, a collision with another entering the circuit will

shift the phase of the resultant output, thus changing the memory

in the system. In a randomized small-world neural network, these

circuits interact and eventually establish a natural synchronized

equilibrium with incoming CAPs, thereby maintaining memory by

deviating into further patterns. In each case, the quantum ternary

CAPs redact errors from the system in parallel; similar abstracts

are formed from the inputs, thus colliding and ensuring phase

precision through the network (Johnson and Winlow, 2019).

5.4 Active circuit memory forms a
contextual database

The activity of multiple circuit memory iterations forms a

contextual database where every context of the abstract is linked

by the circuit memory. In the network, circuit memory is held
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within specific neuronal pathways that permit CAPs to reverberate,

while phase changes record abstracts (Figure 5A). Abstracts have

context, which, when combined with others, form recognizable

objects. An abstract is therefore a part of the spatial geometry of the

neural network. A contextual database is indexed by context with

multiple relationships. Firing patterns in the visual cortex therefore

represent both the passage of activity through the system and firing

from activated circuit memory.

6 Discussion

In this study, we have described how quantum-phase CAPs

compute and follow distinct patterns in a neural network forming

abstracts. This is a fast computational system where chemical

synapses have a secondary role in providing latencies, with

electrical synapses acting more quickly (Winlow et al., 2017) and

in slow inhibition (Johnson and Winlow, 2019). Describing the

action as a membrane quantum pulse has the advantage that we

can logically explain non-classical neurons that do not produce

spikes, as many CNS neurons are spike-less (Roberts and Bush,

1981). Quantum-phase ternary computation is feed-forward, fast,

accurate, and error-free. We have also described the coding of

the sensory systems in terms of vision provided by the retina,

which is a small-world network, and the role of CAPs. In our

view, such small-world networks are repeatable and extendable and

can be used to predict the detailed functioning of the CNS. Each

individual iteration of the random small-world network that forms

an abstract representation of an image within the visual cortex can

be replicated to produce objects.

The mechanisms described above are universal to

neurons, neural networks, and sensory systems in terms of

neurocomputation and coding. All of this, indeed, sits in parallel

with and accompanies the physiological processes underlying

sensory processing. These concepts will, in our view, also underlie

the delivery of appropriate motor programs. This implies that

phase quantum processing occurs across the membrane of

neurons, converging due to the refractory period. The action

potential refractory period and its significance were realized

by Hodgkin and Huxley (1952) when they described the flow

of ions that cause the action potential and realized it was

propagated from the threshold. However, the measurements of

the speed of processing of information at convergences confirm

the beginning of the soliton (Heimburg and Jackson, 2005; El

Hady and Machta, 2015; Johnson, 2015; Perez-Camacho and

Ruiz-Suarez, 2017; Ling et al., 2018; Chatterjee et al., 2021)

as the threshold and the model of the APPulse (Johnson,

2015; Johnson and Winlow, 2018, 2021) as the mechanism

of computation.

6.1 The visual connectome

Connectivity within the nervous systems is vital; this may

include more than just a specific connectome because even

individual neurons are capable of computation and computational

action potentials are considered quantal. We are entering a

new and exciting research phase on nervous function, such

as our understanding of the cortico-thalamic-cortical loop in

synchronization, as we further investigate the connectome, which

appears to be underlain by interacting neurons connected by

parallel distributed processing where the classical brain areas

of visual, auditory, motor, etc., become understood as spatial

connectivity of information.

We can only speculate about the mechanisms of what happens

to the information in spatial abstracts coded in parallel. If the

function of the visual cortex is to record and recognize objects

and pass on this information, it is logical that the cortex,

acting similarly, is storing this information along with all other

perceptions from the auditory system, taste, and all other sensory

areas to compute the whole perception andmemorize it. The cortex

is therefore able to process and store present activity as selected

events, placing in memory activities of notable changes in the

objects and representations forming sensory perception. Events

refer to memory from all perceptions—sight, touch, taste, and

hearing. This is summarized in Figure 6.

It follows that the prefrontal cortex is computing another level

based on these events and both contextualizing and categorizing

them, for example, taking the events from the cortex and placing

them in a context of importance rather than time. At any time,

the neocortex can therefore compare events and objects with all

previous similar events and objects, probably in the frontal lobes

and objects held within them. The neocortex is therefore able to

contextualize current activity according to past memory. In terms

of human behavior, this implies that we have a store of memory to

refer to for all events in our lives and can compare current situations

and memorize them, primarily based on their impact on active

circuit memory.

AI networks function according to Turing computing theory

and not as brain neural networks. We have shown that the action

potential is a quantum ternary structure able to pattern a neural

network by frequency modulation and collisions (Kerskens and

Pérez, 2022). An AI network has programmed gates that form

patterns on each iteration that end in unique output, but that

is where the analogy stops. The main difference is that an AI

algorithm compares many like abstracts with a query to produce

an output of the most likely abstract by probability. There is no

evidence that the brain uses probability in selection we show that

CAP error and precision correct automatically, and the small-world

neural network is of unlimited depth. The decision of which events,

objects, and abstracts are activated in the brain for perception

is chosen from the context of past to present perception. The

small-world random brain neural network can index everything

imaginable within a few neurons due to the one trillion synapses

and connections in the brain. The system is therefore absolute

and determinative, giving a logic of “Yes, no, don’t know.” In

the network of the visual cortex, components of vision from the

retina are split into patterns of abstracts containing information

about recognizable objects in descending detail. The conditions

under which a recognizable object is not recognized do not exist,

as any new object in an image is simultaneously memorized and

considered an object. AI networks and the visual cortex both

compare abstract representations. However, the “don’t know” in

AI is determined by probability. By contrast, what we do not know

in the visual cortex is produced from detailed synchronous circuit

memory. This is important when considering facial recognition,
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FIGURE 6

The model of perception from the di�use brain areas. Sensory areas pass information to the cortex, where events are reconstructed from sensory

abstracts and memorized in real-time, therefore creating a “timeline” of events like a video that includes all senses. Information is therefore available

to compare events to those already perceived in the cortex. When this information is passed to the neocortex, the event timeline is deconstructed,

with the implication that this area is responsible for the ability to think contextually, irrespective of the timeline. This gives the brain the ability to

compare objects in relation to the timeline. Therefore, the context between perceptions of events can be examined, for example, by comparing

every time an object is seen. An individual perceiving an object can then easily associate it with all events.

where AI is comparing faces as a probability of recognition. The

brain either knows the face or does not. Similarly, with self-driving

vehicles, the placement across the road compares similarity and

then steers the vehicle on probability. A human subject steering

a vehicle is programming motor coordination by comparing the

present with all previous driving experiences, road experiences, and

any other relevant coordination in their past, in the context of their

driving experience.

By storing events contextually, the cortex provides the

neocortex with the ability to compare timelines so that events in

the present can be compared to the past. The brain has the ability,

therefore, to investigate the past and make decisions according to

the data presented to us from the context. Decisions in the human

brain are therefore made based on an experience from the past,

what is happening in the present, and the ability to use past context

to predict the future from both.

Currently, we are at an interesting point of advance in

neurocomputation. However, studies on neuronal connectivity

and deciphering the connectome do not, by themselves, reveal

the innermost workings of nervous systems. Furthermore, strong

evidence was recently presented to show that there may also

be non-classical brain functions due to quantum entanglement

between systems. Heartbeat signals were evoked inmost parts of the

brains of conscious volunteers using nuclear magnetic resonance,

as described by Kerskens and Pérez (2022) for the first time.

No electrophysiological evidence has ever been found for such

connections. In other words, systems of neurons without direct

physiological or neurohumoral connections may well be able to

influence one another, as we have discussed elsewhere (Winlow

and Johnson, 2021; Winlow et al., 2023). Such concepts have been

discussed in the past (Johnson, 2007; Larson, 2015), although the

idea that quantum mechanics could in part explain higher brain

functions was dismissed by some (e.g., Koch, 2006). Obviously,

the observations of Kerskens and Pérez (2022) require detailed

verification but strongly suggest quantum entanglement between

systems whose connections had not been previously observed

directly or physiologically identified (Winlow et al., 2023). These

findings, if verified, would strongly support our view that the

brain uses quantum computation (Johnson and Winlow, 2021),

and as a quantum-phase computer, it would be expected of us to
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generate multiple non-classical connections of this type across the

nervous system.

7 Conclusion

• In the visual cortex, there are many processes taking place

simultaneously that affect the distribution of CAPs to form

spatial abstracts: input-coded parallel frequencies, action by

synapses, error redaction, and memory circuits.

• We have explained the coding and processing of CAPs

into defined visual cortex patterning and given a logical

explanation for memory and object recognition. The active

memory of reverberatory CAPs within the network is

reductive. Every change of pattern is registered in memory,

with context supplied by neurons exiting the memory loops.

• Although AI is useful as a tool, we have shown that AI systems

are not functionally intelligent, with the danger that their

probable answers are accepted as judgments. This is especially

true when using insufficient feed data. We have examined

AI, which we conclude is an insufficient model of the brain

functioning in almost all respects.

• In the retina, we have elucidated the coding, decoding, and

function using only the properties of the CAP and the neural

connectome. All neurons behave similarly, and we suggest

that all areas in the brain function using quantum-phase

ternary computation.

• For philosophers, we have answered the question, “Why do

physical states give rise to experience?” This also confirms

the environmental philosophy of being: we are a sum of

our experiences. The confines of the central brain and its

connections are created by a few thousand genes. With

functioning determined by the positioning and the type of a

hundred billion neurons and a trillion synapses, all of which

are susceptible to plasticity, genetic variation in a healthy

subject is minimized.

8 Definitions

QPAP: quantum-phase action potential. Object: any object

capable of being recognized by the cortex and may be an

abstract of a larger entity. Abstract: any recognizable form that

can make up an object. Event: a timeline of objects, sensations,

and their interactions. Small-world random neural network: a

randomly formed network where latencies between nodes are

random, and every node is connected within three degrees

of separation.
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