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Predictive coding (PC) is an influential theory in neuroscience, which suggests

the existence of a cortical architecture that is constantly generating and updating

predictive representations of sensory inputs. Owing to its hierarchical and

generative nature, PC has inspired many computational models of perception in

the literature. However, the biological plausibility of existingmodels has not been

su�ciently explored due to their use of artificial neurons that approximate neural

activity with firing rates in the continuous time domain and propagate signals

synchronously. Therefore, we developed a spiking neural network for predictive

coding (SNN-PC), in which neurons communicate using event-driven and

asynchronous spikes. Adopting the hierarchical structure and Hebbian learning

algorithms from previous PC neural network models, SNN-PC introduces two

novel features: (1) a fast feedforward sweep from the input to higher areas,

which generates a spatially reduced and abstract representation of input (i.e., a

neural code for the gist of a scene) and provides a neurobiological alternative

to an arbitrary choice of priors; and (2) a separation of positive and negative

error-computing neurons, which counters the biological implausibility of a bi-

directional error neuron with a very high baseline firing rate. After training with

the MNIST handwritten digit dataset, SNN-PC developed hierarchical internal

representations and was able to reconstruct samples it had not seen during

training. SNN-PC suggests biologically plausible mechanisms by which the brain

may perform perceptual inference and learning in an unsupervised manner. In

addition, it may be used in neuromorphic applications that can utilize its energy-

e�cient, event-driven, local learning, and parallel information processing nature.

KEYWORDS

predictive processing, visual cortex, spiking neural network, Hebbian learning,

unsupervised learning, representation learning, recurrent processing, sensory

processing

1 Introduction

In the midst of chaotic barrages of sensory information, the brain achieves

seamless perception of the world. Despite the apparent ease with which the brain

achieves such a formidable feat, the problem of perception is computationally difficult,

given that the brain has no direct access to the world. This renders perception

into an inverse problem (Pizlo, 2001; Spratling, 2017): the brain has to infer a

distal stimulus in the physical world (i.e., cause) from proximal sensations coded

in the brain (i.e., effect) (Fechner, 1948). Moreover, given inherently noisy and

ambiguous sensory information, the problem also becomes ill-posed. For example,
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an exponentially growing number of object arrangements and

viewing conditions in the three-dimensional world can form the

same two-dimensional retinal image.

How does the brain overcome such ambiguity, find a unique

and stable solution to the inverse problem, and facilitate seamless

perception? A confluence of constructivist theories of perception

(Helmholtz, 1867; Kant, 1908; MacKay, 1956; Neisser, 1967;

Gregory, 1970; Pennartz, 2015) suggests that the brain imposes

a priori constraints on possible solutions to the inverse problem

based on an internal model of the world shaped by prior knowledge,

experience, and context. In light of recent neurophysiological

evidence that supports interaction of feedforward sensory inputs

and feedback of a priori knowledge (Felleman and Van Essen, 1991;

Bastos et al., 2012; Keller et al., 2012; Walsh et al., 2020), predictive

coding (PC) has been proposed as a possible neural implementation

of perception (Srinivasan et al., 1982; Mumford, 1992; Rao and

Ballard, 1999; Friston, 2005; Pennartz et al., 2019). According to PC

in its canonical version (Rao and Ballard, 1999), the brain employs

hierarchical cortical circuits in which feedback connections carry

predictions to lower areas, whereas feedforward connections carry

the mismatch between actual and predicted neural activity (i.e.,

prediction error). The prediction error is used iteratively to correct

the internal generative model, allowing to make more accurate

inferences, but also to learn from errors. While its computational

goal to explain away incoming sensory input resembles the ideas

of redundancy reduction from information theory (Shannon,

1948) and the efficient coding hypothesis (Barlow, 1961), the

probabilistic formalization of PC algorithms that approximate

Bayesian inference (Friston, 2010) builds on the Bayesian brain

hypothesis (Knill and Pouget, 2004) and Helmholtz machine

(Dayan et al., 1995). In summary, PC offers a Bayes-inspired

solution to the inverse and ill-posed problem of perception,

and learning thereof, under the imperative of prediction error

minimization. A primary goal of PC modeling is therefore to

develop perceptual representations, from which inputs can be

generatively reconstructed, in a biologically plausible manner,

whereas the more “cognitive” goal of stimulus categorization or

classification comes in second position.

Thanks to its potential to explain a multitude of cognitive and

neural phenomena (Srinivasan et al., 1982; Rao and Ballard, 1999;

Hosoya et al., 2005; Jehee et al., 2006; Spratling, 2010, 2016; Huang

and Rao, 2011; Wacongne et al., 2012), PC has inspired many

theoretical and computational models of perception. On the one

hand, there are biologically motivated PC models in the literature

to explain neural mechanisms of perception; on the other hand,

machine learning inspiredmodels seekmissing ingredients that can

place the perceptual capacity of artificial intelligence on par with

nature’s most intelligent machine. However, both approaches lack

biological plausibility in their own respect. Biologically motivated

PC models demonstrate how PC accounts for neuronal responses

such as classical and extra-classical receptive field properties,

but whether their efforts can be generalized across the cortical

processing hierarchy remains an open question as their models

were confined to specific components of the nervous system,

such as the retina (Srinivasan et al., 1982; Hosoya et al., 2005),

lateral geniculate nucleus (Huang and Rao, 2011), or V1 (Spratling,

2010), or had a limited depth of processing hierarchy (Rao and

Ballard, 1999; Spratling, 2010;Wacongne et al., 2012). The machine

learning inspired models show remarkable object recognition

capabilities but lack the biological plausibility due to their reliance

on supervised learning, convolutional filters, and backpropagation

of errors (Whittington and Bogacz, 2017; Sacramento et al., 2018;

Van den Oord et al., 2018; Wen et al., 2018; Han et al., 2019; Lotter

et al., 2020). Meanwhile, there has been an effort to bridge the

gap between the two approaches: a deep gated Hebbian PC (Dora

et al., 2021) successfully learns internal representations of natural

images across multiple layers of the visual processing hierarchy,

while exhibiting neuronal response properties such as orientation

selectivity, object selectivity, and sparseness. Yet, previous models

relied on an artificial neural network, the basic computational

unit of which mimics a real neuron with limited biological

realism (Maass, 1997) and communicates using synchronous and

continuous signals instead of spikes.

To advance the biological realism of computational models

of PC and move toward a more biologically plausible model of

perception, we developed a spiking neural network for predictive

coding (SNN-PC) by introducing two novel features: (1) a spiking

neuron model (Maass, 1997; Gerstner, 2002) that describes the

behavior of neurons with more biological details than firing-

rate based artificial neurons, such as using binary, asynchronous

spikes for synaptic communication and replacing a simple non-

linear activation function with synaptic and membrane potential

dynamics; and (2) a feedforward gist (FFG) pathway that is added

to a PC hierarchy, and mimics the gist of a scene or image

(Oliva and Torralba, 2006), inspired by how the visual cortical

system may rapidly recognize objects using a fast feedforward

visual pathway (Thorpe et al., 1996; Serre et al., 2007; VanRullen,

2007). While our primary goal is to build a spiking neural

network that learns a generative model of input image patterns

(i.e., to perform image reconstructions) via predictive coding with

biologically plausible mechanisms, we also investigate whether such

a generative model can be used for a discriminative task (i.e.,

classification) despite having no explicit objective to optimize it.

We hypothesize that having a coarse-level prior about incoming

stimuli via the FFG pathway would help with forming classifiable

latent representations. In the following sections, we describe non-

trivial problems in implementing a spiking version of PC networks,

such as encoding signed signals with binary spikes and finding

error gradients for experience-dependent learning, and offer our

biologically plausible solutions to make PC compatible with spikes.

We show that, by putting together all the pieces, SNN-PC can learn

hierarchical representations of MNIST hand-written digit images

and infer unseen samples from spike signals of sensory inputs in an

unsupervised manner.

2 Materials and methods

The following section is organized into four subsections, which

address challenges of implementing a PC neural network with

spiking neurons and propose biologically plausible mechanisms to

facilitate perceptual inference and learning: (1) introduction of a

spiking neuron model; (2) description of synaptic communication

between spiking neurons for reliable signal transmission and
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TABLE 1 Parameters for the adaptive exponential integrate-and-fire

model.

Parameter Value Unit

Cm 281 pF

gL 30 nS

EL −70.6 mV

Vθ −50.4 mV

1T 2 mV

tref 2 ms

c 4 nS

b 0.0805 nA

τa 144 ms

τrise 5 ms

τdecay 50 ms

Hebbian learning; (3) separation of error-computing neurons into

two groups to encode signed signals with dynamic binary spikes;

and (4) introduction of the FFG pathway to establish informed

initial conditions for prediction-generating neurons as opposed to

random initialization.

2.1 Single neuron model

The behavior of single neurons in SNN-PC was defined by

the adaptive exponential integrate-and-fire model (Brette and

Gerstner, 2005):

Cm
dV

dt
= −gL ∗ (V(t)− EL)+ gL1T exp

V(t)− Vθ

1T
+ I(t)− a(t)

(1)

τa
da

dt
= c(V(t)− EL)− a(t) (2)

where Cm is the membrane capacitance, V(t) the membrane

potential, gL the leak conductance, EL the leak reversal potential,

1T the slope factor, Vθ the action potential threshold, a(t) the

adaptation variable, I(t) the incoming synaptic current, τa the

adaptation time constant, and c the adaptation coupling parameter.

The parameter values are taken from Brette and Gerstner (2005)

and listed in Table 1.

The membrane potential dynamics (Equation 1) is described

by a linear leak, a voltage-dependent exponential activation,

which instantiates the fast activation of sodium channels (Badel

et al., 2008), the incoming synaptic current, I(t), and an

abstract adaptation variable, a, which couples the membrane

potential dynamics with voltage-dependent subthreshold and

spike-triggered adaptation (Equation 2) (Gerstner et al., 2014).

At each time point of simulation, t, a neuron sums up all

incoming current, I(t), at its postsynaptic terminals to update its

membrane potential,V(t). Upon reaching the threshold,Vθ , a spike

is generated [i.e., s(t) = 1]:

s(t) =

{

1, if V(t) > Vθ

0, otherwise
(3)

A spike is followed by an instantaneous reset of the membrane

potential, V , to the resting potential, (Vr = −70.6 mV), and an

increase of adaptation variable (a) by an amount (b) to model

membrane potential repolarization and spike-triggered current

adaptation, respectively:

s(t) = 1 −→ V(t) = Vr & a(t) = a(t)+ b (4)

2.2 Synaptic communication between
spiking neurons

The behavior of the single neuron model described in the

previous section (Equations 1–4) is a function that takes incoming

current, I(t), as input and a spike train, s(t), as output. For synaptic

communication between spiking neurons, there must be a way to

convert the output of a source neuron to input of a target neuron.

The current entering a postsynaptic cell j (postsynaptic current;

PSC) throughN synapses from presynaptic cells i can be formulated

as a continuous variable, Ij(t), by applying an exponential low-

pass filter to each incoming binary spike train to compute a spike

trace, Xi(t), and weighting each spike trace with the corresponding

synaptic strength,Wi,j, and summing the weighted spike traces over

N synapses (Equation 5):

Ij(t) =

N
∑

i

Wi,jXi(t) (5)

The spike trace, Xi(t), is similar to the trace variable commonly

used in spike timing dependent plasticity (STDP). With a proper

choice of time constants, it approximates a generic excitatory

postsynaptic current (EPSC) that reflects both the fast component

driven by AMPA receptors (τrise = 5 ms) and the slow

component mediated by NMDA receptors (τdecay = 50 ms)

(Forsythe and Westbrook, 1988; McBain and Dingledine, 1993) as

follows:

dX

dt
=

Y(t)

τrise
−

X(t)

τdecay
(6)

In particular, the NMDAR-mediated component of the EPSC

(“NMDAR current”) can be linked to the intracellular calcium

concentration at the postsynaptic site, a high value of which

leads to long term potentiation (LTP) (Barria and Malinow, 2005;

Granger and Nicoll, 2014). Using the NMDAR currents of pre- and

postsynaptic neurons, synaptic weights are adjusted by Hebbian

learning. The modification of weights is described in a subsequent

section.

The first term in Equation (6) governs the rising slope

of the EPSC corresponding to the influx of cations into the

postsynaptic neuron, whereas the second term describes its decay.

The instantaneous reset of the variable, Y(t), initializes glutamate

release into the synaptic cleft, where it binds to AMPA and NMDA
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receptors to open up ion channels in the postsynaptic membrane

(Equation 7):

s(t) = 1 −→ Y(t) = 1 (7)

The glutamate concentration in the synaptic cleft decays

exponentially back to the resting state [i.e., Y(t) → 0] (Equation 8):

dY

dt
= −

Y(t)

τdecay
(8)

In summary, the synaptic communication consists of three

major steps (Equations 9–11), which can be seen as a serial

adaptation of the spike emission and reception filters in the spike

response model (Gerstner et al., 2014). For example, consider the

following case where presynaptic neurons (indexed by i) project to

a postsynaptic neuron j (Figure 1):

First, a spike train from neuron i, si(t), is converted to

an AMPA- and NMDA-receptor mediated postsynaptic current

received by neuron j, Ij(t):

h1 : si(t) 7→ Ij(t) (9)

Second, the current arriving at the postsynaptic receptor site of

neuron j, Ij(t), influences themembrane potential of neuron j,Vj(t):

h2 : Ij(t) 7→ Vj(t) (10)

Third, the membrane potential, Vj(t), generates a spike, sj(t),

when it crosses the threshold, Vθ :

h3 :Vj(t) 7→ sj(t) (11)

2.3 Implementation of predictive coding

SNN-PC employed the same hierarchical structure as its two

predecessors (Figure 2A) (Rao and Ballard, 1999; Dora et al.,

2021). Each area (denoted by superscript ℓ) consists of two

types of computational units (denoted by subscript i): (1) a

representation unit, Rℓ
i , which infers the causes (i.e., generates

latent representations) of incoming sensory inputs in the area below

(Rℓ−1
i ) and makes predictions about the neural activity in the area

below; and (2) an error unit, Eℓ
i , which compares the prediction

from the area above with inputs from the area below and propagates

the difference (i.e., prediction error) to the representation units in

the area above (Rℓ+1
i ) to update the inferred causes and refine the

prediction.

2.3.1 Error unit
An error unit computes prediction errors by taking the

difference between the sensory input in the lowest area, or its latent

representation in the case of higher areas, and the corresponding

prediction from the area above. Depending on the relative strengths

of the two signals, this difference can be positive (i.e., input >

prediction) or negative (i.e., prediction< input). The signed nature

of the prediction error poses no obstacle to PCmodels with artificial

neurons, which can encode positive and negative signals. However,

given the non-negative nature of spike signals, SNN-PC has to

adopt a different solution that can encode both types of prediction

error. As observed in the dopaminergic system, a neuron may

encode both types of prediction error by expressing the magnitude

of error in relation to its baseline firing rate: positive errors are

encoded with activity above its baseline firing rate and negative

errors with activity below (Schultz et al., 1997). However, such

a neuron would require a very high spontaneous firing rate to

encode the full range of negative responses, which contrasts with

experimental evidence that suggests low baseline firing rates of

layer 2/3 principal neurons (De Kock et al., 2007; Perrenoud et al.,

2016). Moreover, in a system where single neurons encode bi-

directional errors, a postsynaptic neuron that receives error signals

must have a mechanism to subtract out the baseline firing rate of a

presynaptic neuron. Given the discrete and non-linear dynamics

of spiking neurons, which renders accurate approximation of

synaptic transmission non-trivial, our attempts to implement bi-

directional error coding with spiking neurons led to inaccurate

propagation of prediction errors. Therefore, we separated the error

unit into two subtypes, one coding positive and the other coding

negative error (Figure 2B). The two units are complementary in

propagating prediction errors to representation units in the next

higher area. A positive error unit (Equation 12) integrates bottom-

up excitatory inputs from representation units within the same

area, Xℓ
R(t), and top-down inhibitory inputs from representation

units of the area above, (Wℓ,ℓ+1)TXℓ+1
R (t), whereas a negative error

unit (Equation 13) has the opposite arrangement of excitatory-

inhibitory synapses:

IℓE+(t) = Xℓ
R(t)− (Wℓ,ℓ+1)TXℓ+1

R (t) (12)

IℓE−(t) = (Wℓ,ℓ+1)TXℓ+1
R (t)− Xℓ

R(t) (13)

Note that top-down predictions to both positive and negative

units are the same ((Wℓ,ℓ+1)TXℓ+1
R (t)). Representation units and

the two types of error unit within an area contain the same number

of cells and connect to each other in a one-to-one fashion (i.e.,

Wℓ,ℓ
i,j = 1 where i = j and 0 elsewhere), so that error units receive

the same bottom-up input, or its latent representation in the case of

higher areas, and compare it to the top-down prediction.

2.3.2 Representation unit
Representation units infer the causes of sensory input via local

interactions with error units in the area immediately below as well

as those in the same area (Figure 2A). The interactions between

two immediately adjacent areas are considered local, because they

do not involve areas further down or up in the hierarchy (at least

not directly) as would be commonly used in standard deep learning

algorithms such as BP, which require global interactions from the

top area to the lowest area. The inference process can be regarded as

an iterative process of updating internal representations of sensory

stimuli (or of neural activity of representation units, IℓR), and is

mathematically formalized as performing a gradient descent on the
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FIGURE 1

Synaptic transmission in a spiking neural network for predictive coding. (A) Schematic showing how spiking neurons in SNN-PC communicate with

each other using spikes. Spikes from neurons i (black), si(t), activating synapses that impinge on dendrites of neuron j (red), are converted to spike

traces, Xi(t). The sum of all spike traces, weighted by synaptic strength, Wi,j, make up the postsynaptic current, Ij(t). In this particular scheme, we

assume that all weights are 1 for simplicity. The postsynaptic membrane potential, Vj(t), changes according to the incoming current and the cell

emits spikes, sj(t), whenever it reaches threshold, Vθ . (B) A presynaptic spike (si(t) = 1) triggers glutamate release into the synaptic cleft [Yi(t) = 1].

When glutamate binds to the postsynaptic AMPA and NMDA receptors, the inward current of cations (Na+ and Ca2+) depolarizes the postsynaptic

cell (K+ e	ux not shown here for brevity). Concentrations of glutamate in the synaptic cleft and cations (Na+ and Ca2+) in the postsynaptic terminal

decrease exponentially [Yi(t) → 0 and Xi(t) → 0, respectively] with time constants, τrise and τdecay , respectively.

FIGURE 2

Adaptations of the classic predictive coding (PC) architecture to di�erent levels of biological detail. (A) The classic PC architecture with

representation (prediction) and error neurons as described by Rao and Ballard (1999). (B) To encode signed error signals with binary spikes, an error

unit in A, Eℓ
n, is separated into two units, Eℓ

+,n and Eℓ
−,n, which compute a positive and negative error, respectively, via the opposite arrangement of

excitatory-inhibitory synapses. The superscript (ℓ) denotes the cortical processing area, whereas the subscript (n or m) denotes an index for unit in an

area. (C) A biological interpretation of a computational unit in SNN-PC, which consists of a pyramidal cell (green triangle) and an interneuron (orange

circle). An excitatory synapse exists between pyramidal cells of two units, whereas a polysynaptic inhibitory connection is formed by a pyramidal cell

in a computational unit to an interneuron in another unit, which inhibits the pyramidal cell within the same unit.
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FIGURE 3

Spiking neural network for predictive coding (SNN-PC). SNN-PC modeling the first stages of the visual cortical processing hierarchy. The three areas

roughly correspond to V1, V2, and V4, respectively (or LGN, V1, and V2). Each non-input area (ℓ > 0) consists of a representation unit (purple circle;

Rℓ) and two units (blue and red squares; Eℓ
+ and Eℓ

−) that encode positive and negative prediction error, respectively. The representation unit in Area 0

acts as an input unit (R0). Each pixel (e.g., the dotted box in the image of digit 4) is encoded by a single spiking neuron. Note that each unit consists of

multiple spiking neurons. The feedforward gist pathway (R0 → G → Rℓ) approximates the feedforward sweep of neuronal activity across the visual

processing hierarchy. The solid lines between units indicate that they are fully connected, whereas the dotted lines indicate one-to-one connections.

A triangle represents an excitatory synapse, whereas a thick vertical short ending represents an inhibitory synapse.

cost function of prediction error minimization with respect to the

internal representation (Rao and Ballard, 1999). In SNN-PC, this

first comes down to a sum of incoming synaptic current to each

representation neuron:

IℓR(t) = βℓ−1
+ −βℓ−1

− −βℓ
+ +βℓ

− (0 < ℓ < L) (14)

The first two terms in Equation (14) represent the bottom-up

positive and negative prediction error (βℓ−1
+ and βℓ−1

− ), computed

as weighted sums of postsynaptic currents arising from the

connections between the two error units and representation units,

respectively (Equations 15, 16):

βℓ−1
+ = Wℓ−1,ℓXℓ−1

E+ (t) (15)

βℓ−1
− = Wℓ−1,ℓXℓ−1

E− (t) (16)

The last two elements of Equation (14) are top-down positive

and negative errors (βℓ
+ and βℓ

−), respectively, which are connected

to representation units in a one-to-one fashion (Equations 17, 18):

βℓ
+ = Xℓ

E+
(t) (17)

βℓ
− = Xℓ

E−
(t) (18)

In the case of the highest area (e.g., Area 3 in Figure 3), these

two terms are absent as it lacks top-down connections.

Sensory inputs are fed into the network via representation units

in the lowest area (Area 0), each of which receives a constant

current linearly proportional to the intensity of a pixel of the

input image (Figure 3). The underlying assumption is that such

a transduction is roughly comparable to a retinal image (with a

resolution of a pixel). Given an MNIST digit sample (28× 28 pixel

image) as visual input, the number of units in Area 0 is 784.

2.4 Feedforward gist pathway

Visual cortical processing can be parsed into two distinct

processes (Lamme and Roelfsema, 2000): (1) the fast feedforward

sweep of neuronal activity across the visual processing hierarchy

roughly within 150 ms of stimulus onset in primates, which is

thought to generate coarse high-level representation of a visual

scene and facilitates gist perception and rapid object recognition

(Rousselet et al., 2005; Serre et al., 2007; VanRullen, 2007; Liu et al.,

2009; Cauchoix et al., 2016); and (2) slow recurrent processing that

iteratively refines the representation (a process henceforth referred

to as inference). SNN-PC implements the former process with a

FFG pathway and the latter process with the PC hierarchy.

The FFG pathway approximates the feedforward sweep across

the visual hierarchy via sparse random projections from input to

gist units (Figure 4):

IG(t) = WI,GXG(t) (19)

The weights between input and gist units (WI,G in Equation 19)

were randomly sampled from a Gaussian distribution, the mean

and standard deviation of which were defined as a ratio between

the number of pre- and postsynaptic units. To induce sparsity, the

connection probability between input and gist units was set to a low

value (Pc = 0.05; Figure 4A).

To reflect the increasing receptive field size and complexity of

tuning properties when ascending the visual processing hierarchy,

the number of gist units (16) is set to be smaller than input units

(784). The resulting neuronal activity patterns in gist units therefore

correspond to a coarse-grained representation of incoming sensory

input. As all input images are processed by the same set of non-

plastic, sparse random weights, images that share more features

(e.g., two samples belonging to the category of digit “1”) have a

higher chance to generate similar neural activity patterns in gist

units than those that share less (e.g., a sample belonging to digit

“0” and another belonging to “1”); in other words, by statistically

sampling the same area in the visual field given different images,
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FIGURE 4

The fast feedforward gist pathway. (A) A fast feedforward sweep of neural activity from input (R0) to representation units (Rℓ where ℓ ∈ {1, 2, 3}) via gist

units (G) is instantiated by sparse random connections to generate a spatially reduced, abstract representation of an input image, which provides an

informative baseline for the upcoming iterations of recurrent processing. Purple dashed lines show example projections from input to gist units,

whereas green dashed lines show example projections from gist to representation units in areas 1–3 of the visual processing hierarchy. Each tilted

square represents an example neural activity pattern activated by an input image in each area. The colored elements in each area correspond to

mean incoming synaptic currents. (B) A comparison between internal representations formed in areas involved in the feedforward gist pathway (R0,

G, and Rℓ where ℓ ∈ {1, 2, 3}). Note that representation units only receive synaptic inputs from gist units and exclude other synaptic currents from the

recurrent dynamics of the PC hierarchy (Rℓ = WG,Rℓ XG). The bar plot displays a measure of similarity between input images and internal

representations. Strong correlations indicate that the representational geometry of input images is retained across the FFG pathway (R0 → G) and

that representation units in each cortical area (G → Rℓ where ℓ ∈ {1, 2, 3}) receive informative stimulus-based priors about the upcoming inference.

Each element in a representational dissimilarity matrix (RDM) below each bar represents a measure of dissimilarity between 128 di�erent samples per

digit (0–9).

the latent representations of input images in gist units retain the

representational geometry of input images (Figure 4B).

Gist units then project to representation units in each area of

the PC hierarchy to modulate their activity. The synaptic input

coming from gist units can be implemented into the inference step

(Equation 14) by adding an extra term (WG,RℓXG):

IℓR(t) = βℓ−1
+ − βℓ−1

− − βℓ
+ +

βℓ
− +WG,RℓXG(t) (0 < ℓ < L) (20)

The FFG pathway runs in parallel with the PC hierarchy and is

active as long as the stimulus lasts to provide a high-level, coarse

representation of the incoming sensory input to representation

units in each PC area (WG,RℓXG; Equation 20) as a baseline activity.

In summary, the FFG pathway serves the role of initializing

the neuronal activity of representation units in each area with a

coarse representation of the incoming sensory input (e.g., the gist

of a scene or object). Instead of starting the iterative process of

prediction error minimization from zero or arbitrary activity in

representation units, the gist-like latent representation of incoming

sensory inputs operates in a biologically plausible manner.

2.5 Rate-based Hebbian learning

With non-differentiable binary spike signals, s(t), the error

gradient required to correct the internal model cannot be obtained.
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FIGURE 5

Hebbian learning for spiking neurons. In SNN-PC, synaptic plasticity is mediated by Hebbian learning. Instead of firing rates used in artificial neural

networks, SNN-PC approximates NMDA receptor-mediated postsynaptic calcium dynamics, Xi(t) and Xj(t), in each cell, based on incoming spike

trains, si(t) and sj(t), and leverages them to compute a biologically plausible learning gradient, 1Wi,j. The red and blue dotted box indicate the time

window, the last tw ms (from T - tw to T, where T is the total duration of stimulus presentation), during which the approximate postsynaptic calcium

transient signals are averaged.

However, we can use exponentially filtered spike trains, X(t), to

obtain the ingredients required for Hebbian learning (Figure 5).

A weight matrix, Wℓ,ℓ+1, between error and representation

units (Figure 3), is updated via:

1Wℓ,ℓ+1
+ =

1

tw

T
∑

t=T−tw

Xℓ
E+(t)×

1

tW

T
∑

t=T−tw

Xℓ+1
R (t) (ℓ < L) (21)

1Wℓ,ℓ+1
− =

1

tw

T
∑

t=T−tw

Xℓ
E−(t) ×

1

tw

T
∑

t=T−tw

Xℓ+1
R (t) (ℓ < L) (22)

The two terms in Equations (21, 22) are mean NMDAR

current amplitudes entering the postsynaptic site of error and

representation units from the last tw milliseconds (ms) of stimulus

presentation (total duration = T ms): Equation (22) specifies the

use of positive error and Equation (22) of negative error. Apart

from convergence and stability purposes to accommodate spiking

dynamics, taking this mean reflects the calcium dynamics in

dendritic spines, which induce NMDA receptor-dependent long

term plasticity and depression (LTP and LTD) (Collingridge and

Bliss, 1987; Malenka and Nicoll, 1993; Lüscher et al., 2000). The

positive error units contact representation units with excitatory

synapses to increase the calcium influx into representation

units and can induce LTP, whereas the negative error units

make inhibitory synaptic contact to decrease calcium influx and

induce LTD (Mulkey and Malenka, 1992). Combining the two

(Equations 21, 22) results in a weight update that is a linear

combination of the Hebbian error gradients obtained between

postsynaptic representation units and the two types of presynaptic

error units (Equation 23):

1Wℓ,ℓ+1 = γw (1Wℓ,ℓ+1
+ − 1Wℓ,ℓ+1

− )− αw g(Wℓ,ℓ+1) (ℓ < L)

(23)

The weight change is controlled by the learning rate, γw. The

last term, αwg(W
ℓ,ℓ+1), models the passive decay of weights by

imposing a Laplacian prior on the weights (i.e., L1 regularization)

(Dora et al., 2021) (Equation 24):

g : x →

{

1, if x > 0

0, otherwise
(24)

The resulting unsupervised learning algorithm can be regarded

as a biologically plausible form of Hebbian learning. It uses

the AMPA- and NMDA-receptor mediated postsynaptic currents

between neurons located in adjacent cortical areas (i.e., area ℓ and

ℓ + 1), thereby requiring only locally available information. This is

in contrast to backpropagation, which often requires explicit labels

(supervised learning) and an end-to-end propagation of errors,

from individual output units up to input units. Note that only

inter-areal weights (Wℓ,ℓ+1) are subject to synaptic plasticity. The

intra-areal weights (Wℓ,ℓ) are fixed.

2.6 Simulation details

2.6.1 Preprocessing of input image
The input images were normalized to unit vectors to limit the

variance among pixel intensity distributions across different digits

and samples and scaled to a range between 600 and 3,000 pA, within

which the input and output synaptic currents approximated a linear

relationship.
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TABLE 2 Parameters for simulation.

Parameter Meaning Value

nR0 Number of units in R0 784

nE0+ Number of units in E0+ 784

nE0− Number of units in E0− 784

nR1 Number of units in R1 400

nE1+ Number of units in E1+ 400

nE1− Number of units in E1− 400

nR2 Number of units in R2 225

nE2+ Number of units in E2+ 225

nE2− Number of units in E2− 225

nR3 Number of units in R3 64

nG Number of units in G 16

dt Simulation time step 1 ms

τw Time window for synaptic plasticity 100 ms

T Total simulation time per sample 350 ms

γw Learning rate for synaptic plasticity 1e-7

αw Regularizer for synaptic plasticity 1e-5

ntrainsample Number of samples in training set 5,120

ntestsample Number of samples in test set 1,280

nbatchsample Number of samples in a mini-batch 32

n
epoch

batch Number of mini-batches per training epoch 160

nepoch Number of training epochs 50

2.6.2 Network size
Each area consisted of the same number of positive error units,

negative error units, and representation units (Area 0 = 784 × 3 =

2,352; Area 1 = 400 × 3 = 1,200; Area 2 = 225 × 3 = 675), except

the top area (Area 3) that only contained 64 representation units

(Table 2). There were 16 gist units. In total, the number of units in

SNN-PC was 4,307. Out of 431,842 total synapses in the network,

418,000 inter-areal synapses were subject to synaptic plasticity.

2.6.3 Training and testing
In order to test whether SNN-PC can learn statistical

regularities of incoming sensory inputs and build latent

representations thereof, we trained SNN-PC with a subset of

the MNIST handwritten digit image dataset. The training set

(n
sample
train = 5, 120; Table 2) consisted of many different image

samples per image class (digits 0–9; 512 samples / class). For

efficient learning, we used mini-batch training (nbatch
sample

= 32).

During a single training epoch, the network goes through all

mini-batches (n
epoch

batch
= 160). After each mini-batch, the synaptic

weights are updated. After 50 training epochs (nepoch = 50), we

tested the model to infer image samples it had not been exposed

to during the training, taken from a test set (ntest
sample

= 1, 280).

For statistical inference, the testing phase was repeated 100 times.

Each test set was randomly sampled from 10,000 images that the

network had not seen during the training.

For learning, we took the mean over the last 100 ms (300–

400 ms) of synaptic current relative to the onset of the stimulus to

ensure convergence. Weights were initialized randomly, but strictly

positive, by sampling from a half-normal distribution around zero

mean and a small standard deviation (0.3). They were updated

after every batch with an initial learning rate (γw) of 1e-7 and

a regularization parameter (αw) of 1e-5. The learning rate for

each pair of areas (e.g., Area 1 and 2) was adjusted by fitting the

normalized root mean squared errors of input area (e.g., Area 1) to

an exponential growth function.

2.7 Representational similarity analysis

A representational similarity analysis (RSA; Kriegeskorte

et al. 2008) computes pairwise similarity between population

responses for given inputs. The output of this analysis generates a

representational dissimilarity matrix (RDM), each block of which

represents the dissimilarity (1 − correlation) between responses

to different images. To assess the consistency of information

propagation through the processing hierarchy, we conducted RSA

on the internal representations of input images (Xℓ
R). We used the

Spearman rank correlation coefficient as a measure of correlation

distance between internal representations (see Kriegeskorte et al.

2008 for more choices of distance measures). A second-order

RSA computes a similarity measure between RDMs and represents

how similarly two areas of interest respond to a given set of

input patterns, thereby revealing consistency in representational

geometry (i.e., how well internal representations reflect the

relationship between input images).

3 Results

3.1 Representational learning

As a generative model with an objective function of prediction

error minimization, SNN-PC is expected to generate internal

representations of input stimuli, which capture their underlying

structures (i.e., probability distribution) in a high-dimensional

latent space and, therefore, can be used to reconstruct them.

To test this representational capacity, we trained it with a small

subset of the MNIST handwritten image dataset (nclass = 10 and

nimage = 5120; 8.5% of a full set, which has 60,000 images) and

evaluated its internal representations of those images. Moreover,

while a two-layer structure suffices for image reconstruction in

principle, we investigated the impact of hierarchical dynamics on

reconstruction performance and other cognitive functions such

as image classification by introducing additional processing areas.

Note that classification capacity of learned internal representations

is only a serendipitous byproduct of our original goal: learning

a generative model. We report that additional hierarchical

constraints do not impair or improve reconstruction performance.

Learning performance can first be qualitatively assessed from

the error units in the lowest area (Area 0), which receive bottom-

up sensory inputs that directly correspond to pixel intensities of
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FIGURE 6

Learning of MNIST handwritten digits. (A) Reconstruction of sensory inputs. Input to each area (Xℓ
R; left) is compared to the prediction (Wℓ,ℓ+1 Xℓ+1

R )

made from the area immediately above (right). (B) Inference. Normalized root mean squared prediction errors (NRMSEs) in each area across training

epochs computed by SNN-PC. (C) Representational dissimilarity matrices (RDMs) constructed with images in the input area (middle row, right

column) and inferred causes of those images in each area from SNN-PC with (left column). Each element in an RDM represents a measure of

dissimilarity between them (1 − correlation). (D) Second-order representational similarity analysis. The RDM of input neuron activities is compared

against the RDMs of inferred causes of those input signals in each area of the SNN-PC model.

input images (X0
R) and top-down predictions that reconstruct them

(W0,1X1
R). By organizing neural activity patterns that correspond

to the predictions (Area 1 → 0) into the input shape (28 × 28

pixels), the images reconstructed by SNN-PC can be visualized.

SNN-PC was able to reconstruct digit images well (Figure 6A;

top subpanel). While similar inspection in higher areas showed

matching patterns between input and prediction (Figure 6A; Area

2 → 1 shown in the middle and Area 3 → 2 shown in the

bottom subpanel) as well, predictions in higher areas (Wℓ+1,ℓXℓ
R;

Area ℓ + 1 → ℓ where ℓ > 1) bear no immediately

recognizable meaning to a human beholder; therefore, they are

called latent representations. To show that learning takes place

in all areas more evidently, we show the normalized root mean

squared errors (NRMSE) as a scale-free measure of the discrepancy

between incoming inputs (either sensory or from area 1 to 2

or area 2 to 3) and their predictions. The decreasing NRMSEs

in all three areas across training epochs (Figure 6B) indicate

that SNN-PC learned to hierarchically minimize prediction

errors. Furthermore, a representational similarity analysis (RSA)

(Kriegeskorte et al., 2008) on the internal representations of input

images (Xℓ
R) revealed that similar representations were formed

across the hierarchy. Note that the colored square boxes shown

in Figure 6C are representational dissimilarity matrices (RDMs),

which illustrate all pairwise dissimilarities (1− correlation) among

the internal representations corresponding to the input images. To

quantitatively evaluate howwell those internal representations (X0
R)

reflect the relationship between input images (i.e., representational

geometry), we conducted a second-order RSA. The results revealed

that Area 1 exhibited a high correlation with inputs, whereas

Area 2 and 3 displayed weak correlations with inputs (Figure 6D).

Furthermore, despite the decreasing prediction errors (Figure 6B;

middle and bottom subpanels), reconstructions of input images

from Area 2 and 3 [i.e., W0,1(W1,2X2
R) and W0,1(W1,2(W2,3X3

R))]

failed to produce the input images. Hence, for the subsequent

analyses in this study, we will focus on the neuronal activities

of Area 1 (X1
R) and refer to them as SNN-PC’s internal,

latent representation of input images. Possible reasons for the

underperformance in higher areas will be examined in the

Discussion section. Overall, good reconstruction performance

(Figure 6A; top subpanel), proper prediction error minimization

(Figure 6B; top subpanel), and strong representational similarity

(Figures 6C, D; Area 1) in Area 1 suggest that SNN-PC has

successfully extracted statistical regularities from sensory inputs

and updated its internal representations to infer their causes more

accurately.

3.2 Robustness of latent representations

To examine the robustness of the representational capacity of

SNN-PC, we tested it on a set of MNIST digit images, which it

had not seen during the training (i.e., “Clean" set; nclass = 10 and
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FIGURE 7

Robustness of internal representations. (A) SNN-PC’s reconstruction of novel (previously unseen; “Clean"), noisy (“Noise"), and occluded (“Occlude")

images. The network was able to generalize the internal model acquired during training to novel instances and denoise. However, it does not fully

restore the occluded part of an image. (B) The robustness of internal representations against addition of noise or partial loss of input signals is shown

by RDMs among novel input images and corresponding internal representations. (C) The internal representations were highly correlated to novel

input images (ρ > 0.6 for all bars in C). Note that robustness refers to the network’s representational capacity to preserve the relationship between

input images in the high-dimensional, latent space (i.e., representational geometry) against input perturbations. (D) Digit class information can be

decoded better from internal representations than input images with or without input perturbations. For statistical comparisons in (C, D), we

computed RDMs and classification accuracy on 100 test sets (nimg = 1,280) randomly sampled from the “Clean" test set (nimg = 10,000). Di�erences

between the means were then assessed by Mann-Whitney U-test. Statistical significance is indicated by asterisks (***p ≤ 0.001). Error bars indicating

95% confidence intervals. Note that a linear classifier was trained only once on Clean images and internal representations inferred from those images

and tested on Clean, Noise, and Occlude dataset images and corresponding internal representations.

nimage per class = 128). Subsequently, we challenged the robustness

by testing the network on two additional datasets created by

modifying the input statistics of the Clean set: (1) the first set

(“Noise") was given additive Gaussian noise, ǫ ∼ N (0, 300) (with

pA as unit), that spanned across the whole image; and (2) the

second set (“Occlude") was masked by occlusion patches at random

locations on images (patch size = 9 × 9 pixel; 10.3% of an image).

Note that the network had been trained only on Clean images but

tested on all three input variants.

We found that SNN-PC was able to generalize the internal

model it had acquired during the training onto novel instances

as shown by both faithful reconstruction (Figure 7A; Clean) and
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RDMs that highly correlated with input images (ρ > 0.8,

where ρ is Spearman’s rank correlation coefficient; Figures 7B, C,

Clean). It was also able to denoise (Figure 7A; Noise) and retain

representational geometry of input images (ρ > 0.6; Figures 7B, C,

Noise). Meanwhile, pixels behind random occlusion patches were

not fully restored (Figure 7A; Occlude); thus, the Clean version

of the input was not pattern-completed, whereas the occluded

input as offered was in fact faithfully reconstructed. However,

internal representations generated from partially occluded images

still showed strong correlation with input images (ρ > 0.6;

Figures 7B, C, Occlude).

The contrast between dissimilarities within and between classes

in an RDM reflects the network’s capability of encoding sensory

inputs into meaningful latent representations; a greater contrast

indicates more generalizable representations and often leads to

a better classification performance. The reduced contrast in the

RDMs of Noise or Occlude input neuron activities compared to

those of Clean input neuron activities (Figure 7B; “Clean" vs. Noise

and Clean vs. Occlude at input level) reflects the effect of additive

Gaussian noise or random patch occlusion on input images.

This loss of representational similarity from input perturbations

persisted in the RDMs of latent representations (Figure 7C; “Clean”

vs. Noise and Clean vs. Occlude at the internal representation level).

However, the corresponding internal representations in both input

variants were still strongly correlated with original images (ρ >

0.6).

To assess the robustness of the discriminative capacity of

SNN-PC against input perturbations, we trained a linear classifier

on the internal representations of images from the training set

without any perturbations (the same set as in Figure 6; nclass =

10 and nimage per class = 512) and tested it on the images from

test sets with (Clean) and without input perturbations (Noise and

Occlude). For statistical comparison, Mann-Whitney’s U-test was

used on the classification results of 100 test sets (nclass = 10

and nimage per class = 128) randomly sampled from 10,000 images.

Our results revealed that digit class could be decoded better from

internal representations than from input images themselves in all

three input variants (Figure 7D; p < 0.001).

3.3 The e�ect of the feedforward gist
pathway

While the faithful input reconstruction, consistent

representational geometry, and improved decoding observed

with novel (Clean) and corrupted (Noise and Occlude) datasets

could indicate meaningful representation learning of input

statistics, the effect of the FFG pathway remained elusive thus

far. For instance, the network could also have learned to build an

internal model entirely based on feedforward gist inputs, thereby

rendering the recurrent dynamics of PC redundant, or vice versa.

To investigate the contribution of the FFG pathway to perceptual

inference and learning, we trained another network on the same

training set without the FFG pathway (“PC-only"), which learns the

underlying structures of input images purely from the recurrent

dynamics of PC. We compared reconstruction, representational

geometry, and classification results of the PC-only model against

those of the original model (“PC + FFG"), which employs both the

PC hierarchy and the FFG pathway, and the FFG pathway model

(“FFG-only”), in which input signals were processed only by the

FFG pathway.

Without PC, the FFG pathway could not faithfully

reconstruct input images (Figure 8A; FFG-only), formed internal

representations that were only weakly correlated to input images

(ρ < 0.4; Figures 8B, C; FFG-only), and performed poorly on a

digit classification task [decoding accuracy of FFG-only model or

DA (FFG-only) ≈0.6; Figure 8D; FFG-only]. These results were

consistent with our modeling objectives for the FFG pathway: it

was designed to generate only a coarse representation of input

images. Note that, to visualize the gist-like internal representations,

we reconstructed input images using synaptic weights from a

model trained with both FFG and PC (PC + FFG).

On the other hand, PC could reconstruct input images in the

absence of FFG just as well as in its presence (Figure 8A; PC-only).

In fact, internal representations correlated significantly more with

input images without than with FFG inputs to the network [ρ

(PC-only) > ρ(PC + FFG) with p < 0.001; Figure 8B]. However,

a model classified the digit class of images better when it had

learned statistical regularities of those images with both PC and

FFG pathway than PC alone [DA (PC + FFG)>DA (PC-only) with

p < 0.001; Figure 8D].

The reconstruction of sensory inputs was achieved with

or without the FFG pathway, because internal representations

are inferred via the PC hierarchy which is configured to

minimize the difference between sensory inputs and a linear

transformation of internal representations (i.e., prediction error).

However, the difference in representational similarity to input

images between the two cases (Figure 8C; PC + FFG vs. PC-

only; p < 0.001) suggests that they did not converge on

the same internal representations, despite both preserving the

representational geometry of input images (ρ > 0.8 in both cases).

The only difference between the two cases in how they inferred

internal representations of input images was the prior: with the

FFG pathway, representation units are provided with informative

priors about input images through sparse connections (ρ >

0.3; Figure 8C; FFG-only); whereas a purely PC network assumes

uniform priors about input images. In sum, our results suggest that

the FFG pathway aids representational learning via PC by providing

informative priors about sensory inputs for the upcoming inference

process, helping to infer internal representations that are more

discriminative of class information than the uniform priors of

PC alone. Effectively, the FFG can be said to install a prior

in the network based on which the PC machinery refines the

representation.

4 Discussion

While inspired by biological neurons, artificial neural

networks make many assumptions for the sake of functional and

computational efficiency. For instance, the assumption underlying

the use of firing rates as a measure of neural activity is that

information is rate coded. However, the brain is also thought to

encode information using both the timing of spikes (e.g., phase

coding and neural synchrony) (Gray et al., 1989; O’Keefe and
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FIGURE 8

E�ect of the feedforward gist pathway on representational learning. Three models were compared against each other on input reconstruction,

representational geometry, and classification: (1) a model that processes input stimuli via both the PC hierarchy and the FFG pathway (“PC + FFG");

(2) a model that utilizes only the PC hierarchy (“PC-only"); and (3) the FFG pathway model (“FFG-only"). (A) Input reconstruction is a result of the

recurrent dynamics of PC (PC + FFG and PC-only). The FFG pathway alone cannot account for the generative capacity (FFG-only). (B) PC preserves

the metric relationship (1 − correlation) among input images in the representational geometry. (C) In the presence of PC, internal representations

show a strong correlation with inputs (ρ > 0.8). The FFG pathway alone generates coarse, gist-like representations that only weakly correlate to input

images (ρ < 0.4). (D) The FFG pathway helps slightly but significantly in inferring internal representations from input images that are more

discriminative of digit class than PC-only. For statistical comparisons in (C, D), we computed RDMs and classification accuracy on 100 test sets (nimg

= 1,280) randomly sampled from the “Clean" test set (nimg = 10,000). Di�erences between the means were then assessed by Mann-Whitney U-test.

Statistical significance is indicated by asterisks (***p ≤ 0.001). Error bars indicating 95% confidence intervals. Note that four separate linear classifiers

were trained on input images and internal representations inferred from those images by the three model variants.

Recce, 1993; Singer, 1999; Knoblauch and Palm, 2001; Van Rullen

and Thorpe, 2001; Brette, 2012; Ono and Oliver, 2014) and

aggregate responses of neuronal ensembles (i.e., population

coding) (Georgopoulos et al., 1986; Lee et al., 1988; Pouget et al.,

2000; Averbeck et al., 2006). By collapsing the temporal dimension

into an arbitrary iteration step, artificial neurons cannot leverage

asynchronous, event-based, and sparse information processing for

energy efficiency (Pfeiffer and Pfeil, 2018; Tavanaei et al., 2019;

Deng et al., 2020). Moreover, the non-local, end-to-end error

propagation of BP, often used in ANNs, poses a serious challenge
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to biological plausibility (Rumelhart et al., 1986; Bengio et al.,

2015; Sacramento et al., 2018; Whittington and Bogacz, 2019;

Lillicrap et al., 2020; Song et al., 2020). To create a realistic system

that performs complex cognitive behaviors on par with a human

agent, we need to study and incorporate principles of neural

computation and architectures from the biological agent we want

to mimic, namely the mammalian brain. A straightforward choice

in pursuing such endeavors therefore was to introduce spiking

neurons, as they provide a biophysically realistic level of detail to

simulate basic computations in the brain.

To this end, we developed a biologically grounded neural

network for generative visual modeling (SNN-PC), based on the

following four components: (1) a predictive coding model that

provides computational algorithms and a neural architecture for

generative perceptual inference via recurrent sensory processing;

(2) a FFG pathway that accounts for rapid feedforward processing

in the visual cortical system; (3) spiking neurons that reflect

the time-varying pulsatile behavior of neurons better than

rate-based neurons; and (4) Hebbian learning enabled by

NMDAR-mediated synaptic plasticity. The model learned to

reconstruct and develop latent representations of the MNIST

handwritten digit images using only a small subset of the

image dataset (8.5% of the full dataset) and an unsupervised

learning method that requires only locally available information

at each level of the hierarchy (as opposed to end-to-end

backpropagation). Furthermore, our implementation of PC is

based on biologically grounded mechanisms such as an adaptive

spike generation mechanism, synaptic transmission modeling

the effect of presynaptic spikes on the postsynaptic membrane

potential, and synaptic plasticity based on calcium transients in

postsynaptic dendritic spines.

4.1 Robustness against noise and
occlusion

While previous studies have explored robustness of PC

network’s generative capacity against noise and partial occlusion,

both denoising and pattern completion require structural

modifications such as lateral connections and auxiliary connections

between non-local areas (Ororbia, 2023) or algorithmic

adjustments such as adding a memory vector and unclamping

input units of the missing pixels from an input image and allowing

it to vary from top-down prediction (Salvatori et al., 2021) or

conditional inference on pre-trained labels (Salvatori et al., 2022).

Our results exhibit a contrary case, where the missing part is not

filled in by the top-down prediction; rather, the SNN-PC infers

faithfully from the actual sensory inputs (i.e., with occlusion). This

is because, without structural or algorithmic modifications, the

local prediction error minimization loop always aligns predictions

to inputs. Also, assuming that the reconstruction of sensory inputs

from Area 1 of SNN-PC is a direct prediction of the retinal image,

the pattern completion should not occur as a subject never actually

sees the occluded part. For example, if you walk on a street and find

an uncovered manhole, it is not in your interest to fill it in based

on priors built upon previous encounters with covered manholes.

However, the digit class information was better decoded from

internal representations of occluded images in the latent space

than from actual images themselves (Figure 7D; Occlude). This

implies that SNN-PC was able to capture underlying structures of

digit images during training, which were indeed robust against a

partial loss of pixels. A recent study (Papale et al., 2023) showed

comparable experimental evidence to our results: multi-unit

spiking activity of monkey V1 neurons exhibited a significantly

weaker response to occluded regions than non-occluded regions;

nevertheless, the scene information could be decoded from a

cross-decoding experiment (i.e., training on non-occluded images

and testing on occluded images).

Additionally, SNN-PC was able to denoise. While structural

similarity index measure (SSIM; Wang et al., 2004) values decrease

with an increasing level of noise, the network was able to denoise

up to a high level of Gaussian noise, and the reconstruction

performance did not acutely break down within a range of 0–200

% (figure not shown here). Given the nature of an inference model

that builds upon statistical regularities of input signals, SNN-PC

simply cannot make predictions about noise, which by definition

is unpredictable. Hence, it leveraged on those input signals that

could be predicted and showed denoised reconstructions, robust

internal representations, and better decodability from internal

representations than noisy images themselves.

4.2 Novel features of the predictive coding
model with spiking neurons

To our knowledge, no predictive coding model has been

proposed before that is operating purely with spiking neurons,

except for the spiking neural coding network (SpNCN) proposed in

Ororbia (2023). While SNN-PC and SpNCN similarly implement

synaptic transmission (i.e., low-pass filtering of spike trains) and

weight updating (i.e., Hebbian learning), a few key differences arise

from the additional biological constraints we placed on our model.

For example, spiking neurons in SNN-PC are based on the AdEx

model, which offers a biophysically more accurate description of

a neuron’s behavior than the leaky-and-integrate fire (LIF) model

used in SpNCN (Brette and Gerstner, 2005). However, the most

noteworthy difference is that error units in SNN-PC are explicitly

modeled as spiking neurons and separated into two groups to

encode both positive and negative error with binary spikes, as

opposed to being an arbitrary unit that signals a signed difference

between two exponentially filtered spike trains, as in Ororbia

(2023). While such an arbitrary error unit might be biologically

implemented in a dendritic compartment model (e.g., Urbanczik

and Senn 2014; Mikulasch et al. 2023), our implementation of

error neurons follows experimentally observed mismatch between

feedforward and feedback signals in visual cortical neurons (e.g.,

of the somatostatin-positive type) (Keller et al., 2012; Zmarz and

Keller, 2016; Attinger et al., 2017). Moreover, having two types

of error unit to compute positive and negative error separately

also circumvents the need to employ unrealistic negative synaptic

weights for inhibitory connections (Figure 2B). A growing body

of recent studies suggests that layer 2/3 of cortex indeed contains

neurons that express positive or negative errors (Keller et al., 2012;

Jordan and Keller, 2020; O’Toole et al., 2023).
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Despite having solved the implausible negative weight problem,

all units in SNN-PC (when viewed as single neurons) do not adhere

to another biological property (i.e., Dale’s principle) as they can

form both excitatory (in case of the Rℓ → Eℓ−1
+ projection) and

inhibitory (Rℓ → Eℓ−1
− ) synapses onto other units. However, such

a violation can be mitigated by replacing computational units in

SNN-PC (Rℓ
j , E

ℓ
+,i, and Eℓ

−,i; Figure 2B) by cortical microcircuits

that consist of pyramidal cells and interneurons (e.g., green triangle

and orange circle wrapped inside purple, blue, and red contours,

respectively; Figure 2C). Note that we used one pyramidal cell and

one interneuron in a microcircuit for visual presentation purposes

only. Using this microcircuit, we predict that an excitatory synapse

between two microcircuits (e.g., Rℓ
m and Eℓ

+,n) is formed between

their pyramidal cells, whereas an inhibitory synapse between

the two microcircuits consists of an excitatory connection from

pyramidal cells in a microcircuit (e.g., Rℓ
m) to interneurons in

another microcircuit (e.g., Eℓ
−,n), which then inhibits pyramidal

cells in the same microcircuit (e.g., Eℓ
−,n). Future research will have

to show how PC can be implemented using known anatomical

connections (Douglas and Martin, 1991), laminar organization

(Bastos et al., 2012; Pennartz et al., 2019), and different cell types

(e.g., pyramidal, SST, VIP, and PV) (Keller and Mrsic-Flogel, 2018;

O’Toole et al., 2023).

Besides offering a biologically plausible solution to

accommodate binary spiking dynamics, the explicit separation

of error units into positive and negative elements may also

be beneficial for the algorithmic and computational efficiency

of neuromorphic hardware. It only requires a straightforward

subtraction between input and prediction, whereas bi-directional

error units (such as postulated in reinforcement learning models

based on prediction error coding by mesencephalic dopamine

neurons) (Schultz et al., 1997) must first compute the difference

and then compare it against a baseline firing rate to determine

the sign of the error. With a certain baseline firing rate, positive

and negative errors can be encoded by the range above and below

it, respectively. However, for a full coverage of prediction error

ranges, bidirectional error units must maintain a high baseline

firing rate, thereby leading to a higher energy cost. The neuron

targeted by a bidirectional error unit would also have to be

equipped with a mechanism to discount for the baseline firing rate

to obtain the true prediction error.

4.3 Feedforward gist

Another important novel feature of SNN-PC is the FFG

pathway, which combines the fast feedforward sweep and the

slow recurrent PC to account for a more comprehensive picture

of visual processing. PC reconciles bottom-up and top-down

accounts of perception by casting it as an inferential process

that involves hierarchical recurrent interactions. However, the

inference process requires multiple loops of recurrent processing to

converge on an accurate representation of incoming sensory input.

The expected latency of visual responses arising from recurrent

predictive processing is not in accordance with the rapid forward

spread of object- and context-sensitive neuronal activity across

the visual cortical hierarchy within 100 ms of stimulus onset

(Lamme and Roelfsema, 2000). While the precise contributions of

feedforward and recurrent processes to perception are yet to be

determined (Kreiman and Serre, 2020), we aimed to combine these

two temporally distinct processes by integrating the FFG pathway

in a PC architecture and asked whether the FFG pathway can

improve network performance.

Reflecting on the temporal dichotomy of the two visual

processes, the FFG pathway quickly establishes a high-level, coarse

representation of input signals (e.g., the gist of a scene or

object) and feeds it to each area of the PC hierarchy to aid the

recurrent processing that slowly refines the representation. Instead

of starting the iterative process of prediction error minimization

from zero or arbitrary activity in representation units, the gist-

like latent representation of incoming sensory inputs offers a

biologically plausible starting point for predictive coding. This

suggests a novel function of the feedforward activity relative to

the classic hypothesis of rapid image recognition (Thorpe et al.,

1996).

When we tested the impact of the FFG pathway on the

learning of two-dimensional visual images, our results showed

that its presence during training leads to reduced consistency

between internal representations in higher areas with input image

statistics (Figure 8). Despite the faithful reconstruction of novel

and perturbed sensory inputs, which is largely driven by the

recurrent dynamics of the prediction error minimization loop, the

diminished classification accuracy in the absence of FFG suggests

that the latent representations formed without gist inputs have

extracted less information from the image statistics (Figure 8D).

These findings suggest that the FFG plays a modest, but statistically

significant role, in achieving classifiable latent representations by

placing an a priori constraint on the inference process. Effectively,

the FFG can be said to install a prior in the network based on which

the PC machinery refines the representation, and which improves

classifiability.

Meanwhile, it is not clear whether the same populations

of cortical neurons may be involved in both the feedforward

sweep and recurrent PC. Instead of performing a series of

feedforward feature extraction and integration steps to elicit

object-sensitive responses in high visual areas, feedforward

connections in the PC network convey prediction errors.

Therefore, the two processes might take separate routes. For

instance, recurrent processes governed by PC may occur via

cortico-cortical pathways, whereas the feedforward sweep may

be mediated by the pulvino-cortical pathway or by bottom-up

projections from low-level visual areas like lateral occipital cortex

(Vinberg and Grill-Spector, 2008; Jaramillo et al., 2019). Such

involvement of subcortical pathways is in line with the brain

not being strictly hierarchical (Suzuki et al., 2023). Alternatively,

the FFG pathway can be explained as a combination of the

fast feedforward sweep and subsequent top-down modulation:

an instantaneous feedforward sweep may activate gist units,

conceptualized as IT, PFC, or other high-level cells; this may

then be followed by top-down projection of activity from gist to

representation units in lower visual areas (e.g., V1, V2, V3 and

V4).?

In both scenarios, we assume innate and non-

plastic feedforward connections in the FFG pathway. A

Frontiers inComputationalNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2024.1338280
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lee et al. 10.3389/fncom.2024.1338280

recent study (Tschantz et al., 2023) examined how such

feedforward connections can be trained via amortized

inference and also showed robust perceptual capacity

with shorter error convergence time and fewer training

samples. However, we note that SNN-PC is spike-based

and unsupervised, whereas the model in Tschantz et al.

(2023) is rate-based and uses a mix of supervised and

unsupervised learning.

4.4 Limitations on scalability

While our results show that SNN-PC can generalize what it

had learned from a training set to novel instances of the test

set (Figure 7; Clean), higher areas (area 2 and 3) were excluded

from analyses beyond Figure 6 due to their weak correlations to

input images and subpar reconstruction performance, implying

that their representations in the latent space do not capture the

underlying statistics well. Despite the decreasing prediction error

in higher areas in the PC hierarchy during training (Figure 6B;

areas 2 and 3), the progressive decrease in representational

similarity across the hierarchy (Figure 6C; areas 2 and 3) suggests

a loss of information about the inputs. A possible source of

information leakage is the spiking mechanism of a neuron, which

fires upon reaching a threshold membrane potential (Vθ ), that

renders the input-output curve of a current-based spiking neuron

non-linear. By consequence, a signal (e.g., an input current of

1,000 pA) loses its strength as it propagates through a series

of neurons. Given that each cortical processing area in SNN-

PC can reliably reconstruct inputs from the lower network area

(Figure 6A) and that Area 1 generates internal representations

of input images with a high decodability (Figures 7D, 8D), the

most likely location for the information leak would be between

representation and error neurons within the same area (Rℓ →

Eℓ
+/−). Addressing this leakage will require further work in future

studies.

Again, we want to stress that the classification capacity of

learned representations is only a byproduct of our original goal:

learning a generative model. We also emphasize that, despite

the low number of training samples, and the adjustments made

to the PC algorithms that facilitate spike communication, we

demonstrate generative capacity via reconstruction of previously

unseen images (Figure 7A; Clean) and robustness against noise

and occlusion (Figure 7A; Noise and Occlude). However, as for

classification results, the decoding accuracy did not increase

when ascending hierarchical processing areas. This is of no

surprise, given the sole objective function of local prediction

error minimization: there is no constraint during the training

phase to learn to categorize inputs; the network is only

instructed to learn internal representations that can reconstruct

inputs from the area immediately below. In fact, SNN-PC

fulfills this objective (Figures 6A, B). Meanwhile, we think that

SNN-PC can be converted to a competitive discriminative

model, if the topmost area would be clamped to class labels

corresponding to inputs to the lowest area during training to

learn class-specific representations via supervised learning (as

in Whittington and Bogacz, 2017). This approach, however,

would also obviously compromise the pursuit of biological

realism.

4.5 Future directions

There are various other ways in which future studies may

extend the biological details and/or perceptual capacities of SNN-

PC. To name a few, first, a point spiking neuron can be

replaced by a cortical microcircuit with multiple interneurons

(e.g., Figure 2C) and with a columnar organization to replicate

experimental findings and make predictions for new experiments.

Second, spiking neuron behavior or connectivity can be altered to

implement receptive fields and response properties to construct

an invariant object representation (c.f. Brucklacher et al., 2023).

Third, self-recurrent loops or online learning rules such as STDP

may be employed to deal with a continuous stream of sensory

inputs. Fourth, a population coding regime can be implemented

to improve the reliability of signal transmission (Boerlin and

Denève, 2011). Fifth, a different sensory modality can be added

to perform multi-sensory integration, following the rate-based

predecessor of our current SNN-PC model (Dora et al., 2021),

which has been implemented in a rodent robot that performs

bimodal integration of vision and touch to navigate in a maze

(Pearson et al., 2021). Sixth, the network can be scaled up

to better reflect the areas involved in the visual processing

hierarchy. Seventh, while requiring novel learning rules, different

coding schemes known to exist in the brain, such as temporal

coding (Konishi, 2000; Van Rullen and Thorpe, 2001; Ono

and Oliver, 2014), phase coding (O’Keefe and Recce, 1993),

and the use of neural synchrony (Gray et al., 1989; Singer,

1999; Knoblauch and Palm, 2001; Brette, 2012), can be explored

to make use of computational advantages offered by spiking

signals.

5 Conclusion

We have described how to build a PC model of visual

perception using biologically plausible components such as

spiking neurons, Hebbian learning, and a FFG pathway.

As one of the first purely spike-based and completely

unsupervised PC models of visual perception, SNN-PC

successfully performs perceptual inference and learning as

shown by reconstruction of MNIST digit images. Also, it can

denoise and show robust decodability of class information

from noisy and partially occluded images. Our findings may

inspire machine learning, neuromorphics, neuroscience and

cognitive science communities to seek avenues moving closer

to mimic the nature’s most intelligent and efficient system, the

brain.
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