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Introduction: Epilepsy is a chronic neurological disorder characterized by

abnormal electrical activity in the brain, often leading to recurrent seizures.

With 50 million people worldwide a�ected by epilepsy, there is a pressing

need for e�cient and accurate methods to detect and diagnose seizures.

Electroencephalogram (EEG) signals have emerged as a valuable tool in

detecting epilepsy and other neurological disorders. Traditionally, the process

of analyzing EEG signals for seizure detection has relied on manual inspection

by experts, which is time-consuming, labor-intensive, and susceptible to human

error. To address these limitations, researchers have turned to machine learning

and deep learning techniques to automate the seizure detection process.

Methods: In this work, we propose a novel method for epileptic seizure

detection, leveraging the power of 1-D Convolutional layers in combination with

Bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)

and Average pooling Layer as a single unit. This unit is repeatedly used in the

proposed model to extract the features. The features are then passed to the

Dense layers to predict the class of the EEG waveform. The performance of

the proposed model is verified on the Bonn dataset. To assess the robustness

and generalizability of our proposed architecture, we employ five-fold cross-

validation. By dividing the dataset into five subsets and iteratively training and

testing the model on di�erent combinations of these subsets, we obtain robust

performance measures, including accuracy, sensitivity, and specificity.

Results: Our proposed model achieves an accuracy of 99–100% for binary

classifications into seizure and normal waveforms, 97.2%–99.2% accuracy for

classifications into normal-interictal-seizure waveforms, 96.2%–98.4% accuracy

for four class classification and accuracy of 95.81%–98% for five class

classification.

Discussion: Our proposed models have achieved significant improvements

in the performance metrics for the binary classifications and multiclass

classifications. We demonstrate the e�ectiveness of the proposed architecture

in accurately detecting epileptic seizures from EEG signals by using EEG signals

of varying lengths. The results indicate its potential as a reliable and e�cient

tool for automated seizure detection, paving the way for improved diagnosis and

management of epilepsy.
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1 Introduction

Epilepsy is a prevalent chronic neural disorder caused by

irregular electrical discharges in the brain, known as seizures. It

is a neurological disorder affecting millions of people worldwide.

Epileptic seizures can vary in severity and duration and can

cause a wide range of symptoms, including loss of consciousness,

convulsions, muscle spasms and sensory disturbances. Seizures are

caused due to uncontrolled electrical discharges in a group of

neurons in the brain which leads to disruption of the brain function

(Gandhi et al., 2011). The accurate and timely detection of seizures

is one of the critical challenges faced in managing epilepsy today.

Electroencephalography (EEG) is used widely in the detection

of epileptic seizures. It is a non-invasive recording of brain

activity which records the voltage fluctuations resulting from

the ionic flow of neurons in the brain, reflecting the brain’s

bio-electric activity. Neurologists make inferences from the EEG

signals by visual inspection which is a laborious and time-intensive

process requiring skimming through hundreds of hours of EEG

recordings. Thismethod of detection of epileptic seizures fromEEG

signals is highly dependent on neurologists’ expertise. Therefore,

attempts have been made to automate the process of epileptic

seizure detection from EEG signals using machine learning and

deep learning.

Researchers have made efforts to use machine-learning

techniques for the detection of epileptic seizures by extracting

handwritten features in the time domain and frequency domain

and often combining both these domains together. Most of the

works in the field of seizure detection involve two stages. The first

stage involves feature extraction in the time domain, frequency

domain, or time-frequency domain. Researchers have used signal

transformations like Fast Fourier Transform, Short-Time Fourier

Transform, and wavelet transforms for frequency domain analysis

for extracting features from EEG signals. The second stage involves

using the extracted hand-crafted features for classifying the EEG

signals using classifiers. However, the performance of these models

is highly dependent on the ability of the experts to handcraft

the features.

The effectiveness of time-frequency analysis in categorizing

EEG segments for epileptic seizures has been illustrated

previously (Tzallas et al., 2007). The researchers utilized an

artificial neural network as the classifier attaining an 89%

accuracy for the five-class classification problem. Orhan et al.

(2011) employed the k-means algorithm to perform clustering

on wavelet coefficients followed by multilayer perceptron

neural networks.

Miltiadous et al. (2021) utilized a five-level Discrete Wavelet

Transform (DWT) to decompose EEG signals into sub-bands to

extract features and train a Random Forest Classifier. Raghu et al.

(2019) proposed a novel feature named successive decomposition

index for automated seizure detection.

Deep learning techniques offer automated detection of

epileptic seizures from EEG signals, removing the necessity for

manual feature engineering, as convolutional neural networks and

recurrent neural networks can learn hierarchical representations

of data through interconnected layers of neurons. The features

extracted by deep learning models from non-stationary biomedical

signals like EEG signals are known to be more robust than hand-

crafted features (LeCun and Bengio, 1995).

Standard recurrent neural networks have been used in several

studies for the detection of seizures. Recurrent neural networks

are suitable for time-sequence data like EEG signals. However,

standard recurrent neural networks are subject to the problem of

vanishing gradients and exploding gradients (Bengio et al., 1994).

To solve the problem of vanishing and exploding gradients, long

short-term memory and gated recurrent units can be used. There

have been many recent advances in the detection of epileptic

seizures from EEG signals.

Ullah et al. (2018) proposed an ensemble of pyramidal one-

dimensional convolutional neural network models. The author has

achieved an accuracy of ∼99% on the Bonn University dataset for

the classification of EEG signals into normal, interictal and ictal.

Roy et al. (2019) proposed a new architecture called Chrononet

which consists of multiple 1-D convolution layer. Hussein et al.

(2019) proposed a robust architecture for detecting epileptic

seizures using Long Short-Term Memory (LSTM) network. Thara

et al. (2019) proposed a model for seizure detection as well as

seizure prediction using stacked LSTM and Bi-LSTM and an

accuracy of 99% on the Bonn University dataset. Minasyan et al.

(2010) used neural network and fuzzy function with a combination

of principal component analysis for seizure detection and achieved

an accuracy of 97.64%.

Convolutional Neural Networks have also been used to detect

the spikes in the EEG data (Johansen et al., 2016). Acharya

et al. (2018) applied a 13-layer deep CNN algorithm to an iEEG

Freiburg dataset to detect normal, pre-ictal and seizure classes.

They achieved an accuracy, specificity, and sensitivity of 88.67%,

90.00%, and 95.00%, respectively.

Duan et al. (2019) used CNN-based spectral sub-band features

related to correlation coefficients of electrodes for EEG segments

of duration 1 s, 2 s, and 3 s. They achieved an accuracy of 94.8%,

sensitivity of 91.7%, and specificity of 97.7%. Aarabi et al. (2009)

achieved an accuracy of 93%, F1 score of 95%, and a sensitivity of

91% using BNN on the Freiburg dataset.

In this work, a novel deep learning framework incorporating

the use of units of 1D-CNN, Bidirectional LSTM and Average

Pooling layer has been proposed for the classification of seizure

and non-seizure EEG signals as well as multiclass classifications

into different stages of seizures using the Bonn dataset. The features

extracted by the units of 1D-CNN, Bi-LSTM and Average Pooling

layer are passed to the Flatten layer and subsequently, Dense

layers are used. The proposed models have also been developed

with Bidirectional GRUs instead of Bidirectional LSTMs and their

performances have been compared.

Epilepsy is a neurological disorder with various seizure types

and manifestations. Therefore, it is necessary to be able to

distinguish between various types of seizure signals is extremely

important and therefore, classification into four and five-class

classifications provides a more granular diagnosis support. Few

studies have addressed the problem of classification of EEG

signals into different stages. In this study, we have studied five

classification problems: binary, ternary, four class, and the five class

classification problem, and achieved significant improvements in

the performance measures as compared to previous studies.
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TABLE 1 Classification type and set combination used in the study.

Classification type Data combination

Two class classification A vs. E

Two class classification B vs. E

Three class classification AB vs. CD vs. E

Four class classification AB vs. C vs. D vs. E

Five class classification A vs. B vs. C vs. D vs. E

The proposed work has shown to be effective in the detection

of epileptic seizures using EEG signals in the presence of artifacts as

well as in ideal conditions. It has been experimented on EEG signals

of different durations to determine its effectiveness by varying the

number of filters used in the convolutional layers, the number

of units used in the Bi-LSTM, and the number of Dense layers

and their parameters. We report that it has obtained significant

improvements in the performance measures, namely accuracy,

specificity, sensitivity and F1 score.

While there have been many studies and research on the

classification of EEG signals to detect epileptic seizures, very

few studies have proposed a novel architecture that has achieved

considerable improvements in the results for the classification of

EEG signals of varying lengths as well as in the presence and

absence of artifacts. One of the major contributions of this study

is that it addresses the problem of binary as well as multi-class

classification of EEG signals of varying lengths in the presence

and absence of artifacts and achieves improvements over previous

studies. This study also examines the inference time as well as the

training times of the proposed models for each classification.

2 Materials and methods

2.1 Dataset

The dataset used in this study is of EEG signals obtained from

the BonnUniversity, Germany (Andrzejak et al., 2001). This dataset

has been used extensively in the detection of epileptic seizures.

The dataset consists of 500 segments of EEG recordings divided

evenly into five sets. These signals are recorded from a 128-channel

amplifier using a 12-bit analog-to-digital converter. Each set has a

total of 100 single-channel EEG signals with 4,097 sample points

per channel. Every signal has a duration of 23.6 seconds and a

sampling frequency of 173.61 Hz. The dataset consists of five sets

of EEG signals: A, B, C, D and E. Set A and set B are recorded from

the scalp of five healthy subjects with their eyes open and closed,

respectively. The 10–20 standard electrode placement was used.

The set C, D, and E are EEG signals collected from five epileptic

patients. The set D consists of EEG signals recorded from the

epileptogenic zone. Set C consists of EEG signals recorded from the

opposite hemisphere’s hippocampus formation during the seizure-

free intervals, known as the inter-ictal state. Set E consists of true

seizure waveforms recorded during the ictal stage.

To perform the experiments, we have studied the following five

classifications as specified in Table 1.

2.2 Proposed framework

Our proposed architecture incorporates the use of 1D-CNNs,

Bidirectional LSTMs, and Average Pooling Layer as a unit. This

unit is repeatedly used depending on the classification problem.

Each unit is separated by a Dropout layer to prevent overfitting

of the models. The EEG signals from the Bonn dataset after

preprocessing, are fed as input to the 1D-CNN layers. The 1D-

CNN layer performs convolution operations on the input data,

extracting relevant features from the sequential information. The

convolutional filters learn to detect specific patterns in the EEG

signals that may indicate seizures. The Bidirectional LSTM layer

captures the long-term dependencies and temporal dynamics in

the EEG signals. It processes the input data in both forward and

backward directions, allowing the model to effectively analyze the

sequential information. The LSTM units maintain the memory of

past information, enabling the model to retain important context

while evaluating the EEG signals. The Average Pooling layer

reduces the dimensionality of the extracted features by performing

down-sampling.

Dropout layers inserted between the repeated units of

the architecture randomly deactivates a fraction of neurons

during training, preventing overfitting and enhancing the model’s

generalization ability (Srivastava et al., 2014). The Flatten layer

reshapes the output from the previous layers into a vector form,

preparing it for the subsequent Dense layers. The Dense layers

are fully connected layers that further process the learned features.

They perform computations on the flattened vector to generate the

final classification or prediction results.

Figure 1 depicts the proposed framework architecture.

We have tested our proposed architecture for EEG signals of

duration 23.6, 11.8, and 1 s in the following six studies consisting of

the following types of input EEG signals:

1. Study 1: Unfiltered EEG signals of duration 23.6 s.

2. Study 2: Filtered EEG signals of duration 23.6 s.

3. Study 3: Unfiltered EEG signals segmented into duration of 11.8

s.

4. Study 4: Filtered EEG signals segmented into duration of 11.8 s.

5. Study 5: Unfiltered EEG signals segmented into duration of

duration 1 s.

6. Study 6: Filtered EEG signals segmented into duration of

duration 1 s.

Study 1.1 used Bidirectional LSTMs, and Study 1.2 used

Bidirectional GRUs. This convention is followed throughout the

paper where first part corresponds to models with Bi-LSTM and

second part corresponds to Bi-GRU.

2.2.1 Pre-processing
The raw EEG signals obtained from the Bonn dataset are

contaminated with noise EEG signals may be contaminated with

many artifacts. The frequency range of EEG recordings in the Bonn

dataset is 0–86.8 Hz. Frequencies higher than 50 Hz are considered

noise. It can be difficult for themodel to extract meaningful features

and capture the underlying patterns if the input signals contain

too much noise. It has been observed that using EEG signals
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FIGURE 1

Proposed framework for the detection of epileptic seizures from EEG signals.

contaminated with noise has resulted in a drop of accuracy by 10%

(Abualsaud et al., 2015). Therefore, it is important to preprocess

the input signals to remove the noise before feeding them into the

model. The proposed framework has been tested for both unfiltered

raw EEG signals and filtered EEG signals. For Study 2, 4 and 6,

the signals obtained from the Bonn dataset are passed through a

zero-phase band-pass Butterworth filter of order two which limits

the frequency content of the signals to a range of [0.5, 50] Hz.

Figure 2 shows the EEG signal of duration 1 s before and after

passing through band-pass filter.

2.2.2 Convolutional neural networks
Convolutional Neural Networks have shown promising results

over the past decade in various fields related to pattern recognition

(Albawi et al., 2017). Time series data can be considered a one-

dimensional grid formed by regular sampling on the time axis.

1D-CNNs are intrinsically suitable for processing biological signals

such as EEG for epileptic seizure detection (Shoeibi et al., 2021).

Convolutional layers extract relevant features from the input data

by applying a set of filters to the input. Convolutional Neural

Network has the characteristic of sparse interaction, resulting in

fewer parameters to be stored and simplifying calculations.

2.2.3 Long short-term memory
Long Short-Term Memory (Hochreiter and Schmidhuber,

1997) is a type of Recurrent Neural Network architecture

widely used for sequential data processing tasks such as speech

recognition, natural language processing and time series prediction.

Unlike traditional RNNs, LSTMs are designed to capture long-

term dependencies in the input sequence. This is achieved through

a memory cell that can store and selectively retrieve information

over time and three gates that regulate the flow of information into

and out of the cell.

The Figure 3 depicts the input vector, xt , the input gate it . ft is

the forget gate vector, Ot is the output gate vector, ht is the output

of the LSTM cell at the time step t and Ct is the current cell state.

The LSTM cell consists of three gates: forget gate, input gate, and

output gate. The forget gate is responsible for deciding whether

the information in the given data sample should be forgotten

or retained.

This work uses Bidirectional LSTM, which processes the

input in both forward and backward directions (Nagabushanam

et al., 2020). This is beneficial when handling EEG signals of

long durations.

2.2.4 Gated recurrent units
Gated recurrent units are a form of recurrent neural network

similar to LSTMs. They have the additional advantage of fewer

trainable parameters (Chung et al., 2014). A GRU consists

of a reset gate, an update gate, and a candidate activation

function. The reset gate controls how much of the previous

hidden state is forgotten, while the update gate controls how

much of the new input is incorporated into the current

hidden state. The candidate activation function calculates the

new hidden state based on the input and the previous hidden

state, and this new hidden state is then passed to the next

time step.
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FIGURE 2

(A) EEG signal before filtering. (B) EEG signal after filtering.

2.2.5 Pooling layer
The main idea of using a pooling layer is to downsample to

reduce the complexity for further layers in the framework (Albawi

et al., 2017). In our work, we have used the Average Pooling layers

for the following reasons:

• Reducing the feature dimension: Conv1D and LSTM layers

can generate high-dimensional feature maps that can be

computationally expensive to process. AvgPool1D layers can

be used to reduce the feature dimension and simplify the

computations, making the model more efficient.

• Improving the generalization of the model: AvgPool1D

improves the generalization of the model and helps in

reducing overfitting.

2.2.6 Dropout
Dropout is a regularization technique used in neural networks

to prevent overfitting (Srivastava et al., 2014). It randomly sets

a certain proportion of input units to zero during each training

iteration, preventing the network from relying too much on any

single feature. In this work, we have used Dropout layers to prevent

overfitting of the models to the training data.

2.2.7 Flatten
We use the Flatten layer in neural networks to convert a

multidimensional tensor into a one-dimensional tensor, which can

then be fed into a fully connected layer. This is necessary when

we want to use a fully connected layer to classify the output of a

convolutional or recurrent layer.

2.2.8 Fully connected layers
Fully connected layers have been used after the feature

extraction using 1D-CNN and Bi-LSTM/ Bi-GRU unit to learn

the non-linear relationships between the extracted features and the

output. In this work, non-linear activation functions like ReLU are

applied to the resulting vector, allowing the network to learn the

complex relationships between the features and the output.
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FIGURE 3

Architecture of LSTM cell.

2.3 Training and validation details

For binary classifications, 200 EEG signal samples were used,

while for multi-class classifications, all 500 samples from the Bonn

dataset were utilized.

Our proposed models were trained by optimizing the

categorical cross-entropy cost function with Adam optimizer. The

Adam optimizer has been used because it combines the advantages

of the AdaGrad and RMSProp algorithms. The optimizer enhances

computational efficiency during the training of the Bi-LSTM and

Bi-GRU model (Nagabushanam et al., 2020).

The proposed models are trained and evaluated using five-fold

cross-validation. The EEG signals are randomly divided into five

parts of equal size. Four-folds have been used for training and

one-fold for testing.

In Study 1 and 2, 160 EEG signals of 23.6 s are used for training,

with 40 signals for testing in each fold. For the three, four, and

five class classifications, 400 EEG signals of 23.6 s are used for

training, and 100 signals for testing. In Study 3 and 4, EEG signals

are segmented into 11.8 s non-overlapping segments, creating 1,000

signal segments, with 800 used for training and 200 for testing

the models.

3 Study

In our work, we conducted experiments using various models,

varying different parameters such as the number of filters

applied and kernel size of the filters in the convolutional layers,

number of LSTM/GRU units and dropout size. In this work,

the proposed models incorporate the parameters that yielded the

best performance in each classification in each study. The Bi-

LSTM and Bi-GRU models shared identical parameter settings for

each classification within each study. The proposed models follow

the proposed architecture incorporating the use of 1D-CNN, Bi-

LSTM/GRU and Average Pooling Layer as a unit followed by the

Flatten and Dense layers.

To evaluate the robustness of our proposed approach toward

noise in the EEG signals, we have used unprocessed raw EEG

signals and preprocessed signals from the Bonn dataset as input

to the model. To preserve the long-term temporal dependencies

we employ Bidirectional LSTMs or Bidirectional GRUs instead

of unidirectional LSTMs/GRUs. This simulates real-life scenarios

where the EEG signals can be of varying durations and can be

corrupted with artifacts and white noise.

Table 2 shows the details of the proposed models for each

classification. 1D-CNN(i) and LSTM(i) indicate the convolutional

layer and the LSTM layer in the (ith) unit.

3.1 Study 1: unfiltered EEG signals of
duration 23.6 s

The Bonn dataset consists of EEG signals of length 23.6 s, each

corresponding to 4,097 sampling points. In Study I, the full-length

raw EEG signals have been fed to the proposed architecture. The

batch size was set to 64.

All the convolutional layers in the proposed work employ a

kernel size of 2, stride of 1, and valid padding. The classification

study for A–E used 100 units in the Dense layer, while the B–E

model used 3 Dense layers with 100, 50, and 10 units respectively.

The classification of AB–CD–E used 3 Dense layers with 80,

40 and 20 units, while AB–C–D–E used 1 Dense layer with 32

units and A–B–C–D–E employed three Dense layers with 100, 50,

and 25 units respectively. The A–E classification model has been

trained for 50 epochs, while the B–E classification model has been

trained for 100 epochs. The other models have been trained for

150 epochs.
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TABLE 2 Architecture for the proposed models.

Classification CNN (1) LSTM (1) CNN (2) LSTM (2) CNN (3) LSTM (3) CNN (4) LSTM (4)

Study 1

A–E 32 16 16 8 – – – –

B–E 32 32 16 16 – – – –

AB–CD–E 64 8 128 4 – – – –

AB–C–D–E 128 32 64 16 32 8 – –

A–B–C–D–E 128 32 64 16 32 8 – –

Study 2

A–E 4 4 8 8 - – – –

B–E 16 16 8 8 – – – –

AB–CD–E 256 128 64 64 32 32 – –

AB–C–D–E 64 64 32 32 16 16 – –

A–B–C–D–E 128 64 64 32 32 16 – –

Study 3

A–E 256 64 64 32 32 16 – –

B–E 256 64 64 32 32 16 – –

AB–CD–E 32 16 16 8 8 4 – –

AB–C–D–E 256 32 128 32 64 16 32 8

A–B–C–D–E 64 128 128 64 256 32 – –

Study 4

A–E 16 8 32 16 – – – –

B–E 32 32 64 64 128 128 – –

AB–CD–E 150 100 120 50 100 25 – –

AB–C–D–E 32 64 64 32 128 16 256 8

A–B–C–D–E 32 16 64 32 128 64 – –

Study 5

A–E 128 64 64 32 16 16 – –

B–E 128 64 64 32 32 16 – –

AB–CD–E 64 32 32 16 – – – –

AB–C–D–E 128 128 64 64 – – – –

A–B–C–D–E 300 300 150 150 – – – –

Study 6

A–E 16 8 – – – – – –

B–E 32 16 – – – – – –

AB–CD–E 16 8 32 16 64 32 – –

AB–C–D–E 64 64 128 128 – – – –

A–B–C–D–E 256 256 128 128 – – – –

3.2 Study 2: filtered EEG signals of duration
23.6 s

In Study 2, all five sets of raw EEG signals obtained

from the Bonn dataset are passed through a zero-

phase band-pass Butterworth filter of order two which

limits the frequency content of the signals to a range of

[0.5, 50] Hz.

A batch size of 64 and a dropout rate of 0.1 was used

in this study. A single Dense layer with 100 units is utilized

for the binary classifications, while AB–CD–E and A–B–C–D–

E classifications utilize Dense layers with 200 and 50 units
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respectively. Convolutional layers in A–E, B–E, and AB–CD–E

classifications have filters with a kernel size of 2, whereas AB–C–

D–E and A–B–C–D–E classifications use filters with a kernel size of

4. All convolutional layers employ valid padding and a stride of 1.

The A–E model is trained for 50 epochs, B–E for 100 epochs, and

the other models for 150 epochs each.

3.3 Study 3: unfiltered EEG signals of
duration 11.8 s

In Study 3, the raw EEG signals from the Bonn dataset are

segmented into signals of duration 11.8 s, corresponding to 2,048

sampling points as input to the proposed models. No other pre-

processing of the signals is carried out prior to the training.

The models were trained for 150 epochs, with 0.1 dropout

rate. The A–E and B–E models use two Dense layers with 200

and 50 units. AB–CD–E model uses Dense layers with 100 and 40

units while AB–C–D–E model uses two Dense layers with 200 and

100 units.

3.4 Study 4: filtered EEG signals of duration
11.8 s

In Study 4, the EEG signals from the Bonn dataset are passed

through the band-pass Butterworth filter to remove the noise and

artifacts present in the raw EEG signals. These signals are then

segmented into signals of duration 11.8 s, corresponding to 2,048

sampling points before being fed into the proposed model, as

shown in the Figure 4.

The batch size is chosen to be 64. The dropout of 0.1 is used.

The A–E classificationmodel uses three Dense layers of 100, 50, and

10 units, respectively. The B–E classification model uses two Dense

layers of 100 and 50 units. The model for AB–CD–E classification

uses a Dense layer with 100 units. The AB–C–D–E classification

model has a single Dense layer with 200 neurons, whereas the

model for A–B–C–D–E classification uses a single Dense layer

with units.

3.5 Study 5: unfiltered EEG signals of
duration 1 s

In Study 5, EEG signals were segmented into 1 s durations, each

with 178 sampling points, and fed to the proposed models.

The AB–CD–E classification model employed Dense layers

with 100 and 20 units, while the AB–C–D–E classification model

employed Dense layers with 100 and 40 units. The AB–C–D–E

classification model employed convolutional layers with a kernel

size of 4, stride of 1, and valid padding. Conversely, the A–B–C–D–

E classification model employed convolutional layers with a kernel

size of 8. A dropout rate of 0.2 was applied specifically to the A–B–

C–D–E classification model, while a dropout rate of 0.1 was used

for the other models.

3.6 Study 6: filtered EEG signals of duration
1 s

In Study 6, the raw EEG signals are passed through the

band-pass Butterworth filter to remove noise and artifacts and

then segmented into durations of 1 s each, corresponding to 178

sampling points. Figure 5 illustrates the steps involved in this study.

The proposed model for binary classification incorporates

a 1D-CNN and Bi-LSTM/GRU without Dropout. Dense layers

consist of 100 and 10 units.

For AB–CD–E classification, convolutional layers with kernel

size 2, stride 1, and valid padding were employed. Three Dense

layers with 100, 50, and 20 units, respectively, are used. AB–

CD–E model uses a dropout rate of 0.1, while AB–C–D–E and

A–B–C–D–E models use a dropout rate of 0.25.

A–E and B–E classification models were trained for 50 epochs,

AB–CD–Emodel for 150 epochs, and the AB–C–D–E and A–B–C–

D–E models for 100 epochs.

4 Results

In this paper, the performance of the algorithm was estimated

using the following statistical metrics:

1. Accuracy.

2. Sensitivity.

3. Specificity.

4. F1 score.

The true positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN) are extracted from the confusion

matrix. The Equations 1–4 indicate the calculation of the

performance metrics used in this study.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

FN + TP
(2)

Specificity =
TN

FP + TN
(3)

F1 Score =
2TP

2TP + FP + FN
(4)

The accuracy, specificity, sensitivity and F1 score was calculated

for each iteration of training for each classification in the study and

the average values are reported in the paper.

Table 3 summarizes the results obtained from the experiments.

The average of the training times for each iteration has been

reported in this paper. The inference times of the test sets for all the

classifications in each study are listed in Table 4.

5 Discussion

In this section, we compare the performance metrics achieved

by our framework with the works by other authors for epileptic

seizure detection, based on the common performance metrics.
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FIGURE 4

Pipeline of Study 4.

FIGURE 5

Pipeline of Study 6.

Studies 1, 2, and 3, across binary classification A–E, achieve

perfect 100% accuracy. Study 4 reports an accuracy of 99.75%,

while Study 5.1 and 6.2 achieve remarkable accuracies of 99.16

and 99.91% respectively, for A–E classification. These metrics are

comparable with the latest state-of-art methods as shown in the

Table 5.

For binary classification B–E, Studies 1, 2, 3, and 4.1 show

perfect accuracy, Study 5.1 achieves 99%, Study 5.2 achieves

99.02%, and Study 6 achieves the highest accuracy of 99.5%. The

comparison of our work with the previous works has been given in

Table 6.

Table 7 compares the best performance metric obtained by our

work with the other latest works in the field of ternary classification.

For the three-class classification between AB–CD–E(healthy-

interictal-ictal), Study 3.2 achieves the highest accuracy of 99.2%,

specificity of 99.55%, sensitivity of 99.14% and F1 score of 99.23%.

For four-class classification, our proposed models outperform

the latest works by a margin of 0.58%–to 2.4%. The Tables 8, 9

compare the performance of the best performancemetrics obtained

by the proposed work with the latest works in the field of the

four-class and five-class classification.

Study 1 conducted with unfiltered EEG signals of duration 23.6

s gives the highest classification accuracy into classes A–B–C–D–

E with an accuracy of 98%, specificity of 99.49%, 98.18% and F1

score of 97.94%. An improvement by 4% over the model proposed

by Türk and Özerdem (2019) and Hassan et al. (2022) is obtained

by the Bi-LSTM model of Study 1 and an improvement by 4.4%

by the Bi-GRU model of Study 1. Study 2 achieves an accuracy of

97.8% outperforming the best achieved performance by 4.2%. Study

3 achieves an accuracy of 96.6 and 96.2% by the Bi-LSTM and the

Bi-GRU models respectively. Study 4 achieves an accuracy of 97.3

and 97% by the Bi-LSTM and Bi-GRUmodels again outperforming

the existing methods.

6 Ablation study

In this section, we run a series of ablation experiments to test

the effectiveness of each part of the proposed framework. First,

we remove all the 1D-CNN layers from the models and re-train

each model. In the Study 1, for the A–E classification, the accuracy

decreased from 100 to 99%. The specificity and sensitivity also

showed a drop to 98.82%. Similarly, for the B–E classification, the

accuracy dropped to 99%. For the AB–CD–E classification, the

accuracy showed a sharp drop to 93.59%, whereas the accuracy

of the proposed model shows an accuracy of 98.4%. A drop of

∼2.67% in specificity and 4.58% in sensitivity is also noted. On

removal of 1D-CNN layers, a 1.8% drop in the accuracy is seen in

the AB–C–D–E classification and a drop of 1.2% in the A–B–C–

D–E classification. The ablation study in Study 2 shows a drop of

1.5% and 1% in the accuracies for the A–E and B–E classifications,

respectively. The AB–CD–E classification results show a decrease

in accuracy by 3.2%. The ablation study for AB–C–D–E showed

a decrease in accuracy by 1% and the A–B–C–D–E classification

showed a decrease by 0.2%.

The ablation study in Study 3 results in a decrease in

the accuracy of the AB–CD–E classification by 1.9%, in the

accuracy of AB–C–D–E classification by 0.6% and in A–B–C–D–E

classification by 2.2%. The A–E and B–E classifications also result in

a drop in accuracy by 1.5 and 1%, respectively. The ablation study in

Study 4 for the A–B–C–D–E classification shows a drop in accuracy

by 1.9%. The sensitivity in the AB–CD–E classification decreases by

0.32%.

In Study 5, there is a drop in accuracy to 97.56% from 99.17%

for the A–E classification and a drop in accuracy to 98.54% from

99% for the B–E classification. On removal of the 1D-CNN layers,

we see a drop of accuracy in the AB–CD–E classification to 93.94%

from 98.09%. Similarly, there is a drop in accuracies for AB–C–D–E

and A–B–C–D–E classifications.

In Study 6, for the AB–CD–E classification, the accuracy drops

by 5.73% on the removal of all the 1D-CNN layers. Similarly, a drop

of 4.07% of accuracy is seen in the AB–C–D–E classification. For

the A–B–C–D–E classification, a drop in the performance metrics

is observed.

In the next set of experiments for the ablation study, the

Bidirectional LSTM layers from the proposedmodels were removed

and then trained again. We have reported the results for the

Bi-LSTMmodels only.
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TABLE 3 Performance metrics obtained.

Study Classification Model Accuracy (%) Specificity (%) Sensitivity (%) F1 score

Study 1 A–E LSTM 100 100 100 100

GRU 100 100 100 100

B–E LSTM 100 100 100 100

GRU 100 100 100 100

AB–CD–E LSTM 98.4 99.12 98.36 98.49

GRU 98.8 99.32 98.78 98.89

AB–C–D–E LSTM 97.8 99.19 97.37 97.63

GRU 98.4 99.47 98.09 98.09

A–B–C–D–E LSTM 97.75 99.39 97.6 97.50

GRU 98.18 99.49 98 97.94

Study 2 A–E LSTM 100 100 100 100

GRU 100 100 100 100

B–E LSTM 100 100 100 100

GRU 100 100 100 100

AB–CD–E LSTM 98.4 99.14 98.35 98.40

GRU 98 98.94 97.91 97.86

AB–C–D–E LSTM 97 99.016 96.69 96.42

GRU 98 99.31 97.44 97.57

A–B–C–D–E LSTM 97.8 99.43 97.77 97.65

GRU 97.8 97.8 97.77 97.79

Study 3 A–E LSTM 100 100 100 100

GRU 100 100 100 100

B–E LSTM 100 100 100 100

GRU 100 100 100 100

AB–CD–E LSTM 98.1 98.99 98.08 98.13

GRU 99.2 99.55 99.14 99.23

AB–C–D–E LSTM 97 98.94 96.69 96.56

GRU 97 98.95 96.51 96.48

A–B–C–D–E LSTM 96.67 99.14 96.67 96.54

GRU 96.2 99.03 96.08 96.01

Study 4 A–E LSTM 99.75 99.75 99.75 99.75

GRU 99.75 99.75 99.75 99.75

B–E LSTM 100 100 100 100

GRU 99.75 99.7 99.74 99.75

AB–CD–E LSTM 97.9 98.85 98.22 98.22

GRU 97.2 98.44 97.64 97.54

AB–C–D–E LSTM 97.7 99.20 97.18 97.32

GRU 96.8 98.95 96.12 96.004

A–B–C–D–E LSTM 97.3 99.29 97.29 97.18

GRU 97 99.22 97 96.94

(Continued)
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TABLE 3 (Continued)

Study Classification Model Accuracy (%) Specificity (%) Sensitivity (%) F1 score

Study 5 A–E LSTM 99.17 99.17 99.17 99.16

GRU 99.05 99.05 99.05 99.04

B–E LSTM 99 99 99 98.999

GRU 99.03 99.03 99.03 99.02

AB–CD–E LSTM 98.09 98.94 98.124 98.21

GRU 98.44 99.13 98.42 98.53

AB–C–D–E LSTM 96.78 98.88 96.027 96.07

GRU 96.62 98.80 95.78 95.86

A–B–C–D–E LSTM 95.50 98.75 95.50 95.5

GRU 95.8 98.81 95.80 95.79

Study 6 A–E LSTM 99.89 99.89 99.88 99.89

GRU 99.91 99.91 99.91 99.91

B–E LSTM 99.43 99.43 99.43 99.43

GRU 99.5 99.49 99.49 99.50

AB–CD–E LSTM 98.28 99.05 98.41 98.458

GRU 97.9 98.84 97.9 98.02

AB–C–D–E LSTM 96.82 98.88 96.27 96.33

GRU 96.58 98.80 96.03 96.06

A–B–C–D–E LSTM 95.56 98.76 95.56 95.57

GRU 95.8 98.81 95.8 95.8

TABLE 4 Inference time(s).

Study type A–E B–E AB–CD–E AB–C–D–E A–B–C–D–E

Study 1.1 Mean inference time(s) 0.49 0.32 0.96 0.91 0.58

Mean training time(s) 77.63 138.82 394.01 455.29 412.68

Study 1.2 Mean inference time(s) 0.37 0.33 0.81 0.72 0.64

Mean training time(s) 74.02 127.68 739.45 505.55 505.12

Study 2.1 Mean inference time(s) 0.31 0.32 0.61 0.76 0.94

Mean training time(s) 254.09 266.86 383.81 495.88 622.77

Study 2.2 Mean inference time(s) 0.35 0.56 0.94 0.67 0.69

Mean training time(s) 63.75 130.85 620.25 439.84 435.87

Study 3.1 Mean inference time(s) 0.53 0.53 0.92 0.86 0.92

Mean training time(s) 129.36 132.92 192.10 269.83 456.04

Study 3.2 Mean inference time(s) 0.28 0.32 1.28 0.60 0.66

Mean training set(s) 66.6 64.16 618.95 154.11 335.2

The A–E classification of Study 1 showed a drop in accuracy by

4.5% on the removal of the Bi-LSTM layers. This classification also

showed a drop in specificity by 3.92%. The AB–CD–E classification

results show a drop of 9% in accuracy, a drop of 5.44% in specificity

and a drop of 10.54% in sensitivity on the removal of all the Bi-

LSTM layers in the proposed model. Similarly, the AB–C–D–E

classification results show a decrease in accuracy to 95%. The

A–B–C–D–E classification results show a decrease in accuracy

by 8.21% on the removal of Bi-LSTM layers on the removal of

Bi-LSTM layers.

In Study 2, the A–E classification results show a decrease in

the accuracy to 98.5%. The accuracy for the B–E classification
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TABLE 5 Performance metrics achieved by other works for classification between A–E.

Author Method Accuracy Specificity Sensitivity

Tzallas et al. (2007) Time-frequency analysis and ANN 100% 100% 100%

Ghosh-Dastidar and Adeli (2009) Levenberg-Marquardt backpropagation neural network 96.7% – –

Chandaka et al. (2009) Cross-correlation aided SVM 95.96% – –

Chua et al. (2011) Gaussian mixture model 93.1% 94.8% 89.7%

Orhan et al. (2011) K-means clustering and MLP neural network model 100% 100% 100$

Kaya et al. (2014) 1D LBP and functional tree 97.50% 99% 96%

Samiee et al. (2014) Rational discrete STFT and MLP classifier 99.80% – –

Peker et al. (2015) Dual tree complex wavelet transform + complex-valued neural networks 100% 100% 100%

Bhattacharyya et al. (2017) TQWT-based multi-scale K-NN entropy 100% 100% 100%

Vipani et al. (2017) Hilbert transform 89.31% – –

Singh and Dehuri (2019) DWT+MLP neural network 99.50% – –

Mamli and Kalbkhani (2019) Fourier synchro-squeezed transform+gray-level co-occurrence matrix+SVM 100% – –

Thara et al. (2019) Deep neural networks 97.21% 91.47% 98.59%

Raghu et al. (2019) Matrix determinant + MLP 99.45% – –

Akyol (2020) Stacking ensemble based deep learning approach 97.17% 98.18% 93.11%

Varlı and Yılmaz (2023) Combined learning using CWT 99.07% – –

Varlı and Yılmaz (2023) Combined learning using STFT 99.28% – –

Proposed framework Study 1.1, 1.2, 2.1, 2.2, 3.1, 3.2 100% 100% 100%

Study 4.1, 4.2 99.75% 99.75% 99.75%

Study 5.1 99.17% 99.17% 99.17%

Study 5.2 99.05% 99.05% 99.05%

Study 6.1 99.89% 99.89% 99.88%

Study 6.2 99.91% 99.91% 99.91%

The values in bold are the highest values we have obtained in the study.

TABLE 6 Performance metrics achieved by other works for classification between normal and seizure waveforms: B vs. E.

Author Method Accuracy Specificity Sensitivity

Samiee et al. (2014) Rational discrete STFT and MLP classifier 99.30% – –

Bhattacharyya et al. (2017) TQWT-based multi-scale K-NN entropy 99.5% 99% 100%

Singh and Dehuri (2019) DWT + multilayer perceptron neural network 97.00% – –

Mamli and Kalbkhani (2019) Fourier synchro-squeezed transform+gray-level co-occurrence matrix+SVM 99.38% – –

Thara et al. (2019) Deep neural networks 97.21% 91.47% 98.59%

Raghu et al. (2019) Matrix determinant + MLP 96.06% – –

Akyol (2020) Stacking ensemble based deep learning approach 97.17% 98.18% 93.11%

Proposed framework Study 1.1, Study 1.2, Study 2.1, Study 2.2, Study 3.1, Study 3.2, Study 4.1 100% 100% 100%

Study 4.2 99.75% 99.75% 99.75%

Study 5.1 99% 99% 99%

Study 5.2 99.03% 99.03% 99.03%

Study 6.1 99.43% 99.43% 99.43%

Study 6.2 99.5% 99.49% 99.49%

The values in bold are the highest values we have obtained in the study.

decreases to 94%. A drop of 6% in accuracy is observed. The

AB–CD–E classification results show a decrease in the accuracy

by 3.3%–95.1%. An accuracy of 94.4% is observed in the case

of AB–C–D–E classification which is a decrease of 2.6% from

the accuracy observed in the proposed model. The A–B–C–D–E

classification results shows a decrease of 2.6% in accuracy.
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TABLE 7 Performance metrics achieved by other works for classification between normal-ictal-interictal waveforms.

Author Method Accuracy Specificity Sensitivity

Tzallas et al. (2007) Time-frequency analysis 97.72% 98.75% 96.93%

Orhan et al. (2011) K-means clustering and multilayer perceptron neural network model 95.60% 97.64% 90.51%

Acharya et al. (2012) Fuzzy Sugeno 96.7% 99% 95%

Peker et al. (2015) Dual tree complex wavelet transform and complex-valued neural networks 98.28% – –

Bhattacharyya et al. (2017) TQWT-based multi-scale K-NN entropy 98.60% 98.67% 98.5%

Tiwari et al. (2017) Keypoint-based LBP + SVM 98.80% – –

Acharya et al. (2018) Deep convolutional neural networks 88.7% 90% 95%

Raghu et al. (2019) Matrix determinant + MLP 96.50% – –

Gupta and Pachori (2019) FBSE +WMRPE + Regression 98.6% – –

Miltiadous et al. (2021) Discrete wavelet transform + Random forest classifier 95.84% 97.75% 96.04%

Abiyev et al. (2020) CNN (10 fold cross-validation) 98.6% 98.83% 97.67%

Zhao et al. (2020) 1D-CNN + batch normalization 96.97% – –

Hassan et al. (2022) 1D-CNN + Bagged KNN 99% – –

Proposed framework Study 1.1 98.4% 99.12% 98.36%

Study 1.2 98.8% 99.32% 98.78%

Study 2.1 98.4% 99.14% 98.35%

Study 2.2 98% 98.94% 97.91%

Study 3.1 98.1% 98.99% 98.08%

Study 3.2 99.2% 99.55% 99.14%

Study 4.1 97.9% 98.85% 98.22%

Study 4.2 97.2% 98.44% 97.64%

Study 5.1 98.09% 98.94% 98.124%

Study 5.2 98.44% 99.13% 98.42%

Study 6.1 98.28% 99.05% 98.41%

Study 6.2 97.9% 98.84% 97.9%

The values in bold are the highest values we have obtained in the study.

In Study 3, a drop of accuracy by 10.51% is observed for

the A–E classification and a drop of accuracy by 12% for the B–

E classification. Similarly, a decrease in performance metrics is

observed for the AB–CD–E and AB–C–D–E classifications. The

A–B–C–D–E classification results register a decrease of 5.4% in

accuracy on the removal of the Bi-LSTM layers.

In Study 4, the accuracies for the A–E and B–E classifications

drop to 94.75%. The AB–CD–E classification results register a

decrease in accuracy by 8.7%. Similarly, the accuracy drops by

1.4% in the AB–C–D–E classification and by 6.1% for the A–B–C–

D–E classification. Similarly, the other performance metrics used

for evaluating the performance of the proposed models also show

a decrease.

The accuracy for the A–E classification in the Study 5 decreases

to 97.52% from 99%. The AB–CD–E classification results show

a drop in accuracy by 10.88%–87.21%, while the AB–C–D–E

classification results show a decrease in accuracy by 4.75% to

92.027% on the removal of the Bi-LSTM layers. The A–B–C–D–E

classification results show a decrease in the accuracy by 2.48%.

In the Study 6, the A–E classification results show a decrease

in accuracy by 4.17%, whereas the B–E classification results show

a decrease in accuracy by 3.84% on the removal of the Bi-LSTM

layers. The accuracy of AB–CD–E classification decreases by 4.28%

on the removal of the Bi-LSTM layers. The accuracy for the AB–

C–D–E classification decreases to 94.4% and for the A–B–C–D–E

classification to 94.12%.

The results obtained from the ablation studies are summarized

under Table 10.

7 Conclusions

This paper introduces a robust and novel framework for

detecting epileptic seizures using a combination of 1D-CNN,

Bidirectional LSTMs and GRUs, and Average Pooling Layer

as a unit. The framework demonstrates its effectiveness in

accurately distinguishing between different classes within the

Bonn dataset. Extensive evaluations were conducted under both

ideal and imperfect conditions, and it was found that the

proposed models involving Bidirectional LSTMs and Bidirectional

GRUs yield comparable results. The proposed work has obtained

significant advancements in the accuracy, specificity and sensitivity
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TABLE 8 Performance metrics achieved by other works for classification between four-class classifications.

Author Method Classification type Accuracy Specificity Sensitivity

Türk and Özerdem (2019) CWT + CNN B-C-D-E 91.50% – –

Hussain and Qaisar (2022) DWT +MI-based feature selection 96% – –

Hassan et al. (2022) Hybrid 1D-CNN AB–C–D–E 96% – –

Proposed Framework Study 1.1 AB–C–D–E 97.8% 99.19% 97.37%

Study 1.2 AB–C–D–E 98.4% 99.47% 98.09%

Study 2.1 AB–C–D–E 97% 99.016% 96.69%

Study 2.2 AB–C–D–E 98% 99.31% 97.44%

Study 3.1 AB–C–D–E 97% 98.94% 96.69%

Study 3.2 AB–C–D–E 97% 98.95% 96.51%

Study 4.1 AB–C–D–E 97.7% 99.2% 97.18%

Study 4.2 AB–C–D–E 96.8% 98.95% 96.12%

Study 5.1 AB–C–D–E 96.78% 98.88% 96.027%

Study 5.2 AB–C–D–E 96.62% 98.80% 95.78%

Study 6.1 AB–C–D–E 96.82% 98.88% 96.27%

Study 6.2 AB–C–D–E 96.58% 98.80% 96.03%

The values in bold are the highest values we have obtained in the study.

TABLE 9 Performance metrics achieved by other works for classification between five-class classifications.

Author Method Accuracy Specificity Sensitivity

Zahra et al. (2017) Multivariate empirical mode decomposition 87.2% – –

Miltiadous et al. (2021) Discrete wavelet transform + Random forest classifier 82.25% 95% 82.25%

Türk and Özerdem (2019) CWT + CNN 93.60% – –

Zhao et al. (2020) 1D-CNN + Batch-normalization 93.55% 95.93% 83.73%

Hassan et al. (2022) 1D-CNN + SVM 93.6% – –

Proposed framework Study 1.1 97.75% 99.39% 97.6%

Study 1.2 98.18% 99.49% 98%

Study 2.1 97.8% 99.43% 97.77%

Study 2.2 97.8% 97.8% 98.001%

Study 3.1 96.6% 99.14% 96.67%

Study 3.2 96.2% 99.03% 96.08%

Study 4.1 97.3% 99.29% 97.29%

Study 4.2 97% 99.22% 97%

Study 5.1 95.5% 98.75% 95.5%

Study 5.2 95.80% 98.81% 95.80%

Study 6.1 95.56% 98.76% 95.56%

Study 6.2 95.8% 98.81% 95.8%

The values in bold are the highest values we have obtained in the study.

obtained from the existing methods for the detection of

epileptic seizures, especially 3, 4, and 5 class classifications. Our

proposed model achieves an accuracy of 99%–100% for binary

classifications into seizure and normal waveforms, 97.2%–99.2%

accuracy for ternary classifications, 96.2%–98.4% accuracy for

four class classifications, and accuracy of 95.81%–98% for five

class classification. Furthermore, the proposed framework proves

its efficacy in detecting epileptic seizures within EEG signals of

varying durations by varying the parameters used in the proposed

models, encompassing both longer and shorter durations. These

findings highlight the suitability of the proposed framework for

reliable epileptic seizure detection using EEG signals. This work

can also be extended to test its efficacy in the classifications for

other datasets.

Frontiers inComputationalNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fncom.2024.1340251
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Mallick and Baths 10.3389/fncom.2024.1340251

TABLE 10 Ablation study.

Study Classification type Accuracy Specificity Sensitivity F1 score

1D-CNN layers

Study 1 A–E 99% 98.82% 98.82% 98.95

B–E 99% 99.11% 99.11% 98.98

AB–CD–E 93.59% 96.45% 93.78% 93.96

AB–C–D–E 96% 98.56% 95.64% 95.51

A–B–C–D–E 96.4% 99.01% 96.335% 96.335

Study 2 A–E 98.5% 98.69% 98.69% 98.49

B–E 99% 99% 99% 98.98

AB–CD–E 95.2% 97.4% 94.95% 94.93

AB–C–D–E 96% 98.5% 95.99% 95.99

A–B–C–D–E 97.6% 99.3% 97.5% 97.59

Study 3 A–E 98.5% 98.5% 98.5% 98.47

B–E 99% 99% 99% 98.98

AB–CD–E 96.5% 98.1% 95.99% 95.87

AB–C–D–E 96.4% 98.71% 9582% 95.87

A–B–C–D–E 94.4% 98.5% 94.3% 94.25

Study 4 A–E 99.4% 99.39% 99.39% 99.47

B–E 99%% 99% 99% 98.98

AB–CD–E 98.1% 98.9% 97.9% 98.02

AB–C–D–E 97.7% 99.19% 97.16% 97.25

A–B–C–D–E 95.4% 98.74% 95.62% 95.41

Study 5 A–E 97.56% 97.55% 97.56% 97.56

B–E 98.54% 98.53% 98.53% 98.54

AB–CD–E 93.94% 96.71% 92.75% 92.82

AB–C–D–E 95.07% 98.21% 94.26% 94.34

A–B–C–D–E 94.47% 98.39% 94.56% 94.56

Study 6 A–E 99.8% 99.83% 99.83% 99.83

B–E 99.34% 99.33% 99.33% 99.33

AB–CD–E 92.55% 95.81% 93.59% 93.59

AB–C–D–E 92.75% 97.24% 93.06% 92.75

A–B–C–D–E 95.1% 98.58% 95.15% 95.15

Bi-LSTM layers

Study 1 A–E 95.5% 96.08% 96.08% 95.47

B–E 94% 94.78% 94.78% 93.86

AB–CD–E 89.40% 93.68% 87.82% 88.16

AB–C–D–E 95% 98.05% 94.83% 94.84

A–B–C–D–E 89.39% 96.82% 89.65% 89.24

Study 2 A–E 98.5% 98.67% 98.67% 98.47

AB–CD–E 95.1% 97.11% 93.35% 93.79

AB–C–D–E 94.4% 97.65% 94.33% 94.307

A–B–C–D–E 95.2% 98.74% 94.97% 94.705

(Continued)
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TABLE 10 (Continued)

Study Classification type Accuracy Specificity Sensitivity F1 score

Study 3 A–E 89.49% 89.62% 89.62% 89.42

B–E 88% 88.2% 88.2% 87.95

AB–CD–E 98.4% 99.1% 98.5% 98.47

AB–C–D–E 96.2% 98.62% 95.63% 95.7

A–B–C–D–E 91.2% 97.2% 91.48% 91.48

Study 4 A–E 94.75% 95.32% 95.32% 94.73

B–E 94.75% 95.04% 95.04% 94.73

AB–CD–E 89.2% 93.90% 89.53% 88.83

AB–C–D–E 96.4% 98.73% 96.11% 96.05

A–B–C–D–E 90.8% 97.12% 91% 90.77

Study 5 A–E 97.52% 97.49% 97.49% 97.51

B–E 99.04% 99.04% 99.05% 99.04

AB–CD–E 87.209% 93.04% 85.81% 85.75

AB–C–D–E 92.027% 97.01% 90.74% 90.79

A–B–C–D–E 93.01% 97.9% 93.077% 93.16

Study 6 A–E 95.7% 95.71% 95.71% 95.69

B–E 95.59% 95.57% 95.57% 95.57

AB–CD–E 94% 96.6% 94.74% 94.80

AB–C–D–E 94.4% 97.81% 94.29% 94.41

A–B–C–D–E 94.12% 98.31% 94.15% 94.15
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