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Synergy quality assessment of
muscle modules for determining
learning performance using a
realistic musculoskeletal model

Akito Fukunishi*, Kyo Kutsuzawa, Dai Owaki and

Mitsuhiro Hayashibe

Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan

How our central nervous system e�ciently controls our complex

musculoskeletal system is still debated. The muscle synergy hypothesis is

proposed to simplify this complex system by assuming the existence of

functional neural modules that coordinate several muscles. Modularity based

on muscle synergies can facilitate motor learning without compromising

task performance. However, the e�ectiveness of modularity in motor control

remains debated. This ambiguity can, in part, stem from overlooking that the

performance of modularity depends on the mechanical aspects of modules

of interest, such as the torque the modules exert. To address this issue, this

study introduces two criteria to evaluate the quality of module sets based on

commonly used performance metrics in motor learning studies: the accuracy

of torque production and learning speed. One evaluates the regularity in the

direction of mechanical torque the modules exert, while the other evaluates

the evenness of its magnitude. For verification of our criteria, we simulated

motor learning of torque production tasks in a realistic musculoskeletal system

of the upper arm using feed-forward neural networks while changing the

control conditions. We found that the proposed criteria successfully explain

the tendency of learning performance in various control conditions. These

result suggest that regularity in the direction of and evenness in magnitude of

mechanical torque of utilized modules are significant factor for determining

learning performance. Although the criteria were originally conceived for an

error-based learning scheme, the approach to pursue which set of modules is

better for motor control can have significant implications in other studies of

modularity in general.
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1 Introduction

Modularity is believed to simplify control by assuming functionally coordinated

modules in the control architecture instead of controlling all control units (d’Avella et al.,

2015) and is considered to serve to control redundant motor systems effectively. Among

the various forms of modularity that have been proposed (Rückert and d’Avella, 2013;

Sartori et al., 2013; Sternad et al., 2013; Alessandro et al., 2014; Hayashibe and Shimoda,

2014), muscle synergy hypothesis is characterized by a particularly small number of

combinations of muscle coordination patterns. The muscle synergy hypothesis is gaining

phenomenological support based on previous studies (d’Avella and Bizzi, 2005; Overduin

et al., 2008; Roh et al., 2012; Hilt et al., 2018) and its neural implementation is being
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identified (Giszter et al., 1993; Kargo et al., 2010; Roh et al.,

2011; Takei et al., 2017). Following the rudimentary but successful

demonstration of the muscle synergy hypothesis, modularity is

gaining popularity not only in neuroscience but also in various

fields such as robotics and rehabilitation (d’Avella et al., 2015; Ting

et al., 2015; Brock and Valero-Cuevas, 2016).

In line with this, researchers started to study what effects the

central nervous system (CNS) would have in adopting modularity

in motor control rather than full-rank control. The typical aspects

regarded as advantages of modularity are its facilitating effects of

motor learning or planning (Rückert and d’Avella, 2013; Diamond

and Holland, 2014; Hagio and Kouzaki, 2018; Al Borno et al., 2020;

Chen and Qiao, 2020; Berg et al., 2023) and partial generalization

capability (Rückert and d’Avella, 2013; Taïx et al., 2013; Al Borno

et al., 2020; Chen and Qiao, 2020; Kutsuzawa and Hayashibe, 2022;

Berg et al., 2023). These aspects will provide evolutionary benefits

to organisms because combining a limited number of learned

repertoires for realizing a new motor skill is more efficient than an

exhaustive search in full-rank motor space for an optimal solution

if the generated motor skill is enough (Loeb, 2021).

On the other hand, the effectiveness of modularity in motor

control is still controversial. The controversial point is whether a

synergistic controller performs practically enough compared with

an optimal control or optimization. Due to a potential performance

limitation of modularity deriving from its low dimensionality,

researchers had pushed modularity off to an extreme position

relative to the optimal control or optimization (Hirashima and

Oya, 2016; Berret et al., 2019). To fill the gap between these two

positions, researchers have tested the performance of modularity

compared with the optimized one (Berniker et al., 2009; McKay

and Ting, 2012; de Rugy et al., 2013; Inouye and Valero-Cuevas,

2016; Al Borno et al., 2020). However, the studies have reported

conflicting results; Some researchers suggested that the degradation

in performance is negligible (Berniker et al., 2009; Al Borno et al.,

2020), while others suggested that degradation matters significantly

(McKay and Ting, 2012; de Rugy et al., 2013; Inouye and Valero-

Cuevas, 2016). It is necessary to locate what makes the disputes over

modularity and optimality complicated.

We speculate that one of the causes of these complexities

in modularity comes from the confusion of the performance

of the specific modules of interest with the overall discussion

of the performance of modularity. There is no doubt that the

effectiveness of modularity can be affected by module extraction

algorithms, complexities of a musculoskeletal system, control

policy, and even tasks. For instance, Hagio et al. observed that

the control performance and effect of learning facilitation of

modularity depends on the mechanical properties of modules

(Hagio and Kouzaki, 2018). Similarly, Borno et al. pointed

out that the complexities in the musculoskeletal model could

affect the effectiveness of modularity (Al Borno et al., 2020).

They found that the degradation of learning performance of

modularity compared with individual muscle control is slight

when a realistic musculoskeletal model is used. Furthermore, they

also reported that control performance variance depends on the

module extraction algorithms. As for generalization, Kutsuzawa et

al. found that the successful generalization capability of modularity

is provided by modules extracted by multiple tasks, whereas

modularity with modules extracted by a single task fails to

generalize (Kutsuzawa and Hayashibe, 2022). Their results support

that the mechanical repertoire of modules, rather than the number

of modules, is significant for motor generalization. However, except

for these studies, most previous research has not paid much

attention to such module-dependent variation in the performance

of modularity, which can be considered the cause of controversial

arguments concerning modularity. Therefore, it is necessary to

quantitatively clarify what are the essential factors of modules that

determine the performances and provide a better understanding

of modularity.

This study aims to provide refined insights into modularity

by quantitatively associating the relationship between the

performance/effect of modularity and utilized modules. To this

end, we quantify the modules with their mechanical properties

inspired by the previous studies (Hagio and Kouzaki, 2018).

Then, we verified the relationship between them and the popular

measure of modularity: task accuracy and learning speed in error-

based learning. In concrete, we proposed two criteria (Figure 1),

Direction Bias (DB) and Power Bias (PB), to quantify the modules.

DB quantifies the unevenness of the directions of the torque

vectors exerted by individual modules, whereas PB quantifies the

unevenness of the amplitude of the torque vectors. These metrics

were developed by adding heuristics to theoretical predictions

regarding the convergence speed and accuracy of learning in

gradient-based learning of linear neural networks to make them

applicable to more realistic situations. Specifically, we designed DB

and PB to predict the learning speed and accuracy of isometric

control of a realistic musculoskeletal system of a non-linear neural

network with non-negative constraints for muscle actuation.

Our metrics could reveal the relationship between the realistic

musculoskeletal learning system and the mechanical function of

muscles or muscle synergies, advancing our understanding of

motor control and muscle synergies. To validate the criteria, we

did two separate experiments: (1) Similar to the conventional

studies, we compared the task accuracy and learning speed of the

independent muscle controller and the muscle synergy controller;

and (2) We verified the explanation capabilities of criteria for task

accuracy and learning speed by providing various sets of possible

modules, changing the number of modules, or scaling the passive

force elements. Our analysis demonstrates that muscle synergies

should be formed in a way that could effectively compensate for

the musculoskeletal complexities to improve the performance of

the modularity. Our approach to quantitative module assessment

can have significant implications in other studies of modularity.

2 Materials and methods

2.1 Musculoskeletal plant

In this study, in contrast with the simplified musculoskeletal

plants (Hirashima and Nozaki, 2012; Hagio and Kouzaki, 2018;

Song et al., 2022), we implemented a more realistic musculoskeletal

plant for an isometric force production task by approximating

the musculoskeletal dynamics calculation of OpenSim (Delp et al.,

2007) so as not to miss the significant properties of musculotendon

dynamics such as the passive force element and the force-length

relationships of the muscles. In this study, we choose a realistic
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FIGURE 1

Criteria proposed by this study. The yellow and blue arrows represent the torque exerted by the utilized modules, while the dotted circle signifies the

normalized amplitude of the torque. Power Bias quantifies the unevenness of torque amplitude (top), and Direction Bias quantifies the irregularity in

torque direction (bottom) of the modules in task space, respectively. These criteria assess modules with lower bias as superior, indicating better

motor performance. Conversely, modules with higher bias are predicted to result in inferior motor performance.

upper limb musculoskeletal model that we approximate and

implement as an affine function of muscle activation (Saul et al.,

2015).

The n-th muscle’s force, Fn, is given by multiplication of

its maximum isometric force, Fison , normalized force function,

fn(a, ln), and cosine of pennation angle, ψn(ln) (Equation 1).

Additionally, we can give the normalized force coefficient, fn(a, ln),

as a summation of the active force element, fALn (ln), that is scaled

by muscle activation, an, and the passive force element, fPLn (θ)

(Equation 2). This is uniquely determined by the length of the

muscle fiber, ln, when enough time for muscle activation and

muscle fiber speed convergence has passed.

Fn = Fison fn(an, ln)cos(ψn(ln)) (1)

fn(an, ln) = anfAL(ln)+ fPL(ln) (2)

In the musculoskeletal computation framework of OpenSim,

the fiber length, ln, is searched so that the tendon force and

the fiber force, Fison fn(an, ln)cos(αn), are in equilibrium under a

constraint that the total length of them is identical to the muscle-

tendon length calculated from the musculoskeletal geometry, i.e.,

the posture of the model, θ . In this study, the posture is given as 2D

vectors (θ ∈ R
2), with components representing the normalized

values of shoulder horizontal flexion/extension angles and elbow

flexion/extension angles. We normalized the posture value so

that it falls within the interval of (0, 1). Furthermore, because

the fiber force depends on muscle activation an(Equation 2),

the fiber length, ln, is affected by muscle activation. Therefore,

the fiber length is determined by the model’s posture and the

activation at convergence, ln : = ln(θ , an), indicating that the

muscle force is a function of the musculoskeletal posture and

the activation of the muscle. However, it is difficult to find

the analytical solution of fiber length directly, and active/passive

force–length relationship computation requires large computation

costs. Hence, we approximate the muscle force as a first-order

form of the muscle activation determined by the model’s posture

(Equation 3).

Fn ≈ Fison (ankALn (θ)+ kPLn (θ)) (3)

Where Fison denotes the maximum isometric force of n

th muscle. We found the active force coefficient, kALn (θ),

and the passive force coefficient, kPLn (θ), by applying a

least-square matching to the relation map of the muscle

activation and the muscle force. We extracted 20 samples of

the muscle force by intervals of 1an = 0.05 while fixing

the posture of the musculoskeletal model. In this research,

we approximated the mechanics of the musculoskeletal

model at three postures that we refer to as “Base Posture,”

“Fully Extended,” and “Mildly Extended” (see below

and Section 2.4.1), and we conducted this sampling for

each posture.

We choose a two-joint torque production system for the task:

shoulder horizontal flexion/extension and elbow flexion/extension,

denoted as “elv angle” and “elbow flexion”, respectively, in the

model. In this research. we decide the task posture θtask of the

musculoskeletal model, which we refer to as "Base Posture" by

horizontally and vertically flexing the shoulder by 30 degrees

and 90 degrees, respectively, and flexing the elbow by 90

degrees (Figure 2). Similarly to the previous study (Hagio and

Kouzaki, 2018), the target torque combination was randomly

chosen from the 12 ideal torque targets. The 12 torque targets

are evenly distributed along the circumference of the circle

with a radius of 1[Nm] in the torque space (Figure 3A). The

resultant torque, T, was calculated by multiplication of the

moment arm matrix of Nmus simulated muscles, M(θ) ∈
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FIGURE 2

Postures of interest. In the posture of the musculoskeletal model, which we refer to as “Base Posture”, the shoulder is horizontally flexed at a

30-degree, and the elbow is flexed at a 90-degree (left). In the other two postures, which we refer to as “Fully Extended” (left) and “Mildly Extended”

(right), respectively, the elbow is fully or mildly extended from Base Posture.

A B C

D E

FIGURE 3

Non-synergy and synergy model for isometric shoulder and elbow torque production task. (A) Twelve torque targets are uniformly distributed on a

circumference with a radius of 1[Nm] at 30-degree intervals in the torque space. (B, C) Neural network models without modules [(B) “Non-synergy

model”] and with modules [(C) “Synergy model”]. Two neurons at the first layer surrounded by a blue rectangle receive a desired torque target, and

adjacent neurons receive task-irrelevant bias neurons. The yellow-colored neurons in the third layer in the synergy model represent muscle synergy.

The gray-colored neuron in the final layer represents muscle activation neurons. (D) Variance Accounted For (VAF) for determining the number of

muscle synergies. The dashed line represents VAF = 0.95. (E) Flowchart of the network output and update.

R
2×Nmus , and muscle force vectors, F = [F1, F2, ..., FNmus ]

⊤

(Equation 4).

T = M(θ)Fiso(KAL(θ)a+ KPL(θ)) (4)

= TAL + TPL (5)

Where KAL and Fiso denote diagonal matrices whose diagonal

components are the active force coefficients and the maximum

isometric force, respectively, and KPL denotes a R
Nmus vector of

the passive force. a ∈ R
Nmus denotes the vector of the muscle

activation. The mechanical function of the muscles or modules,

which is defined as a mechanical pulling vector, is calculated as

an active force component of Equation (4), M(θ)FisoKALa. These
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torque calculation procedures are summarized as orange-colored

flows in Figure 3E.

In this research, we extracted 22 task-relevant muscles (Nmus =

22, deltoid anterior [DeltAnt], deltoid middle [DeltMid], deltoid

posterior [DeltPst], supraspinatus, infraspinatus, subscapularis,

teres minor [TerMin], teres major [TerMaj], pectoralis major

clavicular [PecMajClv], pectoralis major sternal [PecMajStr],

pectoralis major ribs [PectMajRib], latissmus dorsi thoracic

[LatDorTho], latissmus dorsi lumbar [LatDorLum], latissmus dorsi

iliac [LatDorIil], coracobrachialis, triceps long [TRILong], triceps

lateral [TRILat], triceps medial [TRIMed], biceps long [BICLong],

biceps short [BICShort], brachialis, and brachioradialis), which are

agonists or antagonists of the joints movement.

2.2 Neural network models

We are primarily focused on examining how the mechanical

properties of a set of modules influence the performance of

modularity in error-based learning. To this end, similarly to

the related works, we modeled the motor learning system as a

descending feed-forward neural network. Although a feed-forward

neural network is a largely simplified motor control system which

ignores some important complexities of actual neural networks,

such as sensory feedback loop and recurrent connection, it provides

powerful description capabilities against data of experimentally

observed neural behavior (Rokni et al., 2007; Hirashima and

Nozaki, 2012; Takiyama and Okada, 2012; Song et al., 2022). In this

research, we modeled two types of neural network (Figures 3B, C):

one is a non-synergy model that the CNS directly and individually

control muscles, and the other is synergy model that the CNS

indirectly controls muscles via a small number of modules. The

performance of the network is defined as the learning error at the

final learning trials and its learning speed. The function of the

network and how it learns are summarized as blue-colored and

green-colored flows in Figure 3E.

2.2.1 Non-synergy model
Our network’s structure is the same as the one used in previous

studies (Hirashima and Nozaki, 2012; Hagio and Kouzaki, 2018;

Song et al., 2022), with the exception of the addition of two bias

neurons at the input layer (Figure 3B). Bias neurons, b, are non-

zero constant vectors that have no correlation with the task. This

simplified bias neuron addition can be partially justified because

the neurons of the primary motor cortex are active for various

motor parameters (Scott, 2008; Shenoy et al., 2013; Gallego et al.,

2018) rather than specialized for specific parameters such as gain

of the task, and there should be neurons which shows almost

no correlation with the task. In our musculoskeletal model, we

added the passive force component that makes an input–output

relationship of the plant affine transformed one (Equation 3) to

reproduce the OpenSim musculoskeletal dynamics, and added bias

neurons serve to compensate for this disturbance. The input layer

contains two torque-active neurons that receive ideal torque, τ

randomly from the 12 torque production targets (Figure 3A). The

other part of the network, e.g., the first intermediate layer (M1

layer), which models the primary motor cortex and consists of

1000 neurons, computes and learns required motor commands in

accordance with the input weight matrix, Winp. The innervation

matrix, Z, which models the spinal cord, computes the resulting

muscle activation vector, a;

a = ⌊ZWinpx⌋ (6)

Where x denotes an input vector, which is a concatenated vector

of desired torque and bias (Equation 7).

x =

(

τ

b

)

(7)

In a non-linear network, the muscle activation, a, is given

by filtering the output of the network ZWinpx with non-negative

constraints ⌊·⌋. We initialized the innervation matrix and input

weight matrix in the same way as the previous studies (Hagio and

Kouzaki, 2018): The input matrix,W inp, is initialized as white noise

matrix and the innervation matrix, Z, is initialized so that columns

of the matrix uniformly distribute on the RNmus hypersphere.

2.2.2 Synergy Model
The synergy model shares the same structure with the non-

synergy model for input and the first intermediate layer. The

difference is an additional layer (synergy layer) inserted just after

the M1 layer, which mimics the spinal interneurons (Figure 3C,

yellow-colored neurons). The cortical input matrix to the synergy

layer, Zsyn, was defined similarly to the non-synergy model but

normalized such that the average force amplitude of M1 neurons is

identical to that of non-synergy model (Hagio and Kouzaki, 2018).

This Zsyn normalization is necessary for a fair comparison of the

non-synergy model and the synergy model. Furthermore, it allows

us to exclude the average scale of torque, Tmod (Equation 8), exerted

by each synergies of interest, Tmodi (Equation 9)

Tmod =
1

Nmod
6

Nmod
i=1 |Tmodi | (8)

Tmodi = M(θ)FisoKALWsyni (9)

from consideration. Muscle synergies, Wsyn, are provided by

either non-negative matrix factorization (NMF) or a random

combination of feasible muscle activation. We refer to muscle

synergies extracted by NMF as "NMF-derived synergies". On

the other hand, muscle synergies comprise randomly selected

feasible muscle activation as “feasible synergies” in this study (see

Experiment 2). Similar to the non-synergy model, the network

output is transformed into muscle activation with non-negative

constraints in a non-linear network.

a = ⌊WsynZsynWinpx⌋ (10)

The NMF-derived synergies were extracted from the optimized

non-synergy model. The non-synergy model was optimized by

training 25,000 trials, and the last 100 trials for muscle activation

data were used to extract muscle synergies (Hirashima and Oya,
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2016; Song et al., 2022). We set the number of NMF-derived

synergies and feasible synergies at four where the averaged variance

accounted for (VAF), which is calculated as VAF = 1 - SSE/SST,

exceeds 0.95 (Rodriguez et al., 2013; Sy et al., 2016) (Figure 3D). SSE

denotes the sum of the squares of residual errors, and SST is the sum

of the square differences between each data point and the overall

mean. In this study, we adopted the more strict heuristic threshold,

which is less frequently used, because a lenient threshold could

overlook important components for task achievement (Barradas

et al., 2020). In our model, lenient threshold such as VAF = 0.90

provides only three muscle synergies that are insufficient to achieve

the two-dimensional motor task (Figure 3D).

2.2.3 Training procedure
The neural network is trained for 25,000 trials, and the input

weight matrix at t-th learning trial, W inp(t), is updated using the

error feedback-with-decay algorithm.

W inp(t + 1) = −α
∂Je

∂W inp(t)
− βW inp(t) (11)

Where α denotes learning rate and β denotes decay rate. Je
denotes the error cost that is calculated by the error vector at t-th

trial, e(t) = τ (t) − T(t), between output torque and input torque,

Je = 1/2e(t)⊤e(t). The input matrix is updated in accordance with

the gradient of the error cost (The first term of Equation 11).

The second term is a weight decay term that minimizes motor

effort (Hirashima and Nozaki, 2012). Learning rate and decay rate

were set to α = 20 and β = 1.0× 10−4, respectively.

This research defines motor error as the norm of the error

vector. The learning speed of the network, v, is determined

by calculating the exponential coefficient of an approximation

function that represents the change in learning error across trials,

|et| (Equation 12) (Takiyama and Okada, 2012).

|et| = γ1exp(−vt)+ γ2 (12)

2.3 Direction bias and power bias

To assess how the mechanical properties of the modules affect

the performance of the network, we proposed two criteria that

quantify the mechanical properties of the modules in the task space.

2.3.1 Direction bias
The previous research (Hagio and Kouzaki, 2018) used a non-

linear network and partially demonstrated that a more effective

set of modules for motor learning is associated with the angular

regularity of forces of a set of modules in the task space.

These findings are true for a simplified musculoskeletal model

and partially true even for our musculoskeletal model. Inspired

from their work and considering the mathematics of error-based

learning of a linear neural network, we first conceived one novel

criteria named “Direction Bias (DB)”. The basic concept of DB is

illustrated in Figure 1 at the bottom. DB quantifies how the set of

module torques in use is irregular in direction in the task space. If

the forces of the modules are sparsely distributed in the task space

(Figure 1, left one at the bottom), DB evaluates the given module

set as the better one, while the biased one (Figure 1, right one at

the bottom) is considered worse. However, we heuristically found

the complexities of the realistic musculoskeletal system, i.e., the

contribution of passive force (Equation 2), affect how the forces

of modules should be distributed in the task space because of

the non-negative constraint of the muscle activation (Equations 6,

10). Qualitatively, this non-negative constraint rectify the muscle

control signals, and it forces the network to compensate for the

passive force. For example, if the desired torque targets, τ , distribute

on a circle’s circumference like Figure 3A, the network has to

generate τ − TPL to realize the desired torque. In the end, the

torques produced by the network will be placed on another circle’s

circumference such that the task circle is shifted toward τ − TPL

(Figure 3A, blue-dotted circle). Therefore, we hypothesized that the

set of synergies whose torque vectors regularly cover this shifted

circle will be efficient for achieving the task. Direction bias (DB)

formulates this idea, and it evaluates how the torques of modules,

Tmod, do not regularly distribute on the torque circle where output

torque of the network eventually need to be placed for producing

the desired torques on the circumrefence. The calculation of DB

is done as follows: First, we calculate the intersection points of

torque vector of modules, Tmod, and the shifted circle, |τ − TPL| =

1[Nm] (Figure 4A left). Next, we calculate the angles of neighboring

intersection points, ωi, on the circle’s circumference (Figure 4A

middle). Finally, we calculate DB as the standard deviation of

the angles of neighboring points on the circle’s circumference

(Figure 4A right) (Equation 13). Note that it provides an identical

indication to the bias in mechanical direction of modules (Hagio

and Kouzaki, 2018) when the passive force is zero:

DB =
1

Nmod

√

√

√

√

Nmod
∑

i=1

(ωi − ω)2 (13)

where ω denotes mean of ω.

2.3.2 Power bias
DB does not take care of the scale of the module forces.

However, from the linear neural network theory, the scale of the

module torque also determines the characteristics of the network

(e.g., eigenvalues of the system matrix) in the same way as the

direction of the forces, which DB assesses. Therefore, we extended

the idea of mechanical regularity of the modules from the angular

perspective to the gain perspective. The concept is illustrated in

Figure 1. In general, if the gain of the modules is not even (Figure 1

right), the gains are possibly worse for the task. To investigate

how the unevenness of the forces of the modules affect motor

performance, we proposed Power Bias (PB) to evaluate how the

gains of the forces of the modules “are not” regular. PB is computed

as the standard deviation of the gains of the modules (Figure 4)

(Equation 14):

PB =
1

Nmod

√

√

√

√

Nmod
∑

i=1

|Tmodi − Tmod|
2 (14)
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A

B

FIGURE 4

Visual description of direction bias and power bias. (A, B) Description of direction bias. The yellow dotted circle represents the circle of the torque

production target with a radius of 1[Nm] (Figure 3A), and the yellow arrows represent the torque direction of modules, Tmod. The blue dotted circle

represents a circle of torque that the network actually generates to compensate for the passive force (red dotted arrow, TPL) and to realize the

desired torque targets. Orange dots represent intersections of the blue dotted circle and the vectors of modules, Tmod.

FIGURE 5

Making of the feasible synergy set. (A) Making muscle activation pattern dataset. The red dot, arrow, and bars are example of making one

activation-torque data. Each corresponds to motor target the non-synergy network receives, the torque produced by the network, and the muscle

activation for producing the motor target, respectively. This procedure is iterated for all the motor targets (upper left), and the non-synergy model

trained to produce the given torque computes necessary motor activation pattern (upper right). (B) Example of a set of four feasible synergies used

for verification of DB. Nmod muscle activation patterns are randomly selected from the normalized muscle activation data is so that the amplitude of

torque of each synergy is 1 [Nm]; Tmodi = 1. (C) Example of four feasible synergies used for verification of PB. The muscle activation patterns are

selected to satisfy DB = 0 and scaled randomly so that mean amplitude of torque is 1 [Nm]; Tmod = 1.
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Where Tmodi denotes the torque of the i-th modules and Tmod

denotes the average torque of the modules.

2.4 Experimental procedure

2.4.1 Experiment 1: synergy model vs.
non-synergy model

To investigate the performance of the modularity in our

musculoskeletal system, we conducted a standard comparative

experiment. The non-synergy model was trained first (i.e., Section

2.2.3) at the Base Posture (BP). Next, we extracted NMF-derived

synergies from this non-synergy model. We prepared one synergy

model, which learns how to control muscle synergies optimized

for BP, and we provided it with extracted synergies. This model is

referred to as “BP mods” in this study. Regarding the measurement

of DB and PB of non-synergy model, we calculated PB and DB of

the synergymodel whoseWsyn isNmus dimensional identity matrix,

I ∈ R
Nmus×Nmus instead.

Furthermore, to discuss why muscle synergies extracted from

specific biomechanical contexts sometimes fail to perform well in

other contexts from the mechanical viewpoint, we prepared two

additional synergy models and two sets of NMF-derived synergies

for the models. These additional sets of synergies are extracted

from two non-synergy models optimized for two postures different

from BP. We provided synergy model with these two module sets

to the motor learning task at the BP. At one of the postures, we

refer to as “Fully Extended (FE, Figure 2 middle)”,θFE, the elbow

is horizontally extended 90 degrees from the BP. At the other

posture, we refer to “Mildly Extended (ME, Figure 2 right)”,θME,

the elbow was extended 45 degrees from the BP. These models

are referred to as “FE mods” and “ME mods”, respectively, in

this study. The three synergy models, which respectively control

muscle synergies extracted from a non-synergy model optimized

for FE, ME, or BP, were trained at the BP and iterated 30 times.

We compared the learning performance across these three synergy

models and the non-synergy model, and we also measured PB

and DB of the utilized synergies of the models and the non-

synergy model for analysis. Note that the synergy model learns

only how to control the provided muscle synergies through the

optimization ofW inp, and the synergies are not updated during the

learning. Therefore, the difference in learning performance across

the synergy models depends on their synergies. Comparison of

the learning performance of across models were conducted with

analysis of variance (ANOVA) and post hoc test. On the other

hand, the performance of the synergy network and the non-synergy

network was analyzed with the Wilcoxon signed rank test.

2.4.2 Experiment 2: correlation of performance
of modularity with PB and DB

To demonstrate to what extent PB and DB explain the

performance of non-linear networks in a realistic musculoskeletal

system, we prepared multiple sets of feasible synergies and

conducted learning simulations of the synergy model.

The feasible synergies can be categorized into two groups: One

is the synergies, which we refer to as “FSforDB”, and it is used for

verification of DB. It consists ofNmod synergies whose amplitude of

exerting torques remain consistent while their directions vary. In

other words, among the different FSforDB, PB are preserved and

only DB vary.

Generation of this type of synergies (FSforDB) is as follows.

First, we generated a dataset of muscle activity patterns necessary

to exert force in any direction. Specifically, torque targets were

placed at intervals of 3◦ along the circumference of a torque circle

with a radius of 1 [Nm] (Figure 5A, upper left). By training a non-

synergy model to produce each target torque, we made the dataset

of 120 muscle activity patterns required to exert force in each

direction. After that, we randomly selected Nmod muscle activation

patterns from the dataset. The example of FSforDB is illustrated

in Figure 5B. If the synergy model sufficiently learn the task of

Figure 3A using the set of selected muscle activation patterns, we

admitted it as the valid set of FSforDB for verification of DB.

In this research, we determined the sufficiency of the learning

performance of the synergy network by using a threshold, which

we refer to as the "feasibility cut-off." In other words, if the synergy

network, utilizing a set of selected muscle activation patterns,

fails to learn the task so that the average torque error remains

below the value for feasibility cutoff, the selected muscle activation

patterns are excluded from the dataset of the feasible synergies. We

established the feasibility cutoff value as 0.1 [Nm] and applied it

to the generation of FSforDB. This sorting is necessary for analysis

because an ineffective synergy set can cause learning of the synergy

network to easily drop into bad local optima, where the learning

was not sufficiently progressed.

The other type of feasible synergies set, which we refer to

as “FSforPB”, is used for verification of PB. It consists of Nmod

synergies whose amplitude of exerting torques vary while their

directions remain consistent. In other words, among the different

FSforPB, DB are preserved and only PB vary, in contrast with

FSforDB. Generation of this type of synergies (FSforPB) is as

follows. We first selected Nmod activation patterns from the dataset

of 120 muscle activation patterns, which we made for generation

of FSforDB, so that DB = 0. Next, we randomly scaled their gains

within the interval of [0.5, 1.5] so that the average torque gain of

the synergies, Tmod = 1, becomes 1 [Nm]. The example of FSforPB

is illustrated in Figure 5C. Finally, similar to generation FSforDB,

if the synergy network can sufficiently learn the task of Figure 3A

using the generated synergies set, we admitted it as the valid set

of FSforPB for verification of PB. As for the feasibility cutoff for

FSforPB, in common with FSforDB, we set the threshold value

as 0.1 [Nm].

To verify our criteria, we trained the synergy model 30 times for

each set of synergies of either sets of FSforPB or sets of FSforDB. In

this reserach, We generated 30 sets of FSforPB and we generated 90

sets of FSforDB. The learning performance of each synergy model

is represented as the median of 30 times training. We analyzed

the correlation of our criteria with the learning performance of the

synergy models. The statistical analysis is performed using multiple

regression analysis with F-test.
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2.4.3 Experiment 3: e�ect of dimensionality of
modules on PB and DB

To investigate whether the explanation capability of PB and

DB are robust to the number of modules, we conducted motor

learning simulations while changing the number of modules, DB

and PB.We iterated each simulation 30 times and analyzed the data

with multivariate analysis. We investigated the correlation when

Nmod = 8, 15, 22. Note that the synergy model that controls the

same number of synergies with the muscles, Nmod = 22, is not

equivalent to the non-synergy model unless the synergy matrix,

Wsyn, is the identity matrix. The number of samples is the same

as in experiment 2 (30 samples for PB and 90 samples for DB).

We calculate the p-value with F-test and R2 for each number

of modules.

In addition, to test whether the dimensionality of the synergy

network affects the accuracy and learning speed of the synergy

model, we compared the performance of the synergy network when

both PB and DB were zero at each number of modules. In other

words, we compared the performance of the synergy network when

both PB andDBwere zero at each number of modules.We analyzed

the data with analysis of variance (ANOVA) and post hoc test.

2.4.4 Experiment 4: independence test of DB and
PB

To investigate whether PB and DB independently affect the

learning performance, we trained the synergy network withmodule

sets that provide various values of PB and DB. We conducted

this investigation for the case of Nmod = 4, 8, 15, and 22.

To generate new feasible synergy sets whose DB and PB vary

across each synergy set, we randomly sampled 60 FSforDB without

replacement and changing PB of them within the interval of

(0.5 1.5). The feasibility cutoff value for this new synergy was

set as 0.15 [Nm]. We conducted the learning simulation of the

synergy model 30 times, and we analyzed the median data with

multiple regression analysis. The data of the error or the learning

speed, here we denote X, is regressed by a linear function of PB

and DB:

X = k1PB+ k2DB+ k3 (15)

Where ki denotes regression coefficients. We used the F-test

to calculate the p-value of the regression. Furthermore, we also

calculated the Variance Inflation Factor (VIF) of PB and DB to test

the multicollinearity.

2.4.5 Experiment 5: e�ect of the scale of the
passive force element on PB and DB

To demonstrate the effect of the scale of the passive force

on the explanation capability, we changed the scale of the

passive force element so that the passive force derived torque,

TPL = 0.3 and 0.7 [Nm] (Equation 5). The number of modules,

Nmod, is determined as four. We provide the synergy model

with the same modules as the set used in section 2.4.2: 90

samples for DB and 30 modules for PB, and examined how the

correlations in learning performance and the criteria changes with

the scale of TPL.

3 Results

3.1 Musculoskeletal model with passive
force well reproduces isometric mechanics
of OpenSim

To demonstrate the reproduction capability of our plant for

the musculoskeletal model, the mean error and mean absolute

deviation (MAD) of each muscle force at the base posture were

calculated. Furthermore, R2 value and p-value of linear hypothesis

test based on F-test (Table 1). All the muscles are well reproduced

by linear regression with high reliability (R2 > 0.99, p <

0.05). Although most of the large approximation errors of the

normalized muscle force concentrate around u = 0, 0.5, 1.0, its

approximation error keeps within 2.5×10−3 (Figure 6B), andmean

error of normalized muscle forces keep within 5% andMADs keeps

within 6%. These results indicate that our musculoskeletal model

reproduces characteristics of the musculoskeletal model, including

a significant property, i.e., the passive force (Figure 6A) in the

isometric force production.

3.2 Performance of modularity depends on
mechanical properties of muscle
synergies—Experiment 1

The overall performance of the non-synergy model and

synergy models with three NMF-derived synergies are shown in

Figure 7, and the mechanical properties of each module and the

performances were summarized in Figure 7D and DB and PB of

those sets of modules and individual muscles are summarized in

Table 2. Across the three synergy models, significant differences

in performance in motor achievement and learning speed are

found (Figure 7B; for motor achievement, p = 1.70 × 10−80,

for learning speed p = 4.39 × 10−68, ANOVA). The synergy

model with NMF-derived synergies at the base posture (BP

mods) significantly degrades motor achievement compared with

the non-synergy model (p = 3.02 × 10−11, Wilcoxon). The

synergy model with NMF-derived synergies of the elbow fully

extended posture (FE mods) showed the worst motor achievement

across the three module sets. Similarly, although the synergy

model with the NMF-derived synergy of elbow mildly extended

posture (ME mods) provides the best across the three modules, it

significantly degraded the motor accuracy from the non-synergy

model (p = 3.39× 10−6, Wilcoxon).

On the other hand, the BP mods significantly promoted the

learning speed compared with the non-synergy model (p = 4.98×

10−11, Wilcoxon). The synergy model with MD modules also

promoted the motor learning (p = 5.07 × 10−10, Wilcoxon).

However, the synergy model with FE modules significantly slowed

down the motor learning compared with individual control (p =

3.02 × 10−11, Wilcoxon). The results indicate that modularity

may degrade motor achievement, and its learning promotion

depends on the synergies used in a complex musculoskeletal model.

Furthermore, the performance of modularity largely depends on

the mechanical properties of the muscle synergies.
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TABLE 1 Approximation accuracy of the musculoskeletal model.

Muscle name Mean error [%] MAD [%] R2 p-value

DeltAnt 0.4083 0.5289 1.0000 4.3059× 10−51

DeltMid 4.0300 5.4351 0.9994 4.0909× 10−32

DeltPst 0.1557 0.2032 1.0000 2.9574× 10−59

supraspinatus 2.1961 2.8877 0.9998 4.3559× 10−37

infraspinatus 0.2593 0.3389 1.0000 4.7510× 10−55

Subscapularis 0.2108 0.2759 1.0000 9.2134× 10−57

TerMin 0.6371 0.8315 1.0000 1.5181× 10−47

TerMaj 0.0158 0.020 1.0000 4.4394× 10−78

PecMajClv 0.0121 0.0158 1.0000 2.1650× 10−80

PecMajStr 0.4289 0.5603 1.0000 7.6528× 10−51

PecMajRib 0.5998 0.7855 1.0000 4.6422× 10−48

LatDorsiTho 0.4225 0.5537 1.0000 5.9591× 10−51

LatDorsiLum 0.8733 1.1382 1.0000 7.8627× 10−45

LatDorsiIli 0.3257 0.4263 1.0000 3.5705× 10−53

Corabrachialis 0.2042 0.2786 1.0000 7.3990× 10−58

TRILong 0.1418 0.0692 1.0000 2.8085× 10−36

TRILat 0.4837 0.6313 1.0000 6.8502× 10−50

TRIMed 0.3710 0.4867 1.0000 3.5051× 10−52

BICLong 0.9971 1.2906 1.0000 1.4896× 10−43

BICShort 2.5013 3.3371 0.9998 7.1196× 10−37

Brachialis 0.3893 0.5053 1.0000 6.4226× 10−43

Brachioradialis 1.0909 1.4146 1.0000 6.4226× 10−43

A B

FIGURE 6

Approximated muscle mechanics and regression accuracy. (A, B) Four examples of approximated muscle mechanics and its absolute error of

normalized fiber force. Solid line represents DeltAnt, long dashed line for TerMin, dotted line for TRIlong, and chain line for LatDorsiLum.
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FIGURE 7

Performance comparison of non-synergy network and synergy network with di�erent module sets in motor learning simulation with non-linear

neural networks. (A) Visualization of torque of module sets. Red arrows represent the vector of the passive torque, TPL, at BP. Black arrows represent

the vectors of the torque which synergies of the models, i.e., BP mods, FE mods, and ME mods, exert, Tmod. Dashed gray circle represents the circle

where desired torque targets, τ , are placed along whose radius is 1 [Nm]. (B) Plot of trial-dependent change of error. The blue solid line represents a

mean trial-dependent loss of the non-synergy network, the orange solid line for the synergy network with base posture modules (BP mods), the

yellow solid line for the synergy network with fully extended modules (FE mods), and the green solid line for the synergy network with mildly

extended modules (ME mods). Shade regions represent the standard deviation of the trial-dependent loss change. (C, D) Comparison of non-synergy

network and the synergy networks with di�erent modules in final error and learning speed, respectively.

TABLE 2 Power bias and direction bias of modules and non-synergy model.

Network type Direction bias Power bias Mean error [Nm] Learning speed

Non-synergy 16.3636 0.9904 0.0465 0.0037

BP mods 6.0308 0.3387 0.0653 0.0055

ME mods 26.6063 0.4386 0.0600 0.0049

FE mods 42.1959 0.4901 0.0894 0.0015

3.3 Performance of modularity correlates
with DB and PB—Experiment2

To qualitatively demonstrate how the performance of

modularity correlates with DB and PB, we conducted extensive

simulations of modularity with four modules at the base

posture while changing their DB or PB. The scatter plot of

the median of the learning performance of modularity and the

criteria, i.e., DB and PB, was summarized in Figure 8. While

DB showed a strong negative correlation with learning speed

(Figure 8C; R2 = 0.845, p = 6.97 × 10−40, N = 90, F test),

it shows an almost no correlation with motor achievement
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FIGURE 8

Scatter plot of performance in learning simulation of synergy network when Nmod = 4. (A, B) Correlation of final error or learning speed and direction

bias. (C, D) Correlation of final error or learning speed and power bias. The dashed line and shade interpolated in each figure represent first-order

regression and 95% confidence intervals of the scatter plot. (E) Amplitude and direction of the synergies of interest. The black dotted arrow

represents the passive torque, TPL. The orange, cyan, yellow, and green arrows represent synergies dotted in A–D, respectively.

A B C D

E F G H

FIGURE 9

Correlation of learning performances and DB or PB with di�erent numbers of modules. (A–D) Correlation of final error or learning speed and criteria

when Nmod = 22. (E–H) Bar plot of R2 error or learning speed with di�erent scale of the passive force (blue; Nmod = 4, orange; Nmod = 8, yellow;

Nmod = 15 and green; Nmod = 22).

(Figure 8A R2 = 0.0635, p = 1.13 × 102, N = 90, F test). In

contrast, PB consistently and strongly correlated with both motor

achievement and learning speed (for motor achievement

R2 = 0.7608, p = 4.32 × 10−3 and for learning speed

R2 = 0.7471, p = 1.05 × 10−7, N = 30, F test). These results

indicate that PB and DB are effective criteria for evaluating the

modules and predicting the performance of modularity with four

modules at the base posture. Specifically, while motor achievement

mainly depends only on PB, learning speed depends on both PB

and DB.

3.4 Impacts of dimensionality on the
performance, DB and PB are
consistent—Experiment 3

We verified the robustness of the explanation capabilities of

the criteria to the number of modules. The results are summarized

in the Figure 9. Figures 9A–D illustrates the correlation between

the performance of the modularity and PB or DB when Nmod =

22. Similar to the case of Nmod = 4, learning speed strongly

correlates with both DB and PB (Figures 9C, D; for DB R2 =
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FIGURE 10

Comparison of performance of synergy network with di�erent

number of DB-PB minimizing modules. (A, B) Bar plot of final error

and learning speed of synergy network using di�erent number of DB

and PB minimizing module sets, respectively (blue; Nmod = 4,

orange; Nmod = 8, yellow; Nmod = 15 and green; Nmod = 22). For

comparison, we added the performance of non-synergy model to

the graph as the purple bar plot.

0.5647, p = 9.98 × 10−19 and for PB R2 = 0.5133, p =

8.46 × 10−6, F test), and we also found strong correlation of PB

and motor achievement (Figure 9A). However, in contrast, DB

correlates with motor achievement (Figure 9A). In other cases with

different modules (Nmod = 8 and 15), we also found similar

tendencies (Figures 9E, H) except for the correlation of DB and

motor achievement Nmod = 4 (Figure 9E).

Furthermore, we tested the performance of modularity with

different numbers of modules with zero PB and DB. The result

is summarized in Figure 10. As for motor achievement, we found

significant difference of motor achievement performance across

groups (p = 4.66 × 10−18, ANOVA), and varies across the case

of Nmod = 4, 8 and 15 (Figure 10A; comparison of Nmod = 4 and

Nmod = 8, p = 3.39 × 10−6, and comparison of Nmod = 8 and

Nmod = 15, p = 4.94 × 10−4, Wilcoxon). Motor achievement

performance ofNmod = 15 andNmod = 22 did not show significant

difference (p = 5.61 × 10−1, Wilcoxon). On the other hand, as for

learning speed, there is no significant difference across the groups

(p = 4.45 × 10−1, ANOVA). These results suggest that maximum

learning speed does not depend on the number of modules, while

motor achievement does.

3.5 Independent impact of DB and PB on
performance of modularity—Experiment 4

In all cases, PB and DB are independent and there is no

multicollinearity (VIF = 1.0008 forNmod = 4, 1.0005 forNmod = 8,

1.0677 for Nmod = 15 and 1.0436 for Nmod = 22). Figure 11

illustrates example of the spatial distribution of the performance

of modularity in the PB-DB space and comparison of explanation

power among the different number of modules. The planes in

each figure represent the approximated 3D planes of predicted

performances of modularity against PB and DB that assume PB and

DB independently affect the performance of modularity. While the

independent description of motor achievement by PB and DB was

not so successful (Figure 11B; R2 = 0.15699, p = 7.7× 10−3. F test,

N = 60), it successfully explained the major variance of learning

speed (Figure 11A; R2 = 0.7220, p = 1.43 × 10−16, F test, N =

60). On the other hand, the explanation power of criteria decreased

when the synergy model controls more modules (Figures 11C, F).

The independent model of PB and DB exhibit a limited explanation

power for a limited part of the variance of both learning speed

(R2 = 0.254, p = 2.37 × 10−4 for Nmod = 8, R2 = 0.217, p =

9.44 × 10−4 for Nmod = 15, and R2 = 0.280, p = 8.60 × 10−5 for

Nmod = 22) and learning error (R2 = 0.1803, p = 3.46 × 10−3

for Nmod = 8, R2 = 0.2169, p = 9.41 × 10−4 for Nmod = 15, and

R2 = 0.294, p = 4.93× 10−5 for Nmod = 22).

3.6 Scale of the passive force a�ects the
e�ectiveness of the criteria—Experiment 5

We verified the robustness of the criteria to the scale of the

passive force. Figure 12 illustrates how the explanation capabilities

of the criteria change with the scale of the passive force. DB

successfully explained the major variance of the learning speed data

(Figure 12A; R2 = 0.6931 for TPL = 0.3[Nm], R2 = 0.6768 for

TPL = 0.7[Nm]). However, it failed to explain the data on motor

achievement except for TPL = 0.7 [Nm] (Figure 12B; R2 = 0.0392

for TPL = 0.3[Nm], R2 = 0.5557 for TPL = 0.7[Nm]). On the

other hand, PB relatively succeeded in explaining the variance of

the data. For motor achievement, PB explained a large part of the

data when TPL = 0.3[Nm] (Figure 12C; R2 = 0.7252), while

it only explained some parts of the data when TPL = 0.7[Nm]

(R2 = 0.2411). For learning speed (Figure 12D), similar to motor

achievement, the explanation capability of the criteria is strong

when TPL = 0.3[Nm] (R2 = 0.9330), while it gets weak when

TPL = 0.7[Nm] (R2 = 0.4254).

4 Discussion

4.1 Passive force element of the muscle
influences the selection of the module

One of the key contributions of our research is the

consideration of the passive force element in muscle mechanics

within the criteria and our musculoskeletal model. This element

is a significant component of typical Hill-type musculoskeletal

mechanics, although it has been underappreciated and neglected in

some previous literature (Rokni et al., 2007; Hirashima and Nozaki,

2012; Hirashima and Oya, 2016; Hagio and Kouzaki, 2018; Song

et al., 2022). In a static condition, specifically isometric torque

production, the upper limb musculoskeletal mechanics (Saul et al.,

2015) is simplified into an affine-like system for muscle activation.

Despite this simplification, its reproducibility is high (Table 1) due

to the negligible second-order or higher-order behavior in this

context. As shown in Figure 6, some muscles produce non-zero

force even when no control signals are provided (a = 0), and

these forces act as constant passive joint torque based on their joint

moment arms depending on the posture of the musculoskeletal

model.
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FIGURE 11

Estimated performance of synergy network with module sets of various PB and DB when Nmod = 4, 8, 15, and 22. (A, B) Three-dimensional scatter of

learning speed of synergy network when Nmod = 4 and 8, respectively. The colored surface represents a two-dimensional plane estimating the

performances of the networks.(D, E) Three-dimensional scatter of learning error of synergy network when Nmod = 4 and 8, respectively. The colored

surface represents a two-dimensional plane estimating the performances of the networks. (C, F) Comparison of explanatory power of the model

among the synergy model with di�erent number of modules.

A B C D

FIGURE 12

Correlation of learning performances and DB or PB with di�erent scale of the passive force when Nmod = 4. (A–D) Bar plot of R2 value of error or

learning speed with di�erent number of modules (blue; TPL = 0.3[Nm], orange; TPL = 0.5[Nm], and yellow; TPL = 0.7[Nm]). Note that TPL = 0.5[Nm] is

the data identical to Figure 8.

The passive characteristics of muscles play a crucial role in

controlling musculoskeletal mechanics by influencing impedance

modification in musculoskeletal systems (Winters et al., 1988)

or storing elastic energy (Roberts, 2016). Although it has

recently gained renewed attention for its significant role in

modelingmusculoskeletal mechanics (Herbert andGandevia, 2019;

Herzog, 2019) and is gradually being considered in the context

of computational control of realistic musculoskeletal models

(Al Borno et al., 2020; Fischer et al., 2021), how it interacts with

musculoskeletal control has not been well elucidated.

However, except for a weak correlation case found in lower-

dimensional modularity (i.e., Nmod = 4; Figures 8A, 9A), certain

correlations between DB and learning error or the speed of the

network directly demonstrate the necessity of efficiently occupying

task space considering elastic components by utilized modules for

higher control performance. This tendency is preserved across

different scales of passive-derived torque for learning speed

(Figure 12B), while it fails to explain the data variance for learning

accuracy (Figure 12A). This failure may stem from the limitation

of the network’s dimensionality because the explanatory capability

of DB for learning error is extremely low only when Nmod =

4 , compared with higher-dimensional modularity (Figure 9A).

It is considered that this limitation does not cast doubt on the

effectiveness of DB.

The other criterion we proposed, i.e., PB, which quantifies

the evenness in torque amplitude of the utilized modules,

generally succeeds in explaining the data tendencies of learning

performances. In contrast to DB, its validity is relatively preserved

across the number of network dimensionalities (Figures 9C, D).

However, it tends to decline as the amplitude of the passive force
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A B

C D

FIGURE 13

Description of learning dynamics unique to modules. (A) Sample of the module sets. The green-colored set of modules has high PB and DB, while

the blue-colored set of modules has relatively lower PB and DB. (B, C) Illustration of path-dependent learning performances in 3D-shapes (B) and

2D-shapes (C). The green path represents the learning path of the network that is provided with the biased modules [(A), green arrows], and the blue

path represents the learning path of the network that is provided with not-biased modules [(A), blue arrows]. (D) The error and the learning speed

relationship in the non-linear neural network that is not strongly a�ected by the passive force of the plant.

increases (Figures 12C, D). This is possible because the definition

of PB disregards the passive force element of the muscles, as the

results show. Overall, the passive element of muscle significantly

affects the selection of the direction of the module torque for the

improvement of learning performance, whereas it does not strongly

affect the selection of the amplitude of the module torque, at least

in the region where the action of passive force is weak. It seems

that the direction regularity and power evenness of the torque of

the modules serve as a good guideline for modularity in the given

task setting.

4.2 Qualitative description of DB and PB

The previous study (Hagio and Kouzaki, 2018) suggested

that the more sparsely the modules exert the forces in the task

space, the more accurate and faster motor learning the network

obtains. This is the basis of the concept of DB, and it derives

from learning characteristics of a neural network. For instance,

in a shallow linear neural network, the forces of the modules,

FisoKALWsyn, largely affect the eigenvalues of the system matrix

of the network, M(θ)FisoKALWsynZsynWinp, which dominantly

determines the learning speed and largely affects the accuracy

of the network. If the forces of the modules are biased in a

specific direction, the motor targets in the module-concentrated

direction should be achieved more accurately and faster than

the other quadrants because the eigenvalue of the system matrix

corresponding to the module-concentrated gets high while the

other gets low under the Zsyn normalization.

This description is illustrated in Figure 13. In this case, the

module set is biased toward the direction of a normal basis

(Figure 13A, left). This module set provides a large eigenvalue in

the direction while it provides a small eigenvalue in the vertical

direction. These biased eigenvalues provide the learning path with

fast learning in the force-concentrated direction and slow learning

in the vertical direction (Figures 13B, C, green arrows), requiring

many steps for overall convergence. On the other hand, the module

set unbiased in a specific direction (Figure 13A, right) provides

even eigenvalues in the whole direction in the task space. These

even eigenvalues provide the learning path with fast convergence

for all directions, requiring fewer steps for overall convergence

(Figures 13B, C, blue arrows). Importantly, the more learning

proceeds, the less update the network has, resulting in a learning

equilibrium that derives from forgetting and learning (Figures 13B,

C, shaded circle). Weight update of the biased modules soon gets

equilibrium with the forgetting compared with unbiased modules

because its effective update is smaller. Therefore, biased modules

provide less accurate motor achievement and slower learning

speed. Such a learning speed-motor achievement relationship is

preserved even in a non-linear neural network where the passive

force contribution is zero or weak enough (Figure 13D), also seen

Frontiers inComputationalNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2024.1355855
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Fukunishi et al. 10.3389/fncom.2024.1355855

in the previous study (Hagio and Kouzaki, 2018). In the same

context, PB also affects the eigenvalue distribution of the system

matrix of the network. Even if the torque of the modules regularly

distribute on the task space in direction, unless their gains are

not even, the eigenvalues are biased and affect the performance of

the modularity. This system characteristic description for learning

performance is very similar to and experimentally supported by

a very recent work (Barradas et al., 2024). Therefore, DB and PB

can be said to have the same mathematical origin as parameters

affecting eigenvalues of the system matrix.

However, we should note that the above learning speed-

motor achievement description is true only to linear networks

or non-linear neural networks where the passive force is zero,

negligible, or compensated. If the plant is non-linear, and

the passive force is significant, its plausibility can be limited

due to the contributions of biomechanical complexities such

as changes in moment arm, passive force, and active force

coefficient or the non-linearity of the muscles. These components

function computationally as an affine transformation (Bebis

et al., 1999) and typical rectifying units, such as ReLU layers

(Dittmer et al., 2019). These characteristics would interact to

affect the learning path of the network and make it difficult to

predict what kind of system property is necessary for a better

control performance.

To address this question , this study extend the idea of the

eigenvalues of the system matrix to the non-linear neural network

by dividing the property of the system matrix into two factors;

regularity in direction of torque of modules and their power

evenness. Through the experiment, as discussed above, although

in some cases, they failed to explain the major variance of the

data possibly due to the data contamination caused by feasibility

cutoff in generating feasible synergies (=0.1[Nm]), the proposed

criteria actually clarified the necessary property for improving the

performance. Moreover, in terms of the learning behavior of an

actual network, the interaction between DB and PB is not collinear;

it seems they act almost independently (Figure 11; VIF = 1.0008).

Therefore, while originally inspired by linear theory and heuristics,

both PB and DB can be considered as independent explanatory

variables that demonstrate a certain efficacy in explaining the

behavior of non-linear networks and systems. Then, can we

further apply the criteria to other situation such as leaning a

task that is more dynamic and have multiple optimality such

as walking or more dynamic reaching task? We speculate that

even in the situation of more dynamic movements, it may be

possible to partly expand the discussion of PB and DB when the

movement optimization is done by an gradient-based learning

algorithm. For example, with a proper expansion, our metrics

may be applicable in a gradient-based learning of feedforward

arm reaching where an ideal trajectory is already given, and

they may inform us what kind of synergies are better regarding

converging the error-term. However, even in this simple case, it is

still unclear whether expandedmetrics are easily measurable or not,

and we should investigate the point in future study. In addition,

while metrics are relevant only with an error-term, it will not

directly explain the other optimality such as energy consumption

or cost of transport, which is often used in locomotion studies.

Therefore, direct use and expansion of our metrics may have a

potential limitation or technological difficulties in application to

such complex optimization process. Moreover, for a physiological

evidence, it is necessary to see whether the criteria actually

correlates with the learning curve data of primate isometric force

reaching task in future.

4.3 Muscle synergies contribute to motor
learning?

In Experiment 1, we compared the synergy network models

and non-synergy models for addressing why muscle synergies

extracted from a specific biomechanical contexts sometimes fail

to perform well in other contexts. Overall, the synergy model,

which utilizes synergies from the non-synergy model optimized

for the Base Posture, i.e., BP mods, expedited the learning at

the expense of motor accuracy. On the other hand, FE and ME

mods showed high DB and PB (Table 2, Figure 7), and their

performance significantly degraded despite the postural changes

in the experiment are relatively small. It suggests that minor

difference in biomechanical contexts can easily make modularity

using context-specific synergies less effective. Consistent with the

results of the previous study (Kutsuzawa and Hayashibe, 2022),

the modularity performance largely depends on the biomechanical

context from which the synergies are extracted.

However, it is important to acknowledge the limitations in

our experimental protocols that may have influenced the results.

We used NMF to extract each set of synergies from the non-

synergy model optimized for each BP, FE, or ME. It is worth noting

that NMF does not guarantee solution uniqueness or convexity

of the objective function, i.e., square error of data reproduction,

and determining the number of synergies is somewhat arbitrary

(Barradas et al., 2020). Therefore, the extraction of synergies using

NMF can miss significant components for control, and variability

of synergy organization in each extraction can provide synergies

with different PB and DB. These experimental limitations may have

influenced the performance of each synergy model.

Furthermore, synergies extracted from the non-synergy model

are features of the control and implicitly encode prior knowledge

of a particular biomechanical context in which they are extracted.

This means that the performance of each synergy model can partly

depend on the similarity of musculoskeletal mechanics in a position

of interest. This qualitative premise on simulated muscle synergies,

i.e., assuming only context-specific synergies, can be distinct from

the essential purpose or function of actual muscle synergies. In

any case, the limitations of experimental procedures and synergy

dependency in control performance obscure the contribution of

muscle synergies in control. Then, what is the plausible role of

muscle synergies in motor learning?

From the perspective of optimality, our results highlight

the necessity of the CNS to store specific synergies for every

different context, i.e., posture, as previous studies suggested

(de Rugy et al., 2013; Sharif Razavian et al., 2015). If the

CNS were provided with enough modules (e.g., Nmod >

4) that minimize both DB and PB corresponding to the

posture-dependent limb mechanics, they achieved much more

accurate and faster control than individually muscle-optimized

control (see Figures 7C, D, 10A, B). However, strategy of
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storing every context-dependent control and synergy poses the

problem of having to store an unlimited number of motor

programs (Loeb, 1983). One possible solution to this memory

storage and optimality problem is approximating a wide range

of movements through generalizable synergies and subsequent

optimization through context specification of the synergies

as necessary.

Similar to the good-enough control strategy (Loeb, 2021),

generalizable muscle synergies can be utilized across various

motor contexts with reasonably good performance. While there

is room for debate on such synergies, it can be potentially

relevant to the shared muscle synergies observed in various

static (Ting and Macpherson, 2005; Torres-Oviedo et al., 2006;

Roh et al., 2012; Leonardis et al., 2020; Pham et al., 2023)

and dynamic motor tasks or contexts (d’Avella and Bizzi, 2005;

Chvatal and Ting, 2013; Barroso et al., 2014). Interestingly, in

the lower limb static task of the cat (Torres-Oviedo et al.,

2006), the experimental study reported that the rotation of the

force direction exerted by shared muscle synergies is similar to

limb axis rotation angles (McKay and Ting, 2008). Sohn et al.

demonstrated that spatial organization of these synergies can be

formed in pursuit of generalization rather than optimization for

each biomechanical context (Sohn and Ting, 2016). We can relate

the formation of such generalizable synergies to the minimization

of DB. Suppose spatial organization of generalizable synergies is

formed to minimize the average DB across similar biomechanical

contexts. In that case, the CNS can efficiently generalize them

for learning arbitrary similar biomechanical contexts quickly and

with good enough generalization performance on average. Such

DB-minimizing generalizable synergies may be represented at the

medulla or spinal cord (Giszter et al., 1993; Roh et al., 2011),

and robustly preserved through the subsequent development (Yang

et al., 2019).

On the other hand, the specification of synergies for the

optimization may be done at the higher level of motor planning,

such as cortical regions where more complicated information of

dynamics is encoded as synergies (Overduin et al., 2012, 2015;

Amundsen Huffmaster et al., 2017). In these areas, minimization of

both DB and PB is likely associated with movement optimization.

However, modulation of PB may be a separate process from DB.

Our experiment demonstrated that PB and DB affected learning

independently to some extent. It may suggest that modulation of

DB and PB of muscle synergies do not necessarily share the exact

neural mechanisms. One recent study (Yaron et al., 2020) reported

that, unlike the force direction of modules, the force amplitude

were adjusted in supralinear form. Moreover, several suggest that

sensory feedback, essential for motor planning and online control,

affects the amplitude and timing of muscle synergies control while

never affecting synergies’ spatial organization (Inglis et al., 1994;

Stapley et al., 2002; Cheung et al., 2005). PB modulation may

occur in areas related to online control planning and feedback

control. Meanwhile, DB modulation may take place in areas

related to offline motor planning schemes, such as the selection

or combination of synergies expressed in cortical areas and

the coordination of the extent to which non-synergetic control

elements are intervened through a cortico-motoneuronal pathway

(Isa et al., 2007) or reticulospinal and vestibulospinal pathways

(Cruce, 1974).

To summarize, our research has shown that the performance

of fixed muscle synergy control through learning can vary

significantly depending on the synergy utilized. This highlights

the need to consider the role of synergy in motor control

beyond a simple comparative approach to optimality.

Instead, we should focus on how to exploit or overcome

the dependence of synergy on control performance, such as

the pursuit of generalizability or the modulation of synergy

with learning. These insights have important implications

for our understanding of muscle synergies and their role in

motor control.
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