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Colorectal polyp is an important early manifestation of colorectal cancer, which

is significant for the prevention of colorectal cancer. Despite timely detection

and manual intervention of colorectal polyps can reduce their chances of

becoming cancerous, most existing methods ignore the uncertainties and

location problems of polyps, causing a degradation in detection performance.

To address these problems, in this paper, we propose a novel colorectal image

analysis method for polyp diagnosis via PAM-Net. Specifically, a parallel attention

module is designed to enhance the analysis of colorectal polyp images for

improving the certainties of polyps. In addition, our method introduces the GWD

loss to enhance the accuracy of polyp diagnosis from the perspective of polyp

location. Extensive experimental results demonstrate the e�ectiveness of the

proposed method compared with the SOTA baselines. This study enhances the

performance of polyp detection accuracy and contributes to polyp detection in

clinical medicine.

KEYWORDS

medical data mining, medical intelligence, colorectal cancer, polyp diagnosis, attention

mechanism, medical image detection

1 Introduction

Colorectal cancer (CRC), as a serious malignancy, has been a major public health

challenge worldwide. Its high morbidity and mortality rates have made it an important

focus of healthcare systems in many countries. It is one of the most common malignant

tumors in clinical practice, and the number of people suffering from it is on the rise every

year (Soons et al., 2022). At present, with the change in people’s lifestyles and irregular

diet structure, the incidence of colorectal cancer is getting closer to the younger age group,

which brings great torment to the physical and mental health of many people. According

to the data from the World Health Organization (WHO) and the International Agency for

Research on Cancer (IARC), nearly 2 million people are diagnosed with colorectal cancer

every year, and about 800,000 people have been taken away from their lives, and the number

is rising every year (Sninsky et al., 2022). Therefore, how to avoid colorectal cancer and

timely diagnosis is crucial.

Fortunately, CRC is often potentially preventable and early diagnosed. Prompt

diagnosis and effective treatment in the early stages of colorectal cancer can reduce

its incidence. The evolution of colorectal cancer is a multi-step process. In the early

stages, most colorectal cancers usually appear as polyps, especially adenomatous polyps.

Therefore, early detection and removal of colorectal polyps can effectively prevent CRC.

According to data, the removal of colorectal polyps at an early stage can reduce the

mortality associated with CRC by up to 70% (Barua et al., 2021).
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In clinical medicine, colonoscopy is considered to be the most

direct and effective means of detecting polyps and is regarded

as the gold standard for reducing the incidence of colorectal

cancer. The effectiveness of colonoscopy in preventing colorectal

cancer depends mainly on the detection rate of polyps. Evidence

suggests that for every 1.0% increase in the detection rate of

colorectal polyps, the associated incidence of CRC can be reduced

by 3.0%–6.0% (Sinonquel et al., 2021). However, the quality of

colonoscopy is susceptible to several factors, including the skill

of the endoscopist, the light conditions of the endoscope, and

the quality of bowel cleansing that may lead to a decrease in the

detection rate of polyps. According to incomplete statistics, the

polyp leakage rate of colonoscopy is as high as 27%, which makes

polyp detection difficult to achieve the expected results (Hassan

et al., 2021). Therefore, some scholars seek some other means to

increase the polyp detection rate of colonoscopy, thus reducing the

incidence of CRC.

In recent years, the field of artificial intelligence (AI) has been

booming, and computer-aided diagnosis (CAD) systems based on

deep learning are advancing and bringing many potential benefits

to the medical field. The use of AI methods to assist colorectal

cancer polyp examination can not only overcome the limitations of

traditional colonoscopy, improve the accuracy of polyp detection,

and reduce the rate of leakage, but also reduce the clinician’s

workload, improve work efficiency, and promote the development

of the medical field toward intelligence.

Despite the current remarkable results of deep learning in

colonoscopy, there are still some issues to be explored. For example,

the amount of data is insufficient: deep learning algorithms

generally require a large amount of labeled data for training to

improve the accuracy of the model (Ng et al., 2020). However,

there are data privacy, ethical issues, and legal issues associated

with the acquisition of endoscopic data, making it a challenge

to acquire large-scale endoscopic labeling data. Lack of sufficient

labeled data may limit the performance of model algorithms.

Interpretability of the model: the decision-making process of deep

learning models is difficult to interpret. This is an important issue

for the medical field. The interpretability of deep learning models

also limits their wide application in clinical practice. Detection

performance: the detection performance exhibited by the model

in different environments still needs to be improved (Tajbakhsh

et al., 2015). Therefore, how to design a detection method that can

accurately extract polyp features and exhibit high accuracy and low

complexity under limited endoscopic labeling data resources is now

a hot research topic.

This paper discusses how to reduce the leakage rate of colorectal

cancer polyp detection from the perspective of deep learning. This

can not only improve the polyp detection rate in endoscopy and

colorectal cancer diagnosis and treatment, but also improve the

efficiency of endoscopists. The main contributions of this paper

include:

1. A new attention mechanism module was designed to focus

on the semantic information of polyps in the polyp feature

extraction stage;

2. The GWD loss is introduced to improve the regression accuracy

of the target frame, thus reducing the polyp detection leakage

rate.

2 Related works

Currently, object detection algorithms are mainly categorized

into traditional target detection algorithms and deep learning-

based detection algorithms. The traditional detectionmodel mainly

contains three components: region selection, feature extraction,

and classifier classification. It mainly relies on manually designed

feature extractors and machine learning algorithms. However, the

traditional algorithms face the difficulty of manual feature design,

sensitivity to image changes, and difficulty in coping with complex

tasks.

In the past decade or so, how to achieve automated polyp

detection has been an active topic of research in the medical field,

and a lot of research has been done to develop related technologies

and algorithms. In recent years, the application of deep learning

techniques in medical imaging has become increasingly popular.

Among them, research on polyp detection using deep learning has

also received much attention. It can be categorized into two-stage

and one-stage detection based on the detection steps. Two-stage

detection is known for its high accuracy, but the inference speed

is slow and the real-time performance is poor. Single-stage adopts

the idea of regression and uses CNN to directly perform location

localization for the classification of polyps, which is an end-to-end

algorithm with fast detection speed and slightly lower accuracy.

2.1 Two-stage polyp detection model

Taş and Yılmaz (2021) improved the model based on Faster

R-CNN by first using ResNet-101 instead of VGG16 and then

using the super-resolution based convolutional neural network

(SRCNN)method to improve the resolution of colonoscopy images

and finally improve the accuracy of the model. Cheng et al.

(2021) improved Mask R-CNN based on Mask R-CNN and firstly

proposed a learnable directed derivative network (LOD-Net) to

calculate eight directed derivatives for each pixel of polyps, and

then used these derivative values to form a candidate frame for

polyps, which ultimately improved the accuracy of polyp detection

regression. He et al. (2023) proposed a two-stage polyp detection

algorithm, they designed a two-stage detection algorithm called

UY-Net by combining U-Net and YOLOv4. Experiments proved

that the accuracy of UY-Net is higher than that of mainstream

detection algorithms such as YOLOv4 and YOLOv3-SPP. Yang

et al. (2020) proposed an improved Mask R-CNN for instance

segmentation of endoscopic polyp lesion areas. The method is

divided into two parts, first filtering the original image to remove

the noise in the image, and then feeding the processed image

into the improvedMask R-CNN. Experimental results demonstrate

the effectiveness of the method. Jia et al. (2020) proposed a two-

stage feature pyramid network based on deep learning for the

detection of endoscopic polyp lesion regions, first extracting polyp

features in the first stage with a Faster R-CNN network and

then using feature sharing to feed the feature learned in the first

stage into the polyp detection task in the second stage, making

the polyp detection more accurate. Dermane and Torch (2023)

propose to use ab initio neural network training to allow the

network to learn features from given polyp data. Then, migration
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learning was performed using the pre-trained VGG19. Finally, the

ab initio trained network was combined with VGG19, ResNet50,

and Inceptionv3 models. The results show that this approach

improves the overall accuracy (Dermane and Torch, 2023). Ribeiro

et al. (2016) used a convolutional neural network (CNN) to detect

colorectal polyps, which directly uses the input polyp image pixels

to extract features and classify the images in the same architecture.

The method was shown to be effective in handling distortions in

the presence of different lighting conditions, presence of partial

occlusions, etc. (Ribeiro et al., 2016).

Currently, the two-stage polyp detection algorithm model

based on deep learning has achieved the best performance in

terms of accuracy. However, its high temporal complexity makes it

difficult to meet the real-time nature of polyp detection in the field

of clinical medicine, and therefore, it is difficult to realize large-scale

applications.

2.2 Single-stage polyp detection model

Laddha et al. (2019) implemented the detection of polyps

using two models of different sizes, YOLOv3 and YOLOv3-

tiny, based on varying polyp sizes, ultimately obtaining 91% and

82% accuracy. Cao et al. (2021) designed a feature extraction

and fusion module based on yolov4 and combined it with the

yolov4 network to solve the problem of inconspicuous contrast

between polyps and background during detection. Finally, 91.6%

was achieved in terms of accuracy (Cao et al., 2021). Yu et al. (2022)

designed the ITH module based on Scaled-YOLOv4, which shares

weights with the YOLO detection head for fast feature extraction.

In addition, a learning method based on similarity metrics is

designed to improve the performance of model evaluation. The

introduction of the ITH module enables the model to improve the

recognition speed by 30% compared to the original model (Yu et al.,

2022). Dash et al. (2023) proposed an expert system designed to

address the problems of time-consuming polyp detection and high

misdiagnosis rates. The system uses an unsupervised deep belief

network (DBN) to extract effective polyp features. The network

was experimentally demonstrated to help improve the accuracy of

polyp detection (Dash et al., 2023). Shin et al. (2018) proposed a

region-based convolutional neural network for the presence of false

polyps during detection. Based on this, two further post-learning

methods, offline learning, and automatic false positive learning,

are proposed. Experimental data show that this method exhibits

better performance in detecting colonoscopy video streams (Shin

et al., 2018). Pacal et al. (2022) proposed a method to integrate

Cross Stage Partial Network (CSPNet) in YOLOv3 and YOLOv4 to

achieve real-time polyp detection with guaranteed high detection

rates. The method also uses data augmentation and migration

learning strategies to improve polyp detection performance (Pacal

et al., 2022). Nogueira-Rodríguez et al. (2022) designed a real-

time polyp detection model that uses a pre-trained YOLOv3

architecture and follows up with an object-tracking algorithm.

The method can be effectively integrated into CAD systems

(Nogueira-Rodríguez et al., 2022). Karaman et al. (2023) proposed

to integrate the Artificial Bee Colony algorithm (ABC) into the

Scaled-YOLOv4model and evaluated it on the SUN and PICCOLO

polyp datasets. The method was experimentally found to be useful

in improving the model’s mAP and F1-score metrics for polyp

detection (Karaman et al., 2023). Zhang et al. (2019) designed a

newmodel known as SSD-GPNet. Themodel takes into account the

polyp features discarded in the pooling layer and connects them as

additional featuremaps to help themodel for detection. At the same

time, the bottom feature maps in the feature pyramid are connected

to the top feature maps to establish explicit relationships between

the layers. Experiments show that the SSD-GPNet model exhibits

satisfactory performance in detecting small polyps (Zhang et al.,

2019). Lalinia and Sahafi (2023) proposed an artificial intelligence-

based polyp detection system using the YOLOv8 network model

and constructed a diverse dataset for training. Ahmad et al. propose

an automated polyp detection method. The method enhances

the performance of the YOLOv7 object detection algorithm by

the integration of a Squeeze and Excitation attention block. This

integration greatly improves polyp detection with favorable results

(Ahmad et al., 2023). Khryashev et al. (2023) proposed to solve

the problem of a low number of images in the dataset by data

augmentation and used the YOLOv8 model for colorectal polyp

detection.

Although single-stage target detection achieves an advantage

in computation time, it is prone to false positives and false

negatives in the face of the complexity of the intestinal environment

in colonoscopy. In addition, the performance of single-stage

detection algorithms is still unsatisfactory when facing polyps with

low contrast to the background and smaller polyps. Therefore,

designing a high-accuracy polyp detection algorithmwith real-time

performance has been a hot research topic in the medical field.

3 Methods

3.1 The model for polyp detection

In the field of object detection, YOLOv5 is one of the most

widely recognized one-stage object detection algorithms, which

has a high detection speed along with detection accuracy. In this

paper, we propose to use YOLOv5 as a benchmark model for

polyp detection. Its network structure is shown in Figure 1, which

is mainly composed of the following four parts: Input, Backbone,

Neck, and Head.

Input: The input side preprocesses the input data. Data

enhancement and adaptive anchor framing are mainly

accomplished in this stage. YOLOv5 integrates a large

number of conventional data enhancement methods, such as

graphic transformation, hue adjustment, etc. In addition, data

enhancement methods such as Mosaic and Mixup are also

included, which greatly enriches the amount of data. The Mosaic

data enhancement effect is shown in Figure 2. Since the optimal

anchor frame hyperparameters differ from one dataset to another,

YOLOv5 is based on the K-means algorithm to adaptively obtain

the anchor frame hyperparameters that best fit the dataset.

Backbone: The CSPDarknet53 is used as the backbone network

of yolov5, which consists of 53 convolutional layers for extracting

features from images. The network gradually reduces the resolution

and captures different levels of feature information for detecting

targets of different sizes. In addition, it uses residual links to avoid
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FIGURE 1

Illustration of the architecture of the original YOLOv5 model for polyp detection.

FIGURE 2

Mosaic data enhancement diagram. The red squares in the figure are the bounding boxes of the polyps.

the problem of gradient vanishing while training the network. In

the backbone network, the C3 structure and the SPPF structure

are used. The C3 module consists of three convolution units and

a Bottleneck module. Firstly, the input feature maps are convolved

by two separate 1 × 1 convolutions. Then, the output of one

convolution unit is input into the Bottleneck module and the

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2024.1356447
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhu et al. 10.3389/fncom.2024.1356447

FIGURE 3

Illustration of the architecture of the channel attention module.

output features of the other convolution unit are spliced in the

channel dimension. Finally, the features are output through a

convolution unit. The motivation of the C3 is to increase the depth

and receptive field of the network and improve the ability of the

network to extract polyp features. The SPPF structure stacks three

identical max-pooling layers of convolution kernel size 5 × 5 in

series, which further increases the receptive field by successive

max-pooling.

Neck: The neck part of the yolov5 network is mainly

responsible for fusing the feature information of different layers

in the backbone network to enhance the network model’s ability

to detect objects of different sizes. It uses FPN (Feature Pyramid

Network) and PAN (Path Aggregation Network) structures to

construct top-down and bottom-up information pathways, passing

strong semantic features from the upper layer to the lower layer,

and then passing detailed features from the lower layer to the upper

layer so that the feature layers of different resolutions have both

semantic and detailed information.

Head: The head part is responsible for outputting the results

of detecting the object, including the position information and

category information of the object.

In the process of polyp detection, despite the remarkable

detection accuracy and speed of yolov5, the weak contrast between

the target to be detected and the background in the process of

polyp detection makes the model still have some challenges in

polyp feature extraction. Therefore, to better reduce the leakage

rate of polyps to improve the detection accuracy and the accuracy

of bounding box regression, this paper proposes to improve the

detection accuracy of polyps by improving the network structure

of YOLOv5 and the accuracy of bounding box localization by

modifying the loss function.

3.2 Attention mechanism for detection
accuracy

The attention mechanism is to focus on key areas and suppress

feature information in non-target areas by assigning different

weight values to different parts of the feature map, to achieve the

purpose of extracting better features. Woo et al. (2018) combined

spatial attention and channel attention to design a convolutional

block attention module known as CBAM. The attention first

extracts global features channel by channel generates channel

attention features, uses the features as inputs to the spatial attention

structure, and finally generates a hybrid domain feature map.

For channel attention, its purpose is to enhance the model’s

perception of features on different channels. It mainly adjusts the

feature map by considering the importance of each channel. The

detailed details of the channel attention mechanism are shown in

Figure 3.

Firstly, a global average pooling operation is done for each

channel to obtain the mean value over the channel dimension, thus

obtaining a global context vector that represents the information

of the entire feature map channel. Next, the global context vector

is transformed into a vector of channel attention weights, where

each element corresponds to a channel, under the action of full

connectivity. Finally, the channel attention weights are multiplied

with the original featuremap to enhance the responses of important

channels and suppress the responses of non-critical channels.

For spatial attention, its purpose is to enhance the model’s

perception of feature responses at different locations. It mainly

adjusts the feature map by considering the importance of each pixel

point. The detailed details of the spatial attention mechanism are

shown in Figure 4.

First, for each channel, a global maximum pooling operation is

performed to obtain the maximum value in the channel dimension,

which results in a global context vector representing the spatial

information of the entire feature map. Next, the global context

vector is transformed into a spatial attention weight map using

full connectivity, where each pixel point corresponds to a location.

Finally, the spatial attention weights aremultiplied with the original

featuremap to enhance the feature responses at important locations

and suppress the feature responses at non-critical locations.

In neural networks, some layers are more concerned with

channel features, while introducing spatial features can sensitize the

network and even produce a lot of non-pixel information. Some

layers are more concerned with spatial features and introducing

channel features can cause overfitting to the network. However,

the serial information exchange approach of the CBAM module,

which prioritizes channels first, ignores this situation. Therefore,

to address this situation, this paper proposes a new attention

mechanism known as P-CBAM and introduce it to the bottom of

the backbone network. The motivation is to overcome the problem

of network sensitization due to spatial attention that prevents the

model from effectively extracting polyp features, as well as the

problem of network overfitting due to channel attention. In the
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FIGURE 4

Illustration of the architecture of the spatial attention module.

P-CBAM attention mechanism, spatial and channel attention are

given the same priority for different feature maps, and then they

are weighted and fused as a way of exchanging information on the

channel and spatial aspects of the feature maps. The structure of

P-CBAM attention is shown in Figure 5.

For the input feature F ∈ RW×H×C, the channel attention and

spatial attention are computed as shown in Equations 1, 2:

Mc(F) = σ (Conv(avgpool(F))+ Conv(maxpool(F))) (1)

MS(F) = σ (f 7×7(Concat([avgpool(F),maxpool(F)]))) (2)

where Mc(F) ∈ R1×1×C, represents the output of the channel

attention module, MS(F) ∈ RW×H×1 represents the output

of the spatial attention module, and σ denotes the sigmoid

activation function. Based on the above formula, the final output

characteristics of the P-CBAMmodule are shown in Equation 3:

Fout =
α1 · Fc + α2 · Fs + α3 · F

α1 + α2 + α3
(3)

where Fc and Fs are the channel attention feature map and the

spatial attention featuremap, respectively, and F is the input feature

map. α1 is the weight of channel attention, α2 is the weight of spatial

attention, and α3 is the weight of residual links. P-CBAM obtains

the attention information through the channel and on the two-

dimensional space from a peer-to-peer perspective and can extract

polyp features more effectively.

3.3 Loss function

The loss function of YOLOv5 consists of three main

components: classification Loss Lcls, confidence loss Lobj, and

bounding box regression loss Lbox (Zhu et al., 2023). The purpose

of the classification loss is to measure the accuracy of the model

in classifying polyps. The confidence loss serves to measure the

accuracy of the model’s prediction of whether the bounding

box contains polyps or not. It measures the model’s ability

to distinguish polyps from the background. The bounding box

regression loss is used to measure the accuracy of the model’s

location of the polyp bounding box. The loss function is specifically

described below:

Loss = Lcls + Lbox + Lobj (4)

YOLOv5 uses CIoU as the regression loss function for the

bounding box. It contains three parts: the IoU loss of the area of

the overlapping region between the predicted frame and the real

frame, the loss of the normalized distance between the centroids,

and the loss of the aspect ratio of the width and the height. The

CIoU bounding-box loss function ensures that the aspect ratio of

the predicted frame to the real frame is closer during the training

process, which accelerates the convergence of the bounding-box

regression. However, IoU is more sensitive to the positional offset

of the bounding box for small targets and is not suitable for small

targets. In receiving rectal images, the size of polyps is generally

small, and the offset of the prediction frame may cause non-

overlap in the face of small-sized polyps. Therefore, this paper

proposes to use the GWD (Gaussian Wasserstein Distance) loss as

the regression loss of the bounding box.

The GWD loss is modeled as a two-dimensional Gaussian

distribution for the prediction frame and the true frame, which

are transformed into the prediction distribution A ∼ N(µa,
∑

a)

and the truth distribution B ∼ N(µb,
∑

b), respectively, and

the IoU between the prediction frame and the true frame is

transformed into the similarity between the two distributions. Then

the Wasserstein distance is used to compute the similarity between

the two. In contrast to IoU, this method is not affected by polyp size.

For smaller-sized polyps, their pixels are mainly concentrated

in the center of the bounding box, and the background pixels are

distributed around the bounding box. The GWD loss is based on

the bounding box to construct its inner tangent ellipse, and the

specific details are shown in Equation 5:

(x− cx)
2

(w/2)2
+

(y− cy)
2

(h/2)2
= 1 (5)

where cx, cy represent the center points of the bounding box

and (w, h) represent the width and height of the bounding box. The

2D Gaussian distribution function is:

f (x | µ,
∑

) =
exp(− 1

2 (x− µ)T
∑

(x− µ))

2π
∣

∣

∑

∣

∣

1
2

(6)

where, when (x − µ)T
∑

(x − µ) = 1 is satisfied, x denotes

the location information of the bounding box, µ denotes the mean

and
∑

denotes the covariance matrix. After completing the 2D

Gaussian modeling of the predicted and real bounding box use the

Wasserstein distance to calculate the similarity between the two, the

details of which are shown in Equation 7:

W2
2 (A,B) = ‖µa − µb‖

2
2 +

∥

∥

∥

∑1/2
a −

∑1/2
b

∥

∥

∥

2

F
(7)

4 Experimental result and analysis

4.1 Dataset

To obtain the data, we collected 1,200 images of colon

cancer polyps at a local hospital and completed the labeling
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FIGURE 5

Illustration of the architecture of the P-CBAM attention module.

FIGURE 6

The polyp detection dataset. (A) Polyp images samples. (B) Ground truth with bounding box.

TABLE 1 Impact of individual components in the development of model.

Method CBAM P-CBAM GWD Precision Recall F1-Score

YOLOv5 0.871 0.877 0.874

YOLOv5+CBAM X 0.878 0.886 0.882

YOLOv5+P-CBAM X 0.882 0.890 0.886

YOLOv5+GWD X 0.879 0.895 0.887

YOLOv5+P-CBAM+GWD X X 0.885 0.913 0.899

of the polyps using LabelImg. The labeled data format was

converted to YOLO text format, and the categories, centroid

coordinates, and width and height were generated and normalized.

The dataset was divided into training, validation, and test

sets in the ratio of 8:1:1. Figure 6 shows some example

images of polyps, where Figure 6A is the polyp image data

and Figure 6B is the ground truth box data of the labeled

polyp.

4.2 Evaluation metrics

In this study, Precision, Recall, and F1 − score were used as

evaluation metrics for polyp object detection models. Precision

measures the accuracy of the model in positive category prediction.

It refers to how many of the samples that the model determines

to be in the positive category are truly positive samples, which is

described in detail as:
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Precision =
TP

FP + TP
(8)

where TP denotes a true positive sample, i.e., the model

correctly determines the target of a positive category as a positive

category. FP denotes a false positive sample, i.e., the model

incorrectly determines the target of a negative category as a positive

category. FN denotes a false negative sample, i.e., the model

incorrectly determines the target of a positive category as a negative

category.

Recall measures the model’s ability to detect positive category

targets. It is how many of all positive category targets present in the

dataset are successfully detected. A higher recall indicates that the

model can detect more positive samples and reduce the number of

polyps missed detection. It is described in detail as:

Recall =
TP

FN + TP
(9)

TABLE 2 Performance of polyp detection between di�erent algorithms.

Method Precision Recall F1-Score

R-CNN 0.907 0.889 0.897

Faster R-CNN 0.914 0.896 0.905

YOLOv4 0.881 0.879 0.880

YOLOv7 0.783 0.764 0.773

YOLOv8 0.904 0.878 0.891

RT-DETR-R50 0.868 0.872 0.870

Ours 0.885 0.913 0.899

The bold values indicate that the optimal results obtained by each index.

In the detection process, Recall and Precision usually have a

trade-off relationship, where an increase in one side may lead to

a decrease in the other side. Therefore, a trade-off between Recall

and Precision is needed in the detection process. F1 − score is

a reconciled average of Precision and Recall, which is used to

comprehensively evaluate the performance of the model. It helps

to find the balance between Precision and Recall. Its detailed

description is:

F1− score =
2× (Precision× Recall)

Precision+ Recall
(10)

4.3 Ablation experiments and analysis

To further validate the detection performance of the methods

proposed in this study and to understand the effect of different

methods on the model, we conducted ablation experiments, the

details of which are shown in Table 1.

From Table 1, it can be seen that compared to the CBAM

attentionmechanism, our proposed P-CBAM attentionmechanism

can show better results. Compared to the initial model, the model

with P-CBAM improves the precision value by 1.1% and the

recall value by 1.3%. This proves that this attentional parallel

processing approach addresses the shortcomings associated with

the serial information exchange approach of initial attentional

channel prioritization, and can effectively focus on deep polyp

features. The introduction of GWD loss improves the model’s

precision value by 0.8% and recall value by 1.8%. This proves that

the GWD improves the model’s ability to regress on the target

bounding box, allowing the model to exhibit higher accuracy.

Introducing both the attention mechanism and GWD loss into the

model, the precision was improved by 1.4% to 0.885, and the recall

was improved by 3.6% to 0.913, which greatly improved the polyp

FIGURE 7

A subset of the detection results of polyps showing low contrasts to the background.
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FIGURE 8

A subset of the detection results of small object polyps.

FIGURE 9

A subset of the detection results of multiple object polyps.

detection rate. It proves the effectiveness of the method proposed

in this paper in reducing the polyp missed detection rate.

4.4 Contrast experiments

To verify the effectiveness of themethod proposed in this paper,

we compare it with some mainstream single-stage and two-stage

target detection algorithmmodels, and the experimental results are

shown in Table 2.

From Table 2, our model exhibits the highest value in

recall compared to other models, indicating that ours has the

lowest miss-detection rate. Compared to the two-stage model

Faster R-CNN, recall improves by 1.7%, and compared to

the single-stage YOLO, recall improves by 3.4%. Combining

detection accuracy and detection speed, our model shows better

performance.

4.5 Visualization analysis of polyp
detection

In order to demonstrate more intuitively the polyp detection

effect of the improved model in different environments, we selected
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some representative polyp images in the dataset for visualization

and comparison, the specific details of which are shown in

Figures 7–9.

During colonoscopy, the color and texture of polyps are very

similar to the surrounding circumstances in the intestine, which

makes their detection more difficult. Figure 7 shows the detection

of polyps with weak contrast with the background. As can be seen

from the figure, the model proposed in this paper can detect polyps

well even when facing polyps with weak contrast. This is because

the attention mechanism can extract deeper semantic information

about polyps, which makes the model pay more attention to polyp

features.

In colorectal polyp detection, small polyps have been difficult to

detect due to their tiny polyp characteristics. Figure 8 demonstrates

what happens for the detection of small polyps. As can be seen from

the figure, small polyps are accurately localized and identified. It

can be proved that the use of GWD loss to calculate the similarity

between the prediction bounding box and the ground truth box will

not be affected by the size of the polyp and has strong robustness.

In addition, the improved model also shows good performance

when faced with the presence of a larger number of polyps.

Figure 9 demonstrates the detection of the model when dealing

with multiple polyps. It can be seen that the model proposed in this

paper can cope well with polyp detection in different environments.

5 Conclusions

Colorectal cancer is one of themost commonmalignant tumors

in clinical practice, and the number of people suffering from it

is on the rise every year. Effective diagnosis of colorectal cancer

in the early stage can improve the recovery rate of patients.

Colorectal cancer usually manifests as polyps in the early stage,

therefore, the detection of polyps has become a necessary tool

for the diagnosis of colorectal cancer. In the face of high leakage

rates, this paper proposes an improved yolov5-based method that

presents an attention mechanism to focus on polyp features and

suppress non-critical information. In addition, a GWD loss is

introduced to measure the similarity between the prediction box

and grounding truth box. Experimental results demonstrate that

the method exhibits precise localization and accurate recognition

in the face of weak contrast of polyps to be detected, small polyps,

and multiple polyps.
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