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This research work introduces a novel, nonintrusive method for the automatic 
identification of Smith–Magenis syndrome, traditionally studied through genetic 
markers. The method utilizes cepstral peak prominence and various machine 
learning techniques, relying on a single metric computed by the research group. 
The performance of these techniques is evaluated across two case studies, each 
employing a unique data preprocessing approach. A proprietary data “windowing” 
technique is also developed to derive a more representative dataset. To address 
class imbalance in the dataset, the synthetic minority oversampling technique 
(SMOTE) is applied for data augmentation. The application of these preprocessing 
techniques has yielded promising results from a limited initial dataset. The study 
concludes that the k-nearest neighbors and linear discriminant analysis perform 
best, and that cepstral peak prominence is a promising measure for identifying 
Smith–Magenis syndrome.
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1 Introduction

Over time, artificial intelligence (AI) has experienced substantial growth in a variety of 
scientific areas and disciplines (Górriz et al., 2020, 2023). In the medical field, AI has been used 
for disease diagnosis and treatment (Rother et al., 2015; Shen et al., 2017; Jia et al., 2018; Li 
et al., 2019; Zhang et al., 2019; Spiga et al., 2020), as well as for new drug research, since, in 
scientific research, AI accelerates data analysis and complex phenomena monitoring (Cifci 
and Hussain, 2018; Firouzi et al., 2018). The versatility and transformative potential of AI offers 
new possibilities in disease diagnosis. The origins of AI date back to the 1950s, with the 
development of the first neural network (machine learning), although its roots can be traced 
even further back in time, considering previous approaches such as Bayesian statistics or 
Markov chains, which share similar concepts. In the case of Parkinson’s disease, the authors of 
Ali et al. (2019) worked on phonation in combination with ML. The results were applicable to 
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other diseases that, due to their low incidence in the population, are 
understudied and, consequently, underdiagnosed.

Patients face considerable challenges with dealing with 
underdiagnosed pathologies. The lack of early detection and limited 
information deprives them of timely, pathology-specific care, which 
is especially important for young patients. The use of AI techniques 
for early disease detection is an ongoing challenge. In this study, the 
focus is on determining the discriminatory as well as pathological 
characteristics of young patients’ voices. Acoustic phonation studies 
provide relevant speaker information that can be used to detect 
diseases such as Alzheimer’s dementia, Parkinson’s, and 
amyotrophic lateral sclerosis, among others, based on the 
biomechanical uniqueness of each individual. Such uniqueness is 
evident in the EWA-DB dataset, which focuses on Slovak speakers 
with Alzheimer’s and Parkinson’s diseases (Rusko et al., 2023), and 
a dataset that focuses on Spanish native speakers with Parkinson’s 
disease (Orozco-Arroyave et al., 2014), as well as recent acoustic 
studies on Alzheimer’s (Cai et al., 2023; Zolnoori et al., 2023) and 
Parkinson’s (Warule et al., 2023) diseases. In the 2021 study by Lee 
(2021), two types of neural network models were developed for 
dysphonia detection: a Feedforward Neural Network (FNN) and a 
Convolutional Neural Network (CNN). These models were 
designed to utilize Mel Frequency Cepstral Coefficients (MFCCs) 
for the detection process.

The determined laryngeal biomechanics, elastin deficiency in 
Williams syndrome (WS) or excess laryngeal tension in the case of 
Smith–Magenis syndrome (SMS) (Watts et  al., 2008; Moore and 
Thibeault, 2012; Hidalgo-De la Guía et al., 2021b) discriminate these 
syndromes from others caused by neurological pathologies based on 
genetics (Antonell et al., 2006; Albertini et al., 2010; Hidalgo et al., 
2018; Jeffery et al., 2018; Hidalgo-De la Guía et al., 2021a). Specifically, 
the voice profile of an SMS patient is determined by excess laryngeal 
and acute tension f0. These patients may also have a certain degree of 
dysphonia, which is observed in both children and adults. Likewise, 
there are studies that suggest that certain syndromes present 
characteristic alterations in the voice that give rise to specific vocal 
phenotypes (Edelman et  al., 2007; Brendal et  al., 2017; Linders 
et al., 2023).

SMS is a genetic disease that affects neurological development 
from the embryonic stage, specifically due to the alteration of the 
RAI1 gene, which is considered responsible for most of the clinical 
abnormalities observed in SMS individuals (Slager et  al., 2003; 
Vlangos et al., 2003). Given its prevalence, i.e., 1:15,000–25,000 
births (Greenberg et al., 1996; Elsea and Girirajan, 2008; Girirajan 
et  al., 2009), SMS is considered a rare disease and, therefore, 
is underdetected.

It is more common to approach the problem of rare disease 
detection from areas other than genetics, where the fundamental 
focus has been on characterization. ML techniques have recently 

been implemented in rare disease research, including 
SMS. Bozhilova et al. (2023) identified different profiles of autism 
characteristics in genetic syndromes associated with some 
intellectual disability. SMS was among the 13 syndromes studied. 
The Social Communication Questionnaire was used to train a 
support vector machine (SVM) that achieved an overall precision 
of 55%. The main limitations of this work were that only social 
communication skill metrics were used and imbalanced sample 
sizes across groups. One of the main results seems to indicate that 
autistic individuals with genetic syndromes have different 
characteristics than those without any genetic syndrome. In 
Frassineti et  al. (2021) different ML models were proposed to 
allow the automatic identification of four different diseases, 
including SMS. They made recordings of subjects and extracted 
34 acoustic characteristics with Praat and 24 with BioVoice. The 
cepstral peak prominence (CPP) was not among the extracted 
characteristics. After the results achieved by BioVoice for SMS 
(true positive rate of 55.6% and false-negative rate of 44.4%), the 
authors suggested that the vowel /a/ is not sufficient for the 
definition of phenotypes. In an extension of their previous work, 
the same authors (Calà et al., 2023) incorporated the vowels /a/, 
/I/, and /u/, and introduced a new control group of normative 
individuals. Utilizing BioVoice, they extracted 77 acoustic 
features, excluding CPP, and organized the subjects into three 
distinct groups: pediatric subjects (age < 12), adult females, and 
adult males. Each group was treated independently, with a unique 
Machine Learning model generated for each. The results, obtained 
through a 10-fold cross validation, are presented as mean accuracy 
along with the standard deviation. The pediatric group achieved 
an accuracy of 87 ± 9%, adult women achieved 77 ± 19%, and men 
achieved 84 ± 17%. However, the outcomes appear inconclusive 
due to the high variability in measures such as precision, recall, 
and f-score.

This work compares different Machine Learning techniques for 
the detection of SMS in young people using audio samples, from 
which only the CPP is computed and extracted. In addition, a novel 
windowing method is proposed to improve the performance of the 
models. In addition, the SMOTE technique is used, aiming outcomes 
in precision rates above 85%. This approach proposes a non-invasive, 
low-cost, and rapid detection method with only one acoustic 
parameter, which contrasts with methods based on genetic techniques.

Unfortunately, it is difficult to compare medical research works, 
which used genetic techniques, with non-invasive SMS detection. 
Likewise, mathematical and computational approaches to this 
syndrome use acoustical features such as formants, shimmer, and 
jitter, among others. However, this study case aims to open the 
exploration of new ways to identify SMS individuals. The fact to use 
only one feature (CPP) allows faster models with lower computational 
performance. Therefore, the ultimate goal is to detect the syndrome 
early using this single feature.

This article is organized as follows. In the following section, the 
methods and materials are explained, the dataset structure and the 
“window” method are highlighted, and the ML methods used are 
briefly explained from a theoretical perspective. In Section 3, the 
results are included, and the model training and validation, as well as 
the approach and results of the case studies, are detailed. Next, in 
Section 4, the obtained results are discussed, and finally, the 
conclusions and future lines of work are proposed.

Abbreviations: AI, artificial intelligence; CPP, cepstral peak prominence; FISH, 

fluorescent in situ hybridization; FFT, fast Fourier transform; GMM, Gaussian 

mixture model; IFFT, inverse fast Fourier transform; KNN, k-nearest neighbors; 

LDA, linear discriminant analysis; LOO, leave one out; MFCC, mel frequency 

cepstral coefficients; ML, machine learning; RF, random forest; SMOTE, synthetic 

minority oversampling technique; SMS, Smith–Magenis syndrome; SVM, support 

vector machine; WS, Williams syndrome.
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2 Materials and methods

2.1 Cepstral peak prominence

This research work is based on the use of the CPP as a discriminant 
measure for the identification of SMS (nonnormotypic) individuals 
compared to a control group of normotypic individuals. The CPP is an 
acoustic parameter that allows determining the degree of periodicity 
of a voice, showing the prominence of a cepstral peak that varies 
according to the periodicity of phonation. The more pronounced the 
peak is, the more harmonic a voice (Hidalgo-De la Guía et al., 2021b).

In the past decade, it has been found that the CPP presents a 
strong correlation with the degree of voice dysphonia (Peterson et al., 
2013; Brinca et al., 2014). In fact, higher correlations were found 
between the CPP, and dysphonic voices compared to those of typical 
distortion parameters (Moers et  al., 2012). Currently, the CPP is 
considered one of the best acoustic parameters for estimating the 
degree of vocal pathology. In addition, it has been found that the CPP 
in SMS individuals is low, which could be  related to a possible 
relationship between the syndrome and laryngeal biomechanics 
(Hidalgo-De la Guía et al., 2021b).

In SMS, a dysphonic voice is one of the characteristics with the 
highest rate of appearance (Linders et  al., 2023), and to achieve 
dysphonic voice detection in this study, the CPP is used. The CPP is 
calculated as follows.

 1. The signal is segmented into overlapping fragments (1,024 
samples 87.5% overlap). Each fragment is multiplied by a Hamming 
window function, and the fast Fourier transform (FFT) is calculated. 
Based on this calculated signal, the absolute value is found, and its 
logarithm is calculated. Finally, the inverse fast Fourier transform 
(IFFT) is performed on the previous result, and the real part is 
obtained. Thus, a set of frames is created in the cepstral domain.

 
c real IFFT abs FFT x w= ×( )( )( )( )( )log .

where c is the cepstrum vector, x the input signal vector, w is a 
vector with a Hamming window function and the operation × 
represents the sample-to-sample product of both vectors.

 2. A smoothing filter (smoothing in the cepstral direction) is applied 
to each of the frames obtained in the cepstral domain. This filter is applied 
to eliminate spurious signal values while preserving the true cepstral 
peaks, thus avoiding cepstral peak detection errors.
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where cf. is the value of the smoothed cepstrum, ai are the 
coefficients of the filter, and l = 7 is the length of the filter 
in samples.

3. The cepstrum is then limited between the quefrency values 
corresponding to the minimum (22 samples) and maximum (400 
samples) fundamental periods expected for the range of vocal 
frequencies of the study population.

4. The maximum value of the previous signal (cepstral peak) 
is calculated, and the CPP is obtained as the difference between 
this maximum and the average of the rest of the signal.
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5. A vector is formed with the CPP values thus obtained (CPP[n]), 
which is smoothed by a filter with a 56 ms window (smoothing in the 
temporal direction). This smoothing operation reduces the noise of 
the signal obtained while preserving large variations in the CPP value, 
which can be present in dysphonic voices.
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with a filter length m = 7 for a displacement of 128 samples and 
16,000 Hz of sampling frequency, and where ai are the coefficients of 
the filter (following a hamming window function), and CPPf the 
smoothed CPP.

2.2 Dataset

Most rare disease databases, such as those for SMS, are private, 
and accessing these databases is difficult. In the specific case of 
databases in Spanish, the Orphanet website (Orphanet, 2023) offers 
genetic biobank searches. Such searches were carried out, and three 
results were obtained: Basque Biobank, CIBERER Biobank, and the 
National Biobank for Rare Diseases (BioNer). However, two of the 
three results do not have information about SMS, and the one that 
does contain genetic information.

The difficulty of obtaining this type of data is well known. Given 
that the number of subjects suffering from these syndromes is small 
and heterogeneous, the datasets are strongly unbalanced. 
Consequently, this situation requires synthetic data augmentation 
methods to be applied. These techniques have been widely used in 
the field of image processing since the appearance of convolutional 
neural networks (CNNs) in 2012 (Shorten and Khoshgoftaar, 2019). 
Likewise, to process data such as those mentioned above, 
oversampling techniques such as the synthetic minority oversampling 
technique (SMOTE) and its variants are used. As described by Alabi 
et al. (2020), these techniques can be used to increase of amount of 
data in early tongue cancer detection. In Joloudari et al. (2023), the 
effectiveness of different solutions to data imbalance in Deep Neural 
Networks and CNNs is verified. The best result is obtained by 
combining SMOTE with a CNN plus a normalization process 
between both stages, achieving an accuracy of 99.08% across 24 
imbalanced datasets.

In this study, the dataset contains voice quality information from 
normotypic and nonnormotypic individuals for comparison. To create 
this dataset, we worked with a total of 22 individuals between the ages 
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of 5 and 33 who belong to the Smith–Magenis Spain Association 
(ASME), comprising 20% of the Spanish population diagnosed with 
this syndrome. The diagnosis of all the individuals with SMS was 
obtained by means of the fluorescent in situ hybridization (FISH) 
technique. Samples were collected from subjects through recordings 
in which they had to hold the vowel /a/ for a few seconds (minimum 
500 ms of phonation). The recording quality was guaranteed by ruling 
out comorbidity of associated vocal pathology, such as vocal fold 
nodules or any other additional vocal problem. Likewise, the recording 
context was addressed as follows: the rooms were completely silent 
(some soundproofed), only of the researcher and the diagnosed 
person were in the room, and a cardioid lapel microphone was used. 
From all the audio, the CPP information, an acoustic voice quality 
measure and one of the best dysphonia metrics (vocal timbre 
alteration), as described by Heman-Ackah et al. (2003), was extracted.

In this study, a subset of these data was used, consisting of 12 
individuals SMS, all of whom were between the ages of 5 and 12 years. 
These individuals were used because we  wanted to verify the 
possibility of developing a system that allows early disease 
identification, since a late diagnosis leads to a worse quality of life. The 
group of 12 individuals with SMS is made up of two subgroups: a 
group of young children aged 5 to 7 years and another group of older 
children aged 8 to 12 years. Both subgroups had 3 boys and 3 girls.

To complete the dataset, 12 recordings of participants with typical 
development were added. Sample collection from normotypic 
individuals was the same as that used for SMS individuals, and the 
same age distribution as that of the SMS individuals was followed.

The dataset in the study contains 2,685 CPP values extracted from 
audio from the 24 participants (12 normotypic and 12 nonnormotypic 
participants). The number of CPP values per participant varied in 
relation to the number of voice samples obtained and their duration. 
Each entry in the dataset has the following fields defined: subject 
identifier, sex, age, CPP value, as well as whether the participant 
suffers from SMS and whether they belong to the “younger” or 
“older” group.

A descriptive analysis of the CPP stored in the database was 
prepared as presented in Figure 1, where the X-axis represents the 
CPP values, and the Y-axis represents the data divided by sex. The 
orange boxplots represent the SMS group, and the blue boxplots 

represent the normative group. It is observed that the SMS group has 
much lower CPP values than those of the normative group. Likewise, 
it can be observed that the range of values for normative boys and girls 
is very similar. However, the range of values for SMS boys is slightly 
more dispersed than that of SMS girls. Finally, in Figure  1, it is 
observed that the boxplot of SMS girls is slightly larger, and the 
whiskers are somewhat longer than those of normotypic girls.

Given the importance of age and sex and to improve the 
explainability of the results, the aforementioned information was 
segmented by “young children” (5–7 years) and “older children” 
(8–12 years). The results are reflected in Figure 2. From the generated 
histograms, it is observed that in the group of girls between 8 and 
12 years old and that of boys between 5 and 7, there is a greater 
differentiation in the CPP values between normotypic and SMS 
individuals. However, in the other two groups (girls between 5 and 
7 years old and boys between 8 and 12 years old), there is a greater 
overlap between the data of both groups. Specifically, the overlap is 
greater in girls between 5 and 7 years old than in the group of boys 
between 8 and 12 years old.

It is important to point out some of the potential research gaps in 
this research work. A larger number of individuals with SMS could 
be enriching and it could avoid lead to biases by gender, age, or other 
characteristics. The second issue is the lack of exploration of different 
alternatives to SMOTE. There are different variants of this technique 
and other oversampling methods that could be  implemented and 
could lead to better solutions. Finally, other ML methods could also 
be  searched. All four methods used in this research work have a 
multitude of variants that may improve the performance of the 
baseline method. Regarding the problem of the number of individuals, 
as previously mentioned, it has been decided to use a subset of the data 
as a first approach due to the number of patients who suffer from 
this syndrome.

2.3 Preprocessing and data augmentation

When working with machine learning models, the data must have 
adequate structure that guarantees correct training. It should be noted 
that group the information by speaker does not require that all 
individuals have the same number of samples (the number of voice 
recordings). It is also unlikely that the recordings will have the same 
duration. However, to directly apply one or more of the extracted 
features, the problem of comparing patterns of different sizes must 
be  solved. Therefore, a proprietary “window” algorithm was 
developed, and to explain its operation, Figure 3 is used as a reference.

Although there are several subgroups that belong to the same 
person, they should not be treated independently within the dataset. 
Consequently, they should be  assigned exclusively to either the 
validation set or the training set, but never simultaneously. Though 
CPP is not an efficient acoustic measure for speaker identification, 
compared to others such as Mel Frequency Cepstral Coefficients 
(MFCC) (Ayvaz et  al., 2022), it is preferred to avoid mixing 
subgroups of the same person in the validation and training sets to 
pre-vent possible data leakage. Table 1 illustrates the result of the 
windowing process by means of a dataframe, where each row 
represents a sample in the dataset. With this process, a usable data 
structure was achieved to train the different ML models, as detailed 
in the following section.

FIGURE 1

Representation of CPP values by sex, comparing normative vs. 
nonnormative groups.
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In addition to the problem indicated above, there is a second 
problem, i.e., the imbalance between the classes to be predicted (246 
entries from SMS individuals and 100 entries from normotypic 
individuals). This fact directly affects the performance of models that 
tend to overfit. To solve this problem, various solutions have been 
explored, e.g., assigning a higher weight to the minority class during 
the training or eliminating majority class samples. Finally, it was 
decided to use the SMOTE technique (Chawla et  al., 2002), an 
oversampling technique based on the creation of synthetic examples 
of the minority class. With SMOTE, new samples are introduced along 
the segments that join the k nearest neighbors of the minority class. 
The number of k neighbors selected depends on the number of 
samples generated samples required. As the number of samples 
increases, the number of neighbors employed decreases. The great 
advantage of this technique is that it allows the generation of synthetic 
samples instead of resorting to oversampling, where samples of the 
minority class are reintroduced into the dataset, which tends to lead 
to overfitting.

2.4 ML techniques

In this work, both supervised and unsupervised methods were 
considered to compare the different techniques and create combined 
models. Among unsupervised methods, the Gaussian mixture model 
(GMM) (Rasmussen, 1999) and K-means clustering (Sinaga and Yang, 
2020) were used. In addition, the following supervised methods were 

used: SVM, random forest (RF), linear discriminant analysis (LDA) 
and k-nearest neighbors (KNN).

Unsupervised methods were not included in this work as they do 
not offer results that contribute any new research knowledge. These 
techniques generated clusters based on the sex and age of the 
individuals, ignoring the CPP. Therefore, the experiment was repeated 
after eliminating these two variables. However, the clusters did not 
provide any new information.

Because supervised techniques are well known, only a brief 
description of the methods is given. The SVM (Jakkula, 2006) builds 
hyperplanes that allow an optimal separation of the data, and the 
power of this method resides in the kernel trick, allowing data transfer 
to spaces of greater dimensionality in an optimal manner. Depending 
on the kernel used, the shape of the decision boundary varies; in 
Figure 4, the influence of the different types of kernels is observed.

The RF (Pachange et al., 2015) is an assembly method, where 
multiple decision trees are combined to generate predictions. This 
method is based on building decision trees, where data are divided 
using the problem variables, applying some criterion that evaluates 
and maximizes the gain of information. LDA searches for a linear 
combination of the characteristics that generates the greatest variance 
between classes and minimizes it within each class (Izenman, 2008). 
KNN allows for the prediction of a class of data based on its k closest 
neighbors (Uddin et al., 2022). The way in which the influence of each 
neighbor is determined in the final prediction can vary according to 
the technique used. For example, if the weight of each neighbor in the 
final decision is “uniform,” all neighbors have an equal influence on 

FIGURE 2

Normotypic vs. nonnormotypic CPP decomposition by sex and group.
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the vote; on the other hand, if each neighbor is “weighted,” the closest 
neighbors will have a greater influence on the final decision.

2.5 Wilcoxon rank sum test

The Wilcoxon rank-sum test, also called the Mann–Whitney U 
test, is a powerful tool for comparing two sets of data without relying 

on specific assumptions about their distribution (unlike some other 
tests). It works by ranking the observations in each set instead of using 
their raw values. This makes it especially useful when the data might 
be skewed or non-normally distributed.

The goal of the Wilcoxon rank-sum test is to assess whether the 
medians of two populations differ significantly. This is particularly 
helpful when the precise shape of the data distribution is unknown.

To calculate the test statistic, the formula is shown as follows:

FIGURE 3

Windowing example. (A) All the CPP values stored in the database are grouped for each speaker. In the illustrated example, the first speaker has 14 CPP 
values, the second has 21 and the third has 24. (B) The speaker with the lowest number of samples (14 in this case) is identified (nmin). (C) All prime 
numbers between 3 and nmin  (14) are stored in a list (list prime). (D) For each value stored in list prime, the number of samples that would be lost when 
dividing the sampling into groups of that size is calculated. This calculation is equivalent to determining the modulus of the group size between that 
value. Suppose that in the example described above that a value of three is used. Since the first speaker has 14 samples, it is possible to generate four 
new groups of size three and lose two samples; for the second speaker, no samples would be lost, and for the third speaker, three samples would 
be lost. Therefore, if a size of three is used to generate the new groups, a total of five samples would be lost. For this reason, an nprime value is sought 
that minimizes the number of lost samples. (E) The samples grouped by speaker are divided into groups of size nprime. Each subgroup generated from 
the same individual has a number added to the end of the identifier to distinguish them. In the case of the above example, the number of samples of 
speaker SMS3 is 24, and nprime is equal to 7. Therefore, three new groups of size 7 are obtained (SMS3.1, SMS3.2, and SMS3.3), and the remaining three 
samples are lost.

TABLE 1 Dataframe generated after windowing when nprime = 7.

Name CPP1 CPP2 CPP3 CPP4 CPP5 CPP6 CPP7 Target Sex Group

10APG.1 0.0488 0.0502 0.5050 0.0501 0.0494 0.0481 0.0476 N Female Older

10APG.2 0.0490 0.0508 0.0467 0.0483 0.0457 0.0458 0.0466 N Female Older

... ... ... ... ... ... ... ... ... ... ...

SMS3.3 0.0477 0.0475 0.480 0.0511 0.055 0.058 0.058 SMS Male Young
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Where:

 • U: The test statistic
 • n₁: Size of the first sample
 • n₂: Size of the second sample
 • ΣR₁: Sum of the ranks in the first sample
 • m₂: Median of the second sample

3 Results

3.1 Training and validation

The consistency of this study lies in its data, as well as the 
techniques and methods used. Therefore, it was decided to apply the 
methodical procedure described in Figure  5 to the data. This 
procedure is summarized in four fundamental phases: windowing, 
Leave One Out, SMOTE, ML methods.

1. Windowing: Each sample is composed of seven CPP values, sex, 
and group. Therefore, nprime = 7.

2. Leave One Out (LOO): It is used to implement a training and 
validation model that ensured that different subgroups of the same 
person do not end up in different datasets. To do this, all subgroups of 
the same person are extracted to be used as a validation set, while the 
rest of the samples are used in the training phase. This process is 
repeated for each of the 24 people in the study.

3. SMOTE: It is used to generate new synthetic samples of the 
minority class (normotypic). The objective is to avoid creating biased 
models that tend to over-identify the dominant class (SMS). Although 
the number of SMS and normative individuals in the training set is 
always 11 versus 12, depending on which group is used for validation, 
the number of SMS subgroups (248) is higher than that of normative 
subgroups (131). It should be noted that this technique is only applied 
to the training set. The SMOTE technique is not suitable for the 

validation set. In such a way that the two groups are separated and do 
not mix and therefore data leakage is avoided.

4. ML methods: Once the training and validation sets are 
obtained, the different ML models are trained. Previously, exhaustive 
tests were carried out with different hyperparameters to identify the 
most effective combinations. It should be  noted that, for each 
validation set, not only one but ten iterations are carried out. An 
augmented training set is generated in each iteration by using the 
SMOTE technique. Then, the performance of the used model is 
evaluated on the validation set. This process is repeated ten times, 
generating new training sets with SMOTE and training a new model 
in each iteration. The aim is to obtain a robust and accurate estimate 
of the model’s performance over iterations. This process consists of a 
Leave One Out Cross Validation.

To statistically compare the performance of the different models 
on each individual, the following process will be  followed: the 10 
values obtained in the LOO for each subject in each method will 
be  recorded. Then, all the results of each method for the same 
individual will be compared one by one using the Wilcoxon Rank Sum 
Test (Boslaugh, 2012), in order to obtain the p-values of and thus 
determine the statistical significance of the methods. The results are 
reflected in Tables 2, 3.

3.2 Results

Two different case studies were established in order to evaluate the 
behavior and quality of the predictions in the models.

1. The first case study (CE1) applies the windowing process but 
does not use SMOTE, resulting in an unbalanced training set in favor 
of the SMS class. Each training/validation sample contains seven CPP 
values used to predict whether it belongs to the SMS or normative class.

2. The second case study (CE2) involves the data passing through 
the windowing process and subsequently applying SMOTE to the 
training set. The data maintains the same structure as in the 
previous case.

Each case relates to the four ML techniques proposed in Section 
2.4. Each figure (Figures 6–13) groups individuals by their age, sex, 
and study case, corresponding to the subgroups identified in Section 
2.2. Each figure is divided into tables which share the same column 
structure: the first identifies the speaker, the second shows the number 
of samples per person obtained after the windowing process. The next 
ten columns represent the values obtained using leave-one-out (LOO) 
cross-validation, with the samples treated as the validation group, 
these ten values reflect the repetitions of the process. The last column 
is the average value of the ten iterations plus the standard deviation. 
Every table displays three normative (blue) and the non-normative 
(orange) individuals. In each iteration of the Leave-One-Out (LOO) 
cross-validation, all samples belonging to a single individual are 
consistently used as the validation set. This means we  exclude all 
samples from a particular subject and test the model on them in 
each iteration.

Importantly, the tables associated with CE2 (Figures  10–13) 
exhibit higher standard deviations and different results on the score 
columns compared to those of CE1 (Figures 6–9). This issue occurs 

FIGURE 4

Hyperplanes generated according to the kernel used.
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because, in CE2, each iteration augments the training set with 
SMOTE, generating new synthetic data, making each training set 
different from the others. Furthermore, significant variation between 
iterations for the same subject is possible due to the limited size of the 
individual validation sets (i.e., 15 samples). If the algorithm fails or 
hits two samples of the available data during a specific iteration, the 
resulting value for that iteration can fluctuate significantly across 
different runs.

3.2.1 Case study 1
The results of CE1 are elaborated in Figures 6–9. It is noteworthy 

that the subgroups of Female Old and Male Young (Figures 6A–9A, 
6C–9C) do not exhibit exceptionally low detection rates. However, a 
stark contrast is observed in the Female Young subgroup (Figures 6B–
9B), where the three normative individuals display significantly lower 
results compared to the SMS group. In the final subgroup, Male Old 
(Figures 6D–9D), both normative and SMS individuals demonstrate 
low detection rates.

When individuals are evaluated independently, it is observed that 
several normative subjects, such as 10AGPC, 11OADS, 517A, 612A, 
637A, and 842O, exhibit low precision rates across various methods. 
Some of these subjects achieve low rates on the order of 0.1%. Within 
the SMS group, only SMS7 and SMS9 display significantly low 
detection rates. SMS11 also has a low rate, albeit higher than the 
previous two speakers. These results align with the tendencies of a 
biased model, which tends to over-identify the majority groups. In this 
scenario, the dominant class (SMS) demonstrates better detection 
than the minority class (normative).

3.2.2 Case study 2
Figures 10–13 depict the outputs of CE2. In Figures 10A–13A, 

there is a noticeable enhancement in the detection of 10AGPC 
compared to the previous case, notwithstanding with a minor decline 
for SMS11. In the Female Young subgroup (Figures  10B–13B), 
detection rates for subjects 517A and 637A have increased, but 
performance for patient SMS06 has decreased. In the Male Old 

FIGURE 5

Data preprocessing and obtained results.
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subgroup (Figures  10D–13D), all normative subjects exhibit 
improvements in their detection rates, despite a minor decrease for 
subjects SMS07 and SMS08. Lastly, the Male Young subgroup 
(Figures 10C–13C) mirrors the Male Old, with improved detection for 
all normative individuals and a slight decrease for SMS.

Highlighting some individual cases, it is significant to note that 
subjects 10AGPC and 842O from the normative set have seen 
substantial improvements in their detection compared to the previous 
case. The individual 11OADS depicts a considerable increase in SVM 
detection from 0 to 0.815 (Figures 8D vs. 12D) and an increase from 
0 to 0.577 in LDA (Figures 9D vs. 13D). For 637A (Female Young), 
there is a global enhancement in detection across methods, with both 
SVM and LDA (Figures 12B, 13B) yielding favorable results. However, 
no significant improvement is observed for subjects 517A and 612A 
(Female Young). Conversely, the SMS group results indicate a marked 
decrease in performance, especially for individuals SMS6 (Female 
Young) and SMS11 (Female Old), which achieved identification rates 
below 0.5. SMS7 (Male Old) and SMS9 (Male Old) present 
identification rates comparable to the previous case. Lastly, the 
SMOTE technique boosts the precision rates of the minority class, 
albeit at a slight detriment to the majority class.

4 Discussion

In this work, we propose the development of ML models that 
allow for the identification of SMS versus normotypic individuals. 
One clinical feature of the SMS pathology is voice hoarseness (Elsea 
and Girirajan, 2008), as described in previous studies (Hidalgo-De la 
Guía et al., 2021b), it has been demonstrated that by utilizing the CPP 
values of SMS and normotypic individuals, it is possible to create 
divisions into highly differentiated subgroups. This differentiation is 
primarily due to the hoarseness present in individuals with this 
genetic pathology. These types of studies are necessary to improve 
early disease detection. Currently, the average SMS diagnosis age is 
approximately seven years (Hidalgo-De la Guía et al., 2021b), leading 
to problems for these patients. Problem arises because SMS requires 
specific therapies that, when implemented late, cause different kinds 
of delays. As presented in this research work, the voice is a versatile, 
inexpensive, and minimally invasive medium that helps to 
discriminate possible pathologies (Jeffery et al., 2018; Lee, 2021; Calà 
et al., 2023).

The initial data were not suitable for ML model training. The main 
problem was sample imbalance between groups. Two techniques were 

TABLE 2 Summary and comparison of the four ML methods, providing average and pairwise precision rates using the Wilcoxon Rank Sum Test for CE1.

Average accuracy Comparison Wilcoxon Test (p-value)

RF KNN SVM LDA Speaker RF_vs_
SVM

RF_vs_
KNN

RF_vs_
LDA

SVM_
vs_KNN

SVM_
vs_LDA

KNN_
vs_LDA

59.23% 53.85% 46.15% 61.54% 10AGPC 0.002 0.011 0.149 0.002 0.002 0.002

99.23% 92.31% 100.00% 100.00% 11AAZM 1 0.003 1 0.002 NA 0.002

23.08% 15.38% 0.00% 0.00% 11OADS 0.002 0.005 0.002 0.002 NA 0.002

88.33% 91.67% 75.00% 75.00% 511O 0.002 0.072 0.002 0.002 NA 0.002

16.67% 16.67% 16.67% 16.67% 517A NA NA NA NA NA NA

5.83% 0.00% 0.00% 0.00% 612A 0.011 0.011 0.011 NA NA NA

87.14% 71.43% 71.43% 71.43% 618O 0.002 0.002 0.002 NA NA NA

49.00% 40.00% 40.00% 40.00% 637A 0.008 0.008 0.008 NA NA NA

85.71% 85.71% 85.71% 85.71% 743O NA NA NA NA NA NA

87.06% 94.12% 82.35% 94.12% 819O 0.018 0.012 0.012 0.002 0.002 NA

67.33% 66.67% 46.67% 66.67% 842O 0.002 0.783 0.783 0.002 0.002 NA

95.00% 100.00% 100.00% 100.00% 12109A 0.149 0.149 0.149 NA NA NA

99.64% 100.00% 100.00% 100.00% SMS1 1.000 1.000 1.000 NA NA NA

100.00% 100.00% 100.00% 100.00% SMS2 NA NA NA NA NA NA

86.15% 92.31% 92.31% 92.31% SMS3 0.006 0.006 0.006 NA NA NA

100.00% 100.00% 100.00% 100.00% SMS4 NA NA NA NA NA NA

77.50% 87.50% 100.00% 100.00% SMS5 0.002 0.006 0.002 0.002 NA 0.002

68.46% 76.92% 84.62% 84.62% SMS6 0.002 0.010 0.002 0.002 NA 0.002

29.23% 46.15% 38.46% 38.46% SMS7 0.007 0.002 0.007 0.002 NA 0.002

90.61% 87.88% 93.94% 93.94% SMS8 0.002 0.003 0.002 0.002 NA 0.002

36.15% 15.38% 7.69% 0.00% SMS9 0.002 0.002 0.002 0.002 0.002 0.002

100.00% 100.00% 100.00% 100.00% SMS10 NA NA NA NA NA NA

62.88% 65.38% 65.38% 61.54% SMS11 0.026 0.026 0.104 NA 0.002 0.002

91.76% 94.12% 100.00% 100.00% SMS12 0.002 0.006 0.002 0.002 NA 0.002

71.1% 70.6% 68.6% 70.1%
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proposed to solve this problem. The first technique is CPP sample 
“windowing,” a novel approach. In Section 2.3, it was explained that 
“windowing” consists of grouping the samples by speaker and making 
new subgroups of the same size to solve the sample imbalance 
problem. The second technique is the application of SMOTE, with 
which new synthetic samples of the minority class are generated until 
a balance between the two classes is achieved. The authors maintain 
that, with the combination of the “windowing” and SMOTE methods, 
the dataset is improved. To demonstrate how the yields of the models 
vary according to the applied techniques, two different case studies 
were proposed.

The LOO technique was implemented to prevent the inclusion of 
subgroups of the same person in the validation and training sets, 
avoiding the risk of data leakage. This technique is especially beneficial 
in small datasets because it allows the use of all n-1 available data for 
training. It should be noted that training involves the 23 individuals 
present in the dataset, while the remaining person is reserved for 
validation. This validation and training process is iterated ten times 
for each speaker. This iterative approach contributes to obtaining 
robust results, reducing the possibility of achieving biased or 
circumstance-influenced performances. The different models tend to 

over-identify the dominant group (SMS) in CE1. In contrast, in CE2, 
the SMOTE technique was implemented in the training dataset to 
address the class imbalance. It should be  highlighted that the 
application of SMOTE was limited to the training set to prevent 
possible data leakage.

This approach increased the identification of the normative group 
and led to an overall improved performance but reduced slightly the 
identification of the SMS speakers. To evaluate the ML techniques 
against each other, it has been decided to give the arithmetic median 
obtained in the SMS and normative classes, as it is not affected by 
outsider high or low performances in certain individuals. Firstly, SVM 
offered the worst results, especially in CE1, since it was necessary to 
use models with a hyperparameter configuration that tends to overfit 
the model due to its inability to detect the normative class. This led to 
labeling all results as SMS, obtaining an average of 0.59 and 0.97 for 
the normative and SMS classes. However, in CE2, a model that does 
not depend on hyperparameters is obtained, with a median of 0.99 for 
normative and 0.75 for SMS. In this second case study, its high 
detection rate in the normative group stands out. Individual 11OADS 
is far superior to the rest of the methods. Nonetheless, it is not able to 
achieve such good generalization in the SMS group.

TABLE 3 Summary and comparison of the four ML methods, providing average and pairwise precision rates using the Wilcoxon Rank Sum Test for CE2.

Average accuracy Comparison Wilcoxon test (p-value)

RF KNN SVM LDA Speaker RF_vs_
SVM

RF_vs_
KNN

RF_vs_
LDA

SVM_
vs_KNN

SVM_
vs_LDA

KNN_
vs_LDA

72.30% 90.00% 99.23% 89.23% 10AGPC 0.002 0.002 0.002 0.008 0.008 0.679

100.00% 100.00% 100.00% 100.00% 11AAZM NA NA NA NA NA NA

33.80% 33.85% 81.54% 57.69% 11OADS 0.002 1.000 0.002 0.002 0.002 0.002

93.30% 100.00% 100.00% 95.83% 511O 0.006 0.006 0.299 NA 0.037 0.037

21.70% 55.00% 50.00% 35.00% 517A 0.002 0.002 0.015 0.149 0.003 0.002

9.20% 10.00% 8.33% 0.00% 612A 0.414 0.679 0.006 0.186 0.002 0.007

92.90% 100.00% 100.00% 100.00% 618O 0.037 0.037 0.037 NA NA NA

56.00% 65.00% 70.00% 88.00% 637A 0.002 0.058 0.002 0.240 0.002 0.002

85.71% 91.43% 100.00% 100.00% 743O 0.002 0.072 0.002 0.020 NA 0.020

84.12% 100.00% 100.00% 100.00% 819O 0.002 0.002 0.002 NA NA NA

73.33% 74.00% 98.00% 96.00% 842O 0.002 1.000 0.002 0.002 0.149 0.002

100.00% 100.00% 100.00% 100.00% 12109A NA NA NA NA NA NA

99.64% 98.21% 92.86% 98.93% SMS1 0.002 0.129 0.424 0.002 0.002 0.484

92.94% 91.18% 94.12% 94.12% SMS2 0.186 0.322 0.186 0.037 NA 0.037

86.15% 85.38% 76.92% 73.08% SMS3 0.002 0.408 0.002 0.012 0.037 0.008

100.00% 100.00% 100.00% 100.00% SMS4 NA NA NA NA NA NA

75.00% 70.00% 75.00% 97.50% SMS5 1.000 0.129 0.002 0.072 0.002 0.002

43.85% 37.69% 27.69% 30.00% SMS6 0.002 0.098 0.002 0.034 0.149 0.033

14.62% 21.54% 7.69% 23.08% SMS7 0.048 0.090 0.026 0.002 0.002 0.186

84.24% 77.58% 67.27% 86.67% SMS8 0.002 0.006 0.229 0.009 0.002 0.002

30.77% 13.08% 0.00% 0.00% SMS9 0.002 0.002 0.002 0.002 NA 0.002

100.00% 100.00% 100.00% 100.00% SMS10 NA NA NA NA NA NA

56.15% 46.15% 34.62% 44.23% SMS11 0.002 0.009 0.009 0.002 0.002 0.322

88.53% 88.82% 80.59% 98.24% SMS12 0.002 1.000 0.002 0.002 0.002 0.002

70.6% 72.9% 73.5% 75.3%

https://doi.org/10.3389/fncom.2024.1357607
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Fernández-Ruiz et al. 10.3389/fncom.2024.1357607

Frontiers in Computational Neuroscience 11 frontiersin.org

The second model discussed in this study is RF. Acceptable 
performance is achieved with medians of 0.765 for normative and 
0.884 in SMS at CE1. However, practically identical performance is 
observed to the previous case in CE2. Medians are between 0.787 and 
0.852 for normative and SMS. It is crucial to say that the use of 
SMOTE does not always guarantee an improvement in model 
performance. In fact, it can become a problem by generating noise in 
situations of high dimensionality. Nevertheless, it does not rule out the 
possibility that the combination of the SMOTE technique with RF can 
improve results with other datasets. For example, in Abdar et  al. 
(2019) four variants of DTs are proposed to predict coronary artery 

disease. The article proposes a multi-filtering approach based on 
supervised and unsupervised methods to modify the weights of the 
attributes, leading to a 20–30% improvement in the methods.

The two final models analyzed in this study exhibit relevant high 
performances. Firstly, the KNN’s performance experiences a 
significant improvement: from medians of 0.69 and 0.9 in CE1 to 0.90 
and 0.81 for normative and SMS in CE2. This improvement can 
be attributed to the data arrangement, as shown in Figure 2, where 
three out of four clusters present adequate separation. Consequently, 
this technique is better than the others because if the closest samples 
are selected then higher recognition rate are obtained. Finally, the 

FIGURE 6

Summary of the results for the CE1, using RF. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.

FIGURE 7

Summary of the results for the CE1, using KNN. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.
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model that yields the best results is LDA, with medians of 0.690 and 
0.970 for CE1 in normative and SMS, respectively. It is accomplished 
medians between 0.95 and 0.90 in CE2, making it the model with the 
most outstanding results throughout the research work.

Tables 2, 3 present a statistical comparison using the Wilcoxon 
Rank Sum test to evaluate the performance of the four employed ML 
methods which present the following structure. Each table is divided 
into three concepts. On the left side, the authors detail the accuracy 
rates for every ML method (RF, KNN, SVM and LDA) for each 
subject. The next column provides the speaker identifier. Finally, on 
the right-hand side, the authors detail the comparisons, contrasting 
the results obtained in the ten iterations (e.g., RFscore1 … RFScore10) of 
each method against the ten iterations (e.g., LDAscore1 … LDAScore10) of 
another method for the same subject. The last six columns display 

p-values from the Wilcoxon test. A p-value less than or equal to 0.05 
indicates statistically significant differences in accuracy rates between 
methods, leading to rejection of the null hypothesis that they are 
equal. The table occasionally shows “Not Applicable (NA)” values. 
This occurs when the Wilcoxon test cannot calculate a p-value because 
the distance between all elements of the two input methods is zero. 
Such scenarios mostly arise when both methods achieve 100% or 0% 
accuracy (particularly in Table 3) but can also occur with other values. 
It is likely due to the relatively small dataset size (6–13 samples per 
subject), which increases the chance of different models achieving 
identical performance.

Upon comparing the two Tables 2, 3, a disparity is observed in the 
number of NA values. Table 2 records 59 NA values (29 in normotypic 
group and 30 in non-normotypic group). Indeed, the Table 3 shows 

FIGURE 8

Summary of the results for the CE1, using SVM. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.

FIGURE 9

Summary of the results for the CE1, using LDA. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.
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34 NA values (20 in normotypic group and 14 in non-normotypic 
group). This difference can be  attributed to the limitation of the 
training dataset in CE1 (without SMOTE), which leads to the models 
generating identical results due to data bias. However, when SMOTE 
is applied, the different models can produce diverse results due to data 
augmentation process and the correction of bias during training. 
Analyzing the results reveals that some speakers, like 11AAZM and 
SMS04, are highly identifiable across all methods, achieving 100% 
accuracy and received “Not Applicable” (NA) values in all one-to-one 
Wilcoxon comparisons. Likewise, while most comparisons yield 
p-valuess below 0.05, indicating statistically significant differences, the 
RF vs. KNN comparison shows 12 non-significant results. This 
suggests similar performance for these methods, potentially making 
them less effective than the others. Conversely, SVM and LDA 

generally exhibit more statistically significant values, implying 
stronger distinctions in their performance compared to the other 
ML methods.

Another point of debate is whether the SMOTE technique can 
affect the performance of the different models. In Blagus and Lusa 
(2013), the authors applied this technique to high-dimensionality 
cases. However, here, it is addressed a single dimension (the CPP). The 
obtained results agree with those of the previously referenced work. 
First, the authors noted that for low-dimensionality cases, SMOTE 
usually represents an improvement (e.g., the RF, SVM and KNN cases) 
or equates the results to those of other undersampling techniques (e.g., 
the LDA case). These results agree with those achieved in the current 
study, i.e., for the four ML techniques used, the results were improved 
with the application of the SMOTE technique. There are techniques 

FIGURE 10

Summary of the results for the CE2, using RF. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.

FIGURE 11

Summary of the results for the CE2, using KNN. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.
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that can be regarded as more beneficial than others while others may 
be  less beneficial (e.g., high-dimensionality cases). For example, a 
secondary effect of SMOTE is that the new samples from the minority 
class exhibit variances one-third smaller than those of the original 
distribution. This result implies that this technique is not as effective 
in methods that use variance as an indicator, such as the LDA. RF, 
SVM, and KNN are the methods that offer better results in cases of 
low dimensionality. In the case of SVM, it has meant an improvement, 
but it has not quite reached the expected performance. The reason for 
this behavior may be due to the combination of the increase in the 
dimensionality of the SVM itself along with the use of 
SMOTE. Likewise, the interaction between LDA and KNN methods 
with SMOTE is negligible, since the Euclidean distance between the 

classes is the same, before and after the use of SMOTE with low 
dimensionality, as demonstrated by Blagus and Lusa (2013).

Interestingly, in this research work, the average accuracy across 
ML methods is similar for every single method. In CE1 (without 
applied SMOTE technique – see Table 2), all methods achieved values: 
RF (71.1%), KNN (70.6%), SVM (68.6%), and LDA (70.1%). Notably, 
RF performed best with 71.1% accuracy.

For CE2 (with SMOTE technique – see Table 3), average accuracy 
increased across all methods compared to CE1, reaching 70.6% for RF, 
72.9% for KNN, 73.5% for SVM, and 75.3% for LDA. Notably, LDA 
emerged as the best performer in CE2 with an average accuracy of 
75.3%. This finding suggests that the data augmentation techniques 
used in CE2 led to overall improved performance.

FIGURE 12

Summary of the results for the CE2, using SVM. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.

FIGURE 13

Summary of the results for the CE2, using LDA. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.
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5 Conclusion

Two objectives have been achieved in the work. The first 
objective showed that, due to the application of correct data 
preprocessing, the performance of the models can be improved, as 
demonstrated through different case studies. Furthermore, the 
outcomes of CE2 are more reliable and robust compared to the 
results of CE1, owing to the application of data augmentation 
techniques. While it may appear that CE1 has a superior 
classification rate, this is primarily due to the class imbalance, with 
a greater number of SMS samples compared to normotypical ones. 
The second goal of the work was to study whether the CPP is a 
suitable metric for the identification of SMS vs. normotypic 
individuals, and, according to the results obtained in the last case 
study, it can be confirmed that this metric fulfils this function. The 
main limitation of the study is the number of individuals with SMS 
currently available. However, this situation opens the opportunity 
to explore different data augmentation methods and compare their 
performance to find the most suitable one for the study context. A 
similar process will be  carried out with the machine learning 
algorithms, using different variants of them. Another interesting 
approach would be the inclusion of cost-sensitive algorithms. As 
explained in Figure 14, individuals with outlier values have been 
identified compared to their respective groups. Therefore, it may 
be beneficial to implement counterfactual methods to decrease the 
biased caused by those outliers.

Regarding the supervised learning models used, no attempts were 
made to identify the ideal iteration that would yield a very high result. 
This is because when such a model is applied in a real-world context, 
it tends to underperform due to its adaptation to a specific data 

combination for achieving the results. As a result, the initial case study 
reveals models that are biased toward the target class (SMS), while the 
final case study presents models with less bias and a high precision 
rate. The results also indicate that performance improves following a 
series of transformations on complex initial data. However, to enhance 
and solidify these results, it is essential to obtain samples from 
new subjects.

Furthermore, it is important to highlight the presence of certain 
individuals who show significantly low detection rates in most models, 
considering CE2 as a reference. These individuals include 11OADS, 
517A, 612A, 637A (the latter shows good performance in LDA and 
SVM, but not in the rest), as well as SMS6, SMS7, SMS9, and SMS11. 
Figure 14 presents the average CPP value for everyone stored in the 
database, remembering that the normative group should exhibit higher 
CPP values, while the non-normative group should show lower values. 
The bars marked in pink correspond to the individuals mentioned 
above, showing how they present higher or lower values than their 
respective groups. In other words, these individuals constitute the 
decision boundary of the problem. This finding raises possible future 
approaches, such as the application of synthetic data augmentation 
methods on the decision boundary, assigning weights to the problem 
samples, opening new possibilities to improve model performance.

Finally, two potential avenues of research are proposed. The first 
involves replicating the same machine learning procedures with other 
rare diseases, such as WS. The goal would be to compare performance 
and potentially conduct a case study where different models are 
trained to distinguish between SW and SMS individuals, thereby 
extracting the similarities and differences between both pathologies. 
The second avenue of research would focus on the application of deep 
learning techniques. However, to develop more robust models, it 
would first be necessary to increase the number of SMS samples. It 

FIGURE 14

CPP average by subject.
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should be noted that authors explore several new methods based on 
SMOTE techniques and data augmentation methods in future 
research works.
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