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The automatic classification of epilepsy electroencephalogram (EEG) signals

plays a crucial role in diagnosing neurological diseases. Although promising

results have been achieved by deep learning methods in this task, capturing the

minute abnormal characteristics, contextual information, and long dependencies

of EEG signals remains a challenge. To address this challenge, a positional

multi-length andmutual-attention (PMM) network is proposed for the automatic

classification of epilepsy EEG signals. The PMMnetwork incorporates a positional

feature encoding process that extracts minute abnormal characteristics from the

EEG signal and utilizes a multi-length feature learning process with a hierarchy

residual dilated LSTM (RDLSTM) to capture long contextual dependencies.

Furthermore, a mutual-attention feature reinforcement process is employed

to learn the global and relative feature dependencies and enhance the

discriminative abilities of the network. To validate the e�ectiveness PMMnetwork,

we conduct extensive experiments on the public dataset and the experimental

results demonstrate the superior performance of the PMM network compared

to state-of-the-art methods.
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1 Introduction

Epilepsy is a prevalent neurological disease worldwide, affecting individuals’ cognitive

abilities and presenting risks of sudden falls or fatality (Rajinikanth et al., 2022). Tomitigate

epilepsy risks, the analysis of Electroencephalography (EEG) signals is the most effective

approach to identify real-time neural disorder activity. However, EEG events often exhibit

subtle amplitude variations, and manual detection of EEG signals is time-consuming,

prone to errors, and requires specialized expertise. Thus, the significance of automatic EEG

diagnosis lies in its capacity to analyze EEG signals with efficiency and accuracy, facilitating

the timely detection of epilepsy (Xin et al., 2022; Wu et al., 2023).

Early studies on automatic EEG diagnosis focused on using hand-engineered

low-level features, such as spectral, temporal, low-frequency, and high-frequency

features, to achieve automatic classification of EEG signals (Liu et al., 2022).

For instance, Lemm et al. (2005) applied spatio-spectral filters to mitigate the

impact of noisy, non-stationary, and contaminated information in EEG signals,

thereby improving classification performance. Meng et al. (2014) proposed

a novel approach that learned spatial and spectral features and optimized

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2024.1358780
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2024.1358780&domain=pdf&date_stamp=2024-01-25
mailto:jihao.luo@u.nus.edu
mailto:Rchen.christophe@yahoo.com
https://doi.org/10.3389/fncom.2024.1358780
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2024.1358780/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fncom.2024.1358780

the loss function by calculating the mutual information between

the learned spectral features and class labels. Additionally, to assess

the impact of different frequency sub-bands on EEG classification

accuracy (Tsipouras, 2019), multiple sub-bands were combined

as feature vectors. In another work, Qi et al. (2015) introduced

regularized spatio-temporal filtering to classify EEG signals using

supervised optimization algorithms. Jrad (2016) utilized high-

frequency oscillations to extract relevant features, which were

then input into a support vector machine for classifying different

EEG events. Furthermore, Gao et al. (2019) developed a multi-

scale information analysis model that utilized high-frequency EEG

oscillations to recognize emotional states. Despite the success

of these approaches, the subjective selection of hand-engineered

features typically requires domain knowledge and may not capture

the full range of characteristics present in input EEG signals.

Recently, with the great success of the convolutional neural

network (CNN) on a broad array of medical image analysis,

a large body of work in this area has been considered (Chen

et al., 2021, 2023). Compared with the traditional hand-engineered

methods, the CNN-based ones have the advantage of extracting

more complicated and discriminative characteristics from the

medical image. For instance, Zheng and Lu (2015) adopted the

deep belief networks (DBNs) as the main detection architecture to

train differential features for the automatic detection of the seizure.

Regarding temporal features, Kasabov and Capecci (2015) designed

a spiking neural network architecture that extracted spatio-

temporal features for detecting and interpreting EEG signals. In

Liu M. et al. (2020), it used the pre-trained CNN models to

extract deep features and then adopted the cartesian K-means

algorithm to conduct the semi-supervised learning on the EEG

data. Furthermore, the unsupervised learning method (Chai et al.,

2016) which combined the auto-encoder network with a subspace

alignment solution into a unified framework was developed for

analyzing the EEG data. Some other works, such as Qiu et al. (2018)

and Liu J. et al. (2020) utilized the sparse autoencoder with different

classifiers to jointly detect the seizure signal. Moreover, to improve

the performance of the classification model, Yuan et al. (2018a)

proposed a multi-view CNN model which aimed to learn the

brain seizure from input multi-channel signals. Similarly, in Yuan

et al. (2018b), it further developed a novel channel-aware attention

network for multi-channel EEG seizure detection by using CNNs.

Hossain et al. (2019) proposed a model to extract the spectral,

temporal features and then input them to the classifier for EEG

seizure classification. For learning the multi-scale features from the

EEG, Zhang et al. (2020) designed a multi-scale non-local (MNL)

network with two special layers to achieve promising classification

results of the seizure. Additionally, some other works (Aliyu and

Lim, 2021; Hussain et al., 2021; Saichand, 2021) adopted the long

short-term memory (LSTM) to overcome the vanishing gradient

problem of the recurrent neural network and boost the feature

extraction ability of the EEG signal data.

Despite the promising results shown by CNN-based methods

for EEG signal classification, three major challenges still need

to be addressed. Firstly, seizures in EEG signals often exhibit

subtle abnormal characteristics that can pose challenges for feature

extraction, potentially impacting the performance of classification

models. Secondly, the extraction of long contextual dependencies

is crucial for effective EEG signal classification, but the use

of LSTM for this purpose is impeded by limited receptive

fields, which compromises their ability to capture necessary

contextual information. Lastly, it is worth noting that previous

works have paid relatively less attention to the incorporation

of global relative dependencies in EEG signal analysis, which

could offer valuable discriminative information crucial for

improving classification accuracy. To tackle these challenges, we

propose a novel approach called the positional multi-length and

mutual-attention (PMM) network. The PMM network comprises

three main processes: positional feature encoding, multi-length

feature learning, and mutual-attention feature reinforcement.

In the positional feature encoding process, minute abnormal

characteristics from the shallow layers of the network are captured

through the utilization of residual positional attention. This

facilitates the PMM network in focusing on and extracting crucial

information associated with those characteristics. The multi-length

feature learning process employs a stacking of hierarchical residual

dilated (RD) LSTMs to acquire long contextual dependencies

within the EEG signal. By doing so, the network becomes

adept at capturing temporal patterns across various time scales

and effectively modeling the relationships between distant time

steps. To further fortify the features, a mutual-attention feature

reinforcement process is introduced. This process delves into both

the global discriminative and relative dependencies present in

the EEG signal. It selectively enhances informative features while

simultaneously suppressing irrelevant ones, thereby enhancing the

overall discriminative power of the network. Incorporating these

three processes into the PMM network enables it to capture minute

abnormal characteristics, long contextual dependencies, and global

discriminative and relative dependencies simultaneously, resulting

in a significant improvement in classifying EEG signals. Overall,

the main contributions of this paper can be summarized as

follows:

(1) A novel PMM network is proposed for the automatic

classification of epilepsy seizures from EEG signals, with the

incorporation of positional feature encoding to improve the

extraction of minute abnormal characteristics from the EEG

signals.

(2) In the proposed multi-length feature learning process,

hierarchical RDLSTMs are used to capture long contextual

dependencies from the EEG signal. Additionally, mutual-attention

feature reinforcement is employed to jointly explore global

discriminative features and relative dependencies simultaneously.

(3) Extensive experiments are conducted on the publicly

available dataset. The results of the comparative analysis

demonstrate that competitive performance is achieved by our

proposed PMM network when compared to other state-of-the-art

methods.

The remainder of the paper is organized as follows. Section

2 provides an introduction to the main method used in our

proposed network. In Section 3, we provide a detailed description

of the experimental data utilized in our study. Section 4 covers

the implementation details, evaluation metrics, and a series

of experiments conducted to evaluate the performance of our

proposed approach. Finally, in Section 6, we summarize the

findings of our study and provide a conclusion.

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2024.1358780
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fncom.2024.1358780

FIGURE 1

The PMM network systematically analyzes EEG signals through pre-process. The processed signal then undergoes positional feature encoding,

multi-length feature learning, and mutual-attention feature reinforcement. Finally, the reinforced features are processed in a dense layer with

softmax activation to generate the predicted result.

FIGURE 2

Overview of the PMM network, the PFEBlocks capture minute abnormal features, while the stacked RDLSTMs capture long contextual dependencies

from the processed EEG signal. Additionally, the mutual-attention feature reinforcement further enhances the network’s capability by extracting

global discriminative features and relative dependencies.

2 Method

As depicted in Figure 1, the input EEG signal undergoes an

initial pre-processing step to obtain the processed signal. This

processed signal is then fed into the positional feature encoding

module, which extracts subtle abnormal characteristics from

the shallow layers. Subsequently, multi-length feature learning

and mutual-attention feature reinforcement are employed to

enhance the classification of the PMM network. Finally, the

reinforced feature is delivered to the dense layer with the

softmax activation function to generate the predicted result.

To provide a more specific overview, the main architecture

of the proposed PMM network is illustrated in Figure 2.

Initially, the input processed signal undergoes a positional

feature encoding process, employing multiple positional feature

encoding blocks (PFEBlocks) to capture minute abnormal

features. Next, a multi-length feature learning process utilizing

stacked RDLSTMs is employed to capture long contextual

dependencies from the EEG signal. Furthermore, the network

includes a mutual-attention feature reinforcement mechanism,

which enables the extraction of both global discriminative

features and relative dependencies, enhancing the network’s overall

capability in these aspects. In the following subsections, we

will provide more detailed descriptions of positional feature

encoding, multi-length feature learning, and mutual-attention

feature reinforcement.
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2.1 Positional feature encoding

In the shallow layers of the network, the extracted feature

map contains crucial details of the EEG signal that are vital for

accurate EEG classification. Inspired by the structure of the residual

block (Figure 3A), we incorporate a positional feature encoding

block (Figure 3B) during feature encoding to automatically

extract informative detail representations from the EEG signal.

Considering the input of the positional feature encoding as Fe, it

first passes through the 1D convolution layer, which can be defined

as:

Xo =
∑

R

W ∗ Fe + b (1)

where Xo is the output feature vector, R denotes the receptive field,

W and b is the weighted parameter and bias, respectively. After

that, a randomized leaky rectified linear unit (RReLU) nonlinear

activation function is employed, which is formulated as:

y =
{

x if x ≥ 0

ax if x < 0
(2)

where x is the input value, a represents a random number gained

from the uniform distribution U(p, q), and it is given as:

a ∼ U(p, q), p < q and p, q ∈ [0, 1) (3)

Next, an extra 1D convolution layer is adopted to further refine

the output feature from the RReLU activation function, resulting

in X
′
o. In contrast to the traditional residual block, the proposed

positional feature encoding block applies a sigmoid operation on

Fe to obtain the position weight matrix Wpos. The formulation of

Wpos is defined as follows:

Wpos =
eFe

eFe + 1
(4)

Afterward, we multiply Wpos with X
′
o, and then add it to Fe by a

residual connection, therefore the final output feature map of Fo is

formulated as:

Fo =Wpos ∗ X
′
o + Fe (5)

Subsequently, the positional feature encoding block is followed

by a 1D max-pooling layer, which downsamples the resolution

of Fo, and the resulting feature map is then further refined and

enhanced through multi-length feature learning.

2.2 Multi-length feature learning

To leverage the valuable information provided by the

dependencies among multi-length features, the learned features

obtained from the positional feature encoding are fed into the

multi-length feature learning process. To be more specific, we

denote the output features from the positional feature encoding

process as Fpos, for learning dependencies of the input signal

features, we use the LSTM as the primary feature extraction unit

FIGURE 3

The structure of residual block (A) and positional feature encoding

block (B).

FIGURE 4

The structure of LSTM block.

for learning high-level representations, as illustrated in Figure 4.

Notably, considering the shortcoming of LSTM of disappearing

and losing the information of cell state (Schoene et al., 2020), we

further add the residual dilation (Chang et al., 2017) to the LSTM

for learning the multi-length and long sequence dependencies as

shown in Figure 5. Here, denote the cell state, hidden state, and

input of LSTM at time t as ct, ht, xt, respectively. Thus, the output

of the block input zt is calculated as:

zt = g (Wzxt + Rzht−1 + bz) (6)

where Wz , Rz , bz is the input weight, recurrent weight, and bias

weight, respectively. The function of g(·) is the tanh activation

function.
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FIGURE 5

The structure of RDLSTM block.

FIGURE 6

The structure of the mutual-attention feature reinforcement.

Then, the input gate, forget gate and output gate could be

formulated as:

it = σ (Wixt + Riht−1 + bi) (7)

ct = ft ⊙ ct−1 + it ⊙ zt (8)

ft = σ
(

Wf xt + Rf ht−1 + bf
)

(9)

ot = σ (Woxt + Roht−1 + bo) (10)

ht = g (ct)⊙ ot (11)

here, the Wi, Wf , Wo and bi, bf , bo are the corresponding inputs

and bias weights of LSTM. The σ (·) and ⊙ represent the sigmoid

and element-wise multiplication, respectively. In the RDLSTM,

instead of using the previous cell state ct−1 and hidden state ht−1,
it takes in the cell state ct−d and hidden state ht−d, where the

dilation rate d exponentially increases the receptive field of the

LSTM. By incorporating these distant past states, the RDLSTM

can capture long dependencies from the EEG signals, allowing

for a more comprehensive understanding of the input sequence.

Mathematically, we denote z
′
t , c
′
t , h
′
t , i
′
t , f
′
t , o
′
t as the outputs of block

input, cell state, hidden state, input gate, forget gate, and output

gate, respectively. Then, the dilated LSTM could be defined as:

z
′
t = g

(

W
′
zh
′
t(l− 1)+ R

′
zht−d + b

′
z

)

(12)

c
′
t = f

′
t ⊙ ct−d + i

′
t ⊙ z

′
t (13)

h
′
t = o

′
t ⊙

(

g
(

c
′
t

)

+ h
′
t(l− 1)

)

(14)

i
′
t = σ

(

W
′
ih
′
t(l− 1)+ R

′
ih
′
t−d + b

′
i

)

(15)

f
′
t = σ

(

W
′
f h
′
t(l− 1)+ R

′
f h
′
t−d + b

′
f

)

(16)
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o
′
t = σ

(

W
′
oh
′
t(l− 1)+ R

′
oh
′
t−d + b

′
o

)

(17)

whereW
′
z ,W

′
i,W

′
f
,W

′
o are the input weights, R

′
z , R

′
i, R

′
f
, R
′
o denote

the recurrent weights, and b
′
z , b

′
i, b
′
f
, b
′
o are the bias. The h

′
t(l − 1)

represents the hidden state at the (l − 1)-th layer and is used to

create a shortcut connection with the current LSTM cell to mitigate

the issue of gradient vanishing. Additionally, hierarchically stacking

the RDLSTMs enables the network to capture effective long

dependencies among multi-length features across different layers.

Therefore, various dilated rates of 1, 2, 4 are utilized to increase the

receptive field of the network exponentially, enabling it to capture

both local and global information. Following the processing in the

RDLSTMs, the learned features are fed into the mutual-attention

feature reinforcement process to extract global context information

and further enhance the network’s understanding of the input

feature.

2.3 Mutual-attention feature
reinforcement

Previous research has demonstrated that attention-based

learning is effective in encoding discriminative features and

capturing global dependencies (Vaswani et al., 2017; Zhang et al.,

2020). Building on these findings, we propose to enhance the

feature learning capability by incorporating a mutual-attention

feature reinforcement after the multi-length feature learning

process (as shown in Figure 6). Formally, let the output feature

maps of the RDLSTM with dilation rates q, k, v be denoted as

Fq, Fk, Fv (q 6= k 6= v). In order to standardize the features

to the same value domain, a batch normalization layer N(·). Ioffe
and Szegedy (2015) is initially applied to Fq, Fk, Fv, yielding F

′
q,

F
′
k
, F
′
v. Subsequently, these features with different value domains

are separately passed through three linear layers and combined as

inputs to the mutual-attention module. The formulation of this

module can be expressed as:

Q =W
(query)
q F

′
q + b

(query)
q (18)

K =W
(key)
k F

′
k + b

(key)
k (19)

V =W(value)
v F

′
v + b(value)v (20)

where Q, K, V is the corresponding query, key, and value of

F
′
q, F

′
k
, F
′
v, W

(query)
q , W

(key)
k , and W

(value)
v is the respective learned

parameters of the linear operation, b
(query)
q , b

(key)
k , and b

(value)
v is

the bias, separately. Then, the mutual scaled-attention Aqk,Aqv,Avk

could be calculated by:

Aqk = σ

(

QK⊺

√
S

)

V (21)

Aqv = σ

(

QV⊺

√
S

)

K (22)

Avk = σ

(

VK⊺

√
S

)

Q (23)

where
√
S is the scaling parameter, ⊺ denotes the transpose, and

the softmax function is performed on the gained attention values to

normalize the attention values into probability distributions, which

is defined as:

σ (z)d =
ezj

∑

j=1 e
zj

(24)

Furthermore, to exploit more discriminative and global

representations, we employ the multi-head attention (Vaswani

et al., 2017) which calculates the mutual-attention operations

for T times. Thus, the output of multi-head attention A
(multi)
d

is

formulated as:

A
(multi)
qk

=W
(multi)
qk

Concat
(

Aqk,1,Aqk,2, . . . ,Aqk,T
)

(25)

A(multi)
qv =W(multi)

qv Concat
(

Aqv,1,Aqv,2, . . . ,Aqv,T
)

(26)

A
(multi)
vk

=W
(multi)
vk

Concat
(

Avk,1,Avk,2, . . . ,Avk,T
)

(27)

where W
(multi)
qk

, W(multi)
qv , W(multi)

vk
are the weight matrices of the

linear combination.

The operation of Concat(·) represents the concatenation of the

input features. Finally, the output from mutual-attention feature

reinforcement Fat is given as:

Fat = Conv(Concat(A(multi)
qk

,A(multi)
qv ,A(multi)

vk
)) (28)

2.4 Classification of EEG data

After the feature extraction process, the extracted features are

passed into a softmax layer to generate prediction probabilities

for different classes. Mathematically, the training data can be

represented as
{(

s(1), y(1)
)

,
(

s(2), y(2)
)

, · · · ,
(

s(N), y(N)
)}

, where

sN ∈ R
1×C denotes the input features, y(N) ∈ {1, 2, · · · ,C}

represents the class label, and C is the total number of class labels.

Therefore, the mapping function of softmax could be given as:

hθ (s) =













P(y = 1 | s; θ)
P(y = 2 | s; θ)

...

P(y = C | s; θ)













= 1
∑K

j=1 exp
(

θTj s
)













exp
(

θT1 s
)

exp
(

θT2 s
)

...

exp
(

θTC s
)













(29)

where θ is the learned parameters of the softmax. To optimize the

network, we use the cross-entropy J(·) as the loss function, which
can be defined as:

J(w) = − 1

N

C
∑

c=1

[

yc log ŷc +
(

1− ŷc
)

log
(

1− ŷc
)]

(30)

where yc is the true class label, and ŷc denotes the predicted class

label. Overall, the whole process of the proposed PMM Network

could be illustrated in Algorithm 1.

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2024.1358780
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fncom.2024.1358780

Input: EEG Signal x;

Output: The prediction of EEG class label ŷc

→ {1, 2, · · · ,C};
1 Initialization: C ← numbers of the classes; E ←

numbers of the epochs;

2 Initialization: P(·) Positional feature encoding;

RDLSTM(·) Residual dilated LSTM; MA(, )

mutual-attention feature reinforcement; Pool(·)
Max-pooliing operation; D(·) Dense layer with

softmax;

3 e = 0;

4 while e <E do

5 Fpos ← Pool(P(x)) ; /* Positional feature

encoding */

6 Fq, Fk, Fv ← RDLSTM(Fpos) ; /* Residual dilated

LSTM */

7 A
(multi)
qk

← MA(Fq,Fk) ; /* mutual-attention

feature reinforcement */

8 A
(multi)
qv ← MA(Fq,Fv);

9 A
(multi)
vk

← MA(Fv,Fk);

10 Fat ← Conv(Concat(A(multi)
qk

, A
(multi)
qv , A

(multi)
vk

)) ;

/* Feature fusion */

11 hθ (s) ← D(Fat);

12 end

Algorithm 1. Epileptic Seizure Classification of PMM Network.

3 Data description

We evaluate our approach using the Bonn EEG dataset, initially

reported in Andrzejak (2001). This dataset consists of five subsets:

Set A, B, C, D, and E. Each subset contains 100 EEG channels and

has a duration of 23.6 seconds. Subsets A and B were collected

from healthy subjects, with recordings taken during both eyes open

and closed conditions. Subsets C, D, and E correspond to different

locations in epileptic subjects. Subset C represents recordings from

the hippocampal formation, Subset D records the epileptogenic

zone, and Subset E captures signals during seizure activity. It is

important to note that the signals in subset C and D were recorded

during seizure-free intervals, while subset E was captured during

seizure activity. For simplicity, the eye movements in dataset A and

B were not considered in our evaluation.

Moreover, the UCI-EEG Recognition dataset (Wu and Fokoue,

2017) is also used for the detection of epileptic seizures. It consists

of five distinct groups, each consisting of 100 single-channel EEG

signals. Each EEG file corresponds to a 23.6-s recording of brain

activity, which is sampled into 4097 data points. Therefore, the

dataset comprises a total of 500 subjects, with each subject’s data

containing 4,097 data points. Additionally, the EEG samples in this

dataset are further divided into 23 data chunks, with each chunk

containing 178 data points. Overall, the dataset contains 11,500

time-series EEG signal data samples from the 500 subjects. In the

EEG recognition dataset, Class 1 represents the state of epileptic

seizure, while Classes 2–5 represent normal healthy states. This

dataset facilitates a binary classification task aimed at distinguishing

between the combined normal states (Classes 2–5) and the seizure

condition (Class 1).

4 Results

4.1 Implementation details

The PMM network is implemented using the PyTorch

deep learning framework, and cross-entropy is adopted as the

loss function. The optimizer used is Adam, which helps in the

convergence of the network. The initial learning rate is set at 0.0003

and is decayed by a factor of 0.001 after each epoch. To accelerate

the training process, a GTX 1080 GPU is used. Additionally,

10-fold cross-validation is carried out to assess the performance of

the model.

4.2 Evaluation metrics

The performance of the experiment is evaluated using

several commonly used performance metrics, including accuracy,

precision, sensitivity, specificity, and F1-score.

Accuracy is defined as the ratio of the number of correctly

predicted samples to the total number of predicted samples, which

is defined as

Accuracy = TP + TN

TP + TN + FP + FN
(31)

Precision refers to the ratio of the number of correctly predicted

positive samples to the total number of predicted positive samples,

which is given as

Precision = TP

TP + FP
(32)

Sensitivity measures the proportion of positives that are correctly

identified, which is defined as

Sensitivity = TP

TP + FN
(33)

Specificity measures the proportion of negatives that are correctly

identified, which is defined as

Specificity = TN

FP + TN
(34)

F1 score is the harmonic mean of precision and sensitivity, which is

defined as

F1− score = 2× Precision× Sensitivity

Precision+ Sensitivity
(35)

Among all the equations presented above, the term TP (true

positives) represents the number of EEG data samples that are

abnormal and correctly identified as abnormal. Similarly, TN (true

negatives) represents the number of EEG data samples that are

normal and correctly identified as normal. FP (false positives)

refers to the number of normal EEG data samples that are
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TABLE 1 The overall performance of double classes classification on Bonn dataset.

Accuracy(%) Sensitivity(%) Specificity(%) Precision(%) F1-score(%)

A-E 99.95 98.97 99.98 99.97 99.65

B-E 99.76 98.02 99.93 99.92 98.99

C-E 99.43 96.73 99.87 99.85 98.53

D-E 98.79 97.16 98.35 98.52 97.73

AB-E 99.82 97.90 99.99 99.97 98.97

AC-E 99.67 96.98 99.92 99.68 98.32

AD-E 99.23 97.34 99.52 98.96 97.78

BC-E 99.52 96.73 99.90 99.81 98.26

BD-E 98.85 95.76 99.53 98.96 97.52

CD-E 98.87 95.32 99.65 99.36 97.38

ABC-E 99.62 96.23 99.98 99.93 97.99

ABD-E 99.41 96.53 99.60 98.75 97.66

BCD-E 98.99 94.51 99.65 98.82 96.56

ABCD-E 99.23 94.72 99.81 99.01 96.86

TABLE 2 The overall performance of multiple classes classification on Bonn dataset.

Accuracy(%) Sensitivity(%) Specificity(%) Precision(%) F1-score(%)

A-C-E 97.63 95.61 97.82 95.53 95.51

A-D-E 97.83 95.90 97.96 95.90 95.88

B-C-E 98.53 97.02 98.62 97.12 97.02

B-D-E 98.73 97.22 98.61 97.32 97.52

AB-CD-E 97.78 95.98 97.93 95.92 95.91

A-B-C-D-E 94.71 83.51 83.33 95.86 89.61

TABLE 3 The e�ectiveness of di�erent components.

Accuracy(%) Sensitivity(%) Specificity(%) Precision(%) F1-score(%)

Original 92.08 81.52 80.32 93.02 86.55

+ RDLSTM 93.17 82.01 81.02 93.67 87.16

+ PFEBlock 93.68 82.23 81.16 94.01 87.88

+ MFL 94.19 83.02 82.56 95.02 89.01

+ MFR 93.92 82.63 81.78 94.26 88.30

Ours 94.71 83.51 83.33 95.86 89.61

incorrectly predicted as abnormal, and FN (false negatives) refers

to the number of abnormal EEG data samples that are incorrectly

predicted as normal.

To ensure a comprehensive evaluation of the system, a 10-fold

cross-validation approach is applied. During each iteration, one

fold is used for testing themodel, while the remaining nine folds are

used for training. This process is repeated ten times, with each fold

used as the test set once. The average values of accuracy, sensitivity,

and specificity are then collected from the ten-fold cross-validation,

providing an average performance measurement of the system

across different categories of data.

4.3 The performance of double classes
classification

In this section, the performance of the double class

classification is evaluated on Bonn dataset. Table 1 compares

the performance of different combinations of double classes,

including A-E, B-E, C-E, D-E, AB-E, AC-E, AD-E, BC-E,

BD-E, CD-E, ABC-E, ABD-E, BCD-E, and ABCD-E on Bonn

dataset. Among these combinations, the highest performance

is achieved in the A-E class classification with an accuracy of

99.95%, while the most challenging classification task is D-E
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TABLE 4 The influence of di�erent dilated rates on Bonn dataset.

Accuracy(%) Sensitivity(%) Specificity(%) Precision(%) F1-score(%)

d = 1 93.21 81.65 80.45 93.22 86.78

d = 2 93.73 82.01 80.67 93.53 87.03

d = 4 93.97 82.26 81.12 93.88 87.32

d = 1,2 94.14 82.78 81.68 94.25 87.79

d = 1,4 94.41 83.13 82.23 94.62 88.25

d = 2,4 94.56 83.49 83.21 95.10 89.13

d = 1,2,4 94.71 83.51 83.33 95.86 89.61

d = 1,2,4,8 94.65 83.45 83.31 95.78 89.58

with an accuracy of 98.79%. The experimental results reveal a

significant difference between the eyes open classes and the seizure

epileptic classes, resulting in a higher classification performance.

Furthermore, these results demonstrate that our proposed PMM

network performs well on different double class classification

tasks.

4.4 The performance of multiple classes
classification

We further evaluate the performance of the proposed PMM

network on multiple class classification using Bonn dataset. We

compare the combinations of classes including A-C-E, A-D-

E, B-C-E, B-D-E, AB-CD-E, and A-B-C-D-E separately, and

present the results in Table 2. The results clearly indicate that

the B-D-E combination achieves the best performance, with an

accuracy of 98.73%, sensitivity of 97.22%, specificity of 98.61%,

precision of 97.32%, and F1-score of 97.52%. On the other hand,

the A-B-C-D-E combination, consisting of five classes, shows

the lowest performance. This showcases the increasing difficulty

of multiple class classification tasks as the number of classes

increases.

4.5 The e�ectiveness of di�erent
components

In this section, we conduct extensive experiments to

validate the effectiveness of each proposed component in

the A-B-C-D-E classes combination classification task using

Bonn dataset. We refer to the positional feature encoding

block, multi-length feature learning, mutual-attention feature

reinforcement, and residual dilation with LSTM as PFEBlock,

MFL, MFR, and RDLSTM, respectively. The model without any

proposed module is defined as “Original”. Table 3 illustrates

the results of these experiments. It can be observed that

integrating any of the processes, i.e., PFEBlock, MFL, or MFR,

leads to improved classification performance compared to

RDLSTM. This confirms the effectiveness of each proposed

process in enhancing the overall classification performance.

Additionally, we find that adding the MFL could gain the best

performance, which further demonstrate that the dependencies

among multi-length features play vital importance in this

task.

4.6 Influence of di�erent dilated rates

The optimal dilated rates in the Dilated LSTM network play

a crucial role in achieving improved performance. Through our

experiments, we conducte tests to determine the best rates based

on various metrics. The results, as shown in Table 4, indicate

that larger dilated rates lead to enhanced performance when

using a single dilated rate or two different rates. The higher

dilated rates offer better performance because they allow the

network to capture a broader range of information from the input

data. By increasing the dilation rate, the network can expand its

receptive field and consider a wider context, resulting in more

accurate and informed predictions. Comparing the dilated rate

sequences “1, 2, 4, 8” and “1, 2, 4”, we find that the latter

sequence achieves superior performance. This is because the rates

“1, 2, 4” strike a balance between capturing local patterns and

incorporating global relationships within the data. On the other

hand, including the rate “8” in the first sequence potentially

introduces noise or redundant information, which may degrade the

model’s performance.

4.7 Compare with other classification
methods

To evaluate the performance of the proposed network, we first

compare it with other classification methods on Bonn dataset,

especially those based on CNN, in various classification tasks.

For consistency, we use fixed combinations of EEG classes,

including ABCD-E, AB-CD-E, A-B-C-D-E, A-E, AC-E, C-E, A-

D-E, D-E, A-D, B-E, and B-C-D. Tables 5, 6 present the results

of the comparison. It can be observed that our proposed method

achieves competitive performance in most classification tasks

when compared to other methods, particularly in the double

classes classification task. This demonstrates the effectiveness

of our proposed method in handling and accurately classifying

EEG signals for various classification tasks. In addition, we
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TABLE 5 Comparison with other methods (a).

Category Method Accuracy(%)

ABCD-E

KST&MWUT+AB-BP-NN
Al-Hadeethi et al. (2021)

98.5

GA-SVM Zhang and Chen
(2016)

98.9

Ours 99.2

AB-CD-E

DWT+SVM/KNN/NB/DT
Kavitha et al. (2022)

95.0

GA-SVM Zhang and Chen
(2016)

98.4

XGBoost Liu (2023) 89.0

Ours 97.8

A-B-C-D-E

LSP-SVM Tuncer et al. (2019) 93.0

CWT + CNN Türk and
Özerdem (2019)

93.6

CE-stSENet Li et al. (2020) 94.6

ResNet-LSTM Qiu et al. (2023) 90.2

Ours 94.7

A-E

CWT + CNN Türk and
Özerdem (2019)

99.5

HT+LS-SVM Siuly et al. (2019) 99.5

ANFIS-BS Shoeibi et al. (2022) 99.8

2D CNN STFT + LSTM Varli
and Yilmaz (2023)

99.8

WNFG-GNN-ADMNWang
et al. (2023)

100.0

GA-SVM Zhang and Chen
(2016)

100.0

Ours 100.0

AC-E

DWT+SVM/KNN/NB/DT
Kavitha et al. (2022)

98.7

HT+LS-SVM Siuly et al. (2019) 99.7

Ours 99.7

C-E

DWT+SVM/KNN/NB/DT
Kavitha et al. (2022)

98.4

CWT + CNN Türk and
Özerdem (2019)

98.5

HT+LS-SVM Siuly et al. (2019) 98.5

KST&MWUT+AB-BP-NN
Al-Hadeethi et al. (2021)

98.5

WNFG-GNN-ADMNWang
et al. (2023)

98.4

Ours 99.4

A-D-E

PSD-SVM Riaz (2015) 85.0

WPD + ETTL-TSK-FS DengZ
(2018)

95.7

Ours 97.8

A-D

WPD + ETTL-TSK-FS DengZ
(2018)

97.5

LSP-SVM Tuncer et al. (2019) 99.5

Ours 99.7

TABLE 6 Comparison with other methods (b).

Category Method Accuracy(%)

D-E

HT+LS-SVM Siuly et al. (2019) 97.5

GA-SVM Zhang and Chen
(2016)

98.1

VMD + SampEn Das et al.
(2018)

98.8

WNFG-GNN-ADMNWang
et al. (2023)

97.2

2D CNN STFT + LSTM Varli
and Yilmaz (2023)

98.1

Ours 98.8

AB-E
HT+LS-SVM Siuly et al. (2019) 98.67

VMD + SampEn Das et al.
(2018)

100.0

Ours 100.0

B-E

LSP-SVM Tuncer et al. (2019) 96.5

WPD + ETTL-TSK-FS DengZ
(2018)

97.0

HT+LS-SVM Siuly et al. (2019) 99.0

ANFIS-BS Shoeibi et al. (2022) 99.8

WNFG-GNN-ADMNWang
et al. (2023)

99.7

Ours 99.8

B-C-D
WPD + ETTL-TSK-FS DengZ
(2018)

95.0

Ours 96.1

TABLE 7 Comparison with other methods on UCI-EEG dataset.

Category Method Accuracy(%)

Normal-seizure

SMARTSeiz Patro et al. (2023) 99.6

Attention-CNN Ahmad et al.
(2024)

99.6

MGRU Prakash and Kumar
(2023)

98.8

ANN Rohan et al. (2020) 98.3

Ours 99.8

conduct experiments on binary classification using the UCI-EEG

dataset, and the experimental results are illustrated in Table 7.

The results demonstrate that our proposed method achieved the

highest classification accuracy compared to other classification

methods.

5 Discussion

From a technical perspective, our paper introduces the PMM

network as a potentional solution to address the challenges

associated with learning minute abnormal characteristics and

modeling long dependencies in EEG signals. We employ

positional feature encoding to enhance the network’s detection of
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subtle abnormalities, leveraging temporal position information.

Additionally, our proposed multi-length feature learning

enables the network to extract features at different scales,

capturing short-term and long-term dependencies in the EEG

signals. Moreover, incorporating the mutual-attention feature

reinforcement mechanism enhances the network’s ability to

identify relevant spatial and temporal dependencies, allowing

it to distinguish abnormal patterns from background activity

more effectively. These advancements collectively contribute to

the PMM network’s potential in clinical applications and EEG

signal analysis by providing a more comprehensive and accurate

approach for capturing small abnormal characteristics, modeling

long dependencies, and improving attention mechanisms.

From a clinical perspective, our proposed PMM network

offers improved advancements in EEG signal analysis that

have the potential to benefit clinical practice. It effectively

captures minute abnormal characteristics often associated with

neurological disorders, allowing for precise identification even

within complex EEG patterns. By modeling long dependencies and

incorporating multi-length feature learning, the network provides

a comprehensive understanding of the underlying abnormal

processes that evolve over time. The mutual-attention feature

reinforcement mechanism further enhances specificity in detecting

abnormal patterns, which is crucial for accurate diagnosis and

informed decision-making in patient management. While these

improvements hold promise for clinical practice, it is important

to note that further research and evaluation are needed. Extensive

testing with diverse datasets is necessary to validate the network’s

performance across various EEG classification tasks encountered

in real-world clinical settings. Such validation is crucial before the

network’s potential can be fully realized and integrated into routine

clinical workflows.

6 Conclusion

In this paper, we introduced the PMM network to address

the challenges related to learning minute abnormal characteristics

and long dependencies in EEG signals. Our proposed approach

effectively captures the minute abnormal characteristics through

positional feature encoding and improves the modeling of long

dependencies with multi-length feature learning and mutual-

attention feature reinforcement. Experimental evaluations on the

publicly available dataset demonstrated that the PMM network

achieves competitive performance compared to other state-of-the-

art methods. One limitation of this study is that the proposed

network was only evaluated on the limited dataset, which may

not cover the full spectrum of EEG classification tasks. Therefore,

in future work, we aim to extend our network to more diverse

time-series datasets to further validate its effectiveness and

generalizability. Moreover, while this approach proves beneficial

for capturing subtle abnormal characteristics in EEG signals, it

may be sensitive to variations in signal alignment and time-

dependent patterns. Different EEG recording setups or variations

in patient-specific factors could introduce spatial and temporal

misalignments, potentially affecting the network’s performance.

Therefore, future research should focus on developing more

robust techniques for positional feature encoding that can adapt
to different recording setups and account for these variations,

ensuring the network’s stability and reliability across diverse

EEG datasets. By addressing this limitation, we can enhance the

network’s applicability and strengthen its performance in real-

world clinical scenarios.
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