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In this study, we focus on training recurrent spiking neural networks to

generate spatiotemporal patterns in the form of closed two-dimensional

trajectories. Spike trains in the trained networks are examined in terms of their

dissimilarity using the Victor–Purpura distance. We apply algebraic topology

methods to the matrices obtained by rank-ordering the entries of the distance

matrices, specifically calculating the persistence barcodes and Betti curves. By

comparing the features of di�erent types of output patterns, we uncover the

complex relations between low-dimensional target signals and the underlying

multidimensional spike trains.
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1 Introduction

The challenge of understanding how spatiotemporal patterns of neural activity give rise

to various sensory, cognitive, and motor phenomena in nervous systems is a significant

task in computational and cognitive neuroscience. A prominent paradigm for proposing

hypotheses about potential mechanisms involves training recurrent neural networks on

target functions, considering biological constraints and relating dynamic and structural

features in the obtained networks to characteristics of inputs and outputs (Sussillo, 2014;

Barak, 2017; Yang and Wang, 2020; Amunts et al., 2022; Maslennikov et al., 2022).

This approach is in line with a more traditional research domain of finding dynamical

mechanisms underlying various spatiotemporal patterns observed in the brain (traveling

waves, oscillatory rhythms in different frequency domains, chaotic or disordered spike

firing etc.) (Liu et al., 2022a,b; Yu et al., 2023a,b), which is highly interdisciplinary and

borrows different approaches from physics and mathematics.

An interdisciplinary approach has emerged at the intersection of computational

neuroscience, machine learning, and non-linear dynamics. This approach considers

similarities in time-dependent processes in biological brains and artificial neural networks

as consequences of computations through population dynamics (Marblestone et al., 2016;

Hassabis et al., 2017; Cichy and Kaiser, 2019; Vyas et al., 2020; Dubreuil et al., 2022;

Ramezanian-Panahi et al., 2022). Works in this direction focus on training networks

of rate neurons on cognitive-like and sensorimotor neuroscience-based tasks, revealing

computational principles for completing target tasks in terms of dynamics, functional
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specialization of individual neurons, and coupling structure

(Sussillo and Abbott, 2009; Mante et al., 2013; Sussillo and

Barak, 2013; Abbott et al., 2016; Chaisangmongkon et al., 2017;

Maslennikov and Nekorkin, 2019, 2020; Maslennikov, 2021).

Real neural networks differ from rate-based models, primarily

in that they produce sequences of action potentials or spikes.

To account for this important aspect, another class of neural

networks—spiking ones—has been developed. On the one hand,

they are more biologically realistic in producing firing patterns of a

similar structure, leading to a more thorough comparison between

artificial and biological spiking networks in their dynamics and

structural mechanisms of functioning (Eliasmith et al., 2012; Gilra

and Gerstner, 2017; Kim et al., 2019; Lobo et al., 2020; Pugavko

et al., 2020, 2023; Amunts et al., 2022). On the other hand, spiking

networks are the next-generation class of neural networks that

are capable of energy-efficient computations when performed on

specialized neuromorphic chips (Schuman et al., 2022). Although

they can be obtained from convenient neural networks using some

conversion techniques, to take their full advantage, one needs to

use specific algorithms to train them (Demin and Nekhaev, 2018;

Neftci et al., 2019; Tavanaei et al., 2019; Bellec et al., 2020; Dora and

Kasabov, 2021). Spiking neural networks have demonstrated their

capabilities in various applications including processing signals of

different modalities (Bing et al., 2018; Auge et al., 2021; Yamazaki

et al., 2022), robotics (Lobov et al., 2020, 2021; Angelidis et al.,

2021), and more generally in brain-inspired artificial intelligence

tasks and brain dynamics simulations (Zeng et al., 2023).

As in the case of biological neural systems, artificial spiking

networks are hardly interpreted when they perform complex motor

or cognitive-like tasks. While rate-based neural networks organize

their dynamics along smooth manifolds which can be often studied

as projections to low-dimensional subspaces, for spiking networks,

such procedure in general may not be done (Muratore et al.,

2021; Cimeša et al., 2023; DePasquale et al., 2023). One of the

promising approaches to characterize spiking patterns is methods

of algebraic topology. Such tools as persistent homology analysis

have been used in relating spike patterns with functions of neural

networks (Dabaghian et al., 2012; Petri et al., 2014; Curto, 2017;

Bardin et al., 2019; Santos et al., 2019; Sizemore et al., 2019;

Naitzat et al., 2020; Billings et al., 2021; Guidolin et al., 2022)—both

biological and artificial—and more widely for studying topological

aspects of dynamical systems (Maletić et al., 2016; Stolz et al., 2017;

Salnikov et al., 2018; Myers et al., 2019).

In this study, we explore topological features in spiking

neural networks trained to generate low-dimensional target

patterns. We study recurrent networks in the class of

reservoir computers (Maass et al., 2002; Lukoševičius and

Jaeger, 2009; Sussillo, 2014) where training only occurs

at the output connections. After training, the networks

produce spiking dynamics which underlie the generation of

output patterns, and our goal is to study how topological

features of the spike trains carry information about output

patterns in terms of persistence barcodes and Betti curves.

In Section 2, we present the system under study and

the mkey findings of our study. Section 3 sums up the

results and Section 4 gives particular details of the model

and methods.

2 Results

2.1 Training recurrent spiking neural
networks to generate target outputs

We consider recurrent networks of spiking neurons trained to

generate two-dimensional spatiotemporal signals and study how

topological signatures of their spike patterns relate to the readout

activity. The pipeline of our study is schematically presented in

Figure 1. The neurons are randomly connected with sparse links

whose weights are drawn from Gaussian distribution and kept

fixed. The structure of links is determined by the adjacency matrix

A. Two scalar outputs (which can be considered as one vector

output) x̂(t) and ŷ(t) linearly read out the filtered spiking activity

of the recurrent network via output weight vectors w1 and w2.

The output signals also send feedback connections given in matrix

U to the recurrent neural network. While the feedback links are

initialized and kept fixed as the recurrent ones, the output links

are changed during training in order to minimize the error e(t)

between the target pattern [x(t), y(t)] and the real output signals

x̂(t), ŷ(t), see Figure 1A. Such training setting is a particular case of

the reservoir computing paradigm in which the weights only in the

last layer are trained. In this study, training is made by the FORCE

method (see details in Section 4).

The networks we study consist of leaky integrate-and-fire

neurons with an absolute refractory period, and the output

trajectories are chosen as closed polar curves, see details in

Section 4. After training, the networks are capable of producing

these two-dimensional signals which can be treated as target motor

patterns produced by spiking activity, see Figure 1B. Our purpose

is to relate the spiking patterns of the trained neural networks with

the target trajectories. The output signals are produced as weighted

sums of the firing-rate activity, but the question is to what extent

the detailed spike trains—not the averaged rates—are responsible

for producing target patterns? To answer this question, we measure

how dissimilar individual spike trains are from each other. There

are many correlation-based characteristics which enable to quantify

similarity between signals produced by neurons, but they do not

capture the fine structure of spike timing. Here, we adopt the

method proposed by Victor and Purpura to compute a special

quantity—the Victor–Purpura (VP) distance which considers a

spike sequence as a point in some metric space. We calculate

a matrix of VP distances where each entry (i, j) quantify how

dissimilar or distant are the spike trains produced by the i-th and j-

th neurons. After that we transform the obtained distance matrices

by rank ordering their entries. Then, we apply the method of

algebraic topology—the persistent homology—to the latter matrix

and obtain the so-called persistence barcodes and Betti curves, see

Figure 1C. These topological signatures are detailed characteristics

of spike patterns responsible for the generation of the patterns

under study, so we study how the spiking topology features relate

to low-dimensional output signals.

We applied the proposed pipeline to different types of teacher

signals but in order to conveniently visualize and easily understand

topological features of the target patterns themselves, we show

the results for four polar closed curves having different number

of holes, as shown in Figure 2. The figures in fact show the real
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FIGURE 1

Flowchart of the study. (A) Training a spiking neural network to generate a target trajectory at the output by the FORCE method. (B) After training, the

self-sustained spiking patterns support the generation of the pattern of interest. (C) Spike trains are analyzed in several steps. First, matrix D of the

Victor–Purpura distances is calculated. Second, matrix M obtained by rank ordering the entries of D. Finally, we apply several approaches of the

algebraic topology, namely, we compute the persistent homology of the rank-ordered matrix obtaining persistence barcodes and Betti curves which

give topological signatures of the spiking patterns.

outputs perfectly matching the target signals and having a small

noisy component resulting from the spiking nature of the network.

In terms of individual spiking activity, different neurons

in the trained networks fire at various rates. Namely, within

particular segments of the target pattern some neurons actively

generate action potentials while other are silent and start to fire

in further segments of the pattern. The overall network activity

can be characterized by the mean firing rate as the average

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2024.1363514
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Maslennikov et al. 10.3389/fncom.2024.1363514

FIGURE 2

Examples of output trajectories [x(t), y(t)] produced by the trained recurrent spiking neural network: (from left to right) a circle, two-petal, three-petal,

and four-petal polar roses.

number of spikes per second and per neuron. Figures 3A, C, E, G

shows evolving mean firing rates in the networks, producing four

corresponding target patterns, as shown in Figure 2. Notably, for

all the cases, the firing rate changes within the interval of 20–80 Hz

except the simplest circle target pattern where the firing rate varies

within the narrow interval of 72–84 Hz. For target signals in the

form of multipetal roses, the firing rate increases and decreases

following each petal, see Figures 3C, E, G. The corresponding spike

rasterograms shown in Figures 3B, D, F, H indicate that rises and

falls of the mean firing rate are supported by the activity of different

neurons. Therefore, although output patterns are produced by

filtered spikes, i.e., instant firing rates of neurons, one cannot relate

the rate activity with the properties of the output pattern in a direct

way. Moreover, the temporal structure—not only rates—of spikes

is responsible for generating output patterns of different forms.

2.2 Distance matrices for spike trains in the
trained neural network

To compare different neurons in terms of dissimilarities

between their spike trains, we apply the method proposed by Victor

and Purpura (see Guidolin et al., 2022 and works cited therein).

Namely, this method endows a pair of spike trains with a notion

of distance. This is in contrast with the frequently used method to

quantify pairs of neuronal responses by the rate-based correlations.

Spike trains of some finite length are considered as points in an

abstract space where a special metric rule is defined which assigns

a non-negative number Dij to each pair of points i, j. The Victor–

Purpura (VP) distance has several basic properties required to be a

true metric, namely, it vanishes only for the pair of identical spike

trains (Dii = 0) and it is positive otherwise (Dij > 0, i 6= j), it

is symmetrical (Dij = Dji), and it fulfills the triangle inequality

(Dik ≤ Dij + Djk). The VP distance between spike trains is defined

as the minimum cost of transforming one spike train into the other

via the addition or deletion of spikes, shift of spike times, or change

in the neuron of origin of the spikes. Each modifying move is

characterized by cost q which controls the timescale for shifts of

spikes. In general, there is a family of distances defined in this way

which can capture the sensitivity to the neuron of origin of each

spike. Here, we use the basic VP metric which assigns cost q = 1

per unit time to move a spike (see details in Section 4).

For each of the four target patterns illustrated here, we collect

spike trains S(i) = [t
(i)
1 , t

(i)
2 , . . . , t

(i)
si ], i = 1, . . . ,N for the period

of 1 s (the duration of the target generation). Then, we calculate

the VP distances for each pair of spike trains and obtain matrices

D = [Dij], as shown in Figure 4. These matrices are symmetric

and reflect the intricate temporal structure of the spike patterns

supporting corresponding output trajectories. Notably, even at

this stage, one can make several qualitative conclusions about

differences in spike patterns relating to different target outputs.

Despite similar ranges of the firing rate varying for all targets, as

shown in Figures 3A, C, E, G, matrices of VP distances for their

spike trains have distinct differences. The simplest circle target

correspond to the matrix where most of entries take similar values

in the middle of the range of possible distances (see Figure 4A).

For multi-petal closed trajectories, the maximum distance becomes

smaller for increasing the number of holes in the output patterns,

cf. Figures 4B–D. Moreover, less-petal polar roses require more

neurons that produce less distant spike trains.

To get more insight into intricate structure of spike trains,

following Giusti et al. (2015) and Guidolin et al. (2022), we

transform the obtained matrices by rank ordering their entries.

Namely, given a matrix of VP distances Dij with zeros on its main

diagonal, we consider the entries of its above-diagonal part and

replace them by natural numbers 0, 1, . . . in ascending order of

their value. The below-diagonal part of the rank-ordered matrix

is completed symmetrically, thus resulting in the rank-ordered

matrix M = [Mij]. Thus, the more VP distance Dij, the smaller

the corresponding entry Mij. Finally, we normalize the entries of

the latter matrix by the maximum N(N − 1)/2 and reindex in

descending order of the individual firing rate of the corresponding

neurons, thus obtaining matrix M = [Mij] for four target patterns

of interest, as shown in Figure 5.

The smallest values of Mij correspond to the pairs of spike

trains which are themost dissimilar, and the highest entries indicate

most closest neurons in the Victor–Purpura sense. Notably, less
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FIGURE 3

Instant firing rate of the full network averaged over 20 ms for four di�erent target outputs shown in Figure 2 (left column). Corresponding spike trains

of 100 randomly chosen neurons (right column). For the circle target output, the firing rate changes within the interval of 72–84 Hz (A) and the

corresponding spike train does not exhibit any distinct phases (B). For the target patterns in the form of polar roses (C, E, G), the network firing rate

varies within the band of 20–80 Hz making discernible rise-fall excursions for each petal of the output trajectory. The corresponding spike trains (D,

F, H) contain the same number of distinct phases as the number of petals in the target pattern.
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FIGURE 4

Matrices of the Victor–Purpura distance D = [Dij] obtained for spike trains underlying the generation of four di�erent target outputs in Figure 2: (A) a

circle, (B) two-petal, (C) three-petal, and (D) four-petal polar roses. More distant neurons shown by red entries fire most dissimilar spike trains while

less distant ones given by blue entries generate comparable spike patterns. The matrices show that di�erent target patterns require special

organization of spike trains.

active neurons with largest indices are the most similar between

each other, see the up-right parts of matrices in Figure 5, and far

away from the most active neurons. The down-left part of rank-

ordered matrices correspond to neurons which fire most actively

during the task implementation and thus mostly contributing to

the output patterns. Their spike trains show highly complicated

structure which depends on the target pattern. To characterize the

structure of the relations between the core neurons, we take 100

most active ones and study the topological features of the graph of

their rank-ordered VP distances.

2.3 Persistent homology of rank-ordered
matrix

Most frequently used tool in topology data analysis is persistent

homology. While initially this framework has been developed for

static data sets, many ideas are adopted to studying time-varying

dynamic data (Petri et al., 2014; Curto, 2017; Stolz et al., 2017;

Myers et al., 2019; Santos et al., 2019). Homology refers to certain

topological properties of data, whereas persistence reflects the

properties which are maintained through multiple scales of the

data.

Our set of neurons and the corresponding spike trains form

a point cloud of vertices for which a notion of distance collected

in M is determined. This set of vertices form zero-dimensional

simplices while one-dimensional simplices are the edges between

them. Imagine each vertex is surrounded by a circle of radius ρ,

and this value is gradually increasing starting from zero. If the circle

centered in vertex i has radius ρ larger than the distance Mij to

vertex j, the pair of nodes i and j are considered coupled and form

a one-dimensional simplex. Initially (ρ = 0), all the vertices are

isolated, hence they form a set of zero-dimensional simplices and

there is no one-dimensional simplices. When radius becomes such
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FIGURE 5

Matrices M = [Mij] produced by rank ordering and normalization of the entries in the corresponding VP matrices D = [Dij] shown in Figure 4 for four

di�erent target outputs, as shown in Figure 4: (A) a circle, (B) two-petal, (C) three-petal, and (D) four-petal polar roses. The smaller entries (blue) of

these matrices M correspond to most dissimilar spike trains while the larger ones (red) indicate the closest neurons in term of VP distance. The

neurons here are reordered based on the individual average firing rates, thus the units with a smaller index produce more spikes during trials than

those with larger indices. The form of the matrices emphasize that neurons that produce spikes with close firing rates are closer to each other than

to those producing a greatly di�erent number of spikes. However, di�erent target patterns are characterized by individual signatures.

that some pair of vertices become coupled, a new one-dimensional

simplex appears while zero-dimensional simplices corresponding

to the vertices disappear. Such gradual increase of the radius is

called filtration and can be presented in the form of persistence

barcodes, as shown in Figure 6. Here, parameter ρ indicates the

radius of circles surrounding each vertex and the bars show zero-

and one-dimensional simplices: at which values of ρ they appear

and when dissapear.

In the top subfigures, the number of initially existing zero-

dimensional simplices is equal to the chosen number of most

active neurons (100), and with increasing filtration parameter ρ,

the number of bars gradually decreases, finally leading to one

remaining simplex corresponding to the connected component

which contains all the vertices. In the bottom subfigures, the

barcodes show the birth and death of one-dimensional simplices

with increasing filtration parameter. Altogether, these persistence

barcodes describe topological signatures of spike trains relating

to most active neurons which mostly contribute to generating

particular target outputs.

To summarize the filtration process, the number of persisting

topological invariants for particular values of ρ is plotted in

the form of Betti curves shown in Figure 7. These generalizing

curves show the course of emergence and disappearance of zero-

dimensional (left column) and one-dimensional (right column)

simplices in the point clouds formed by spike trains of most

active neurons. The number of zero-dimensional simplices shows

the distinct monotonically decreasing dependence on the filtration

parameter. The most sharp drop is observed for the two-petal

target pattern (Figure 7C) while the one-, three-, and four-hole

trajectories result in a smoother decrease until the threshold value

of ρ, in turn, slightly increases around ρ = 0.4 with increasing

number of holes, cf. Figures 7A, E, G. The number of one-

dimensional simplices shows a more intricate structure where the

maximum is in complex dependence on the features of the target

output. The largest one relates to the two-petal polar rose and

the smallest maximum to the three-petal one while the remaining

targets lead to the plots with with similar maxima.

Comparing these figures with the corresponding barcodes

in Figure 6 and matrices in Figure 5, one concludes that the

chosen target patterns which have easily explainable forms in

terms of topology require spike trains which are characterized

by topologically complex characteristics. We found that there is
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FIGURE 6

Barcodes showing the persistence of zero-dimensional and one-dimensional simplices for 100 most active neurons taken from the matrices shown

in Figure 5 for four di�erent target outputs: (A) a circle, (B) two-petal, (C) three-petal, and (D) four-petal polar roses. Bars in the top subfigures show

existence of zero-dimensional simplices and those in bottom subfigures indicate the birth and death of one-dimensional simplices. These

persistence barcodes reflect complex topological structure of spike trains produced by the neural networks performing particular output trajectories.

no direct correspondence between Betti numbers of generated

trajectories and simplicial complexes built upon the spike trains.

However, topological analysis according to the proposed pipeline

allows us to extract valuable information about coding principles

of spikes at the level of precise firing timing and the topological

relations between spike trains of different neurons.

3 Discussion

We applied algebraic topology methods, specifically persistent

homology, to characterize geometry of spike trains produced by

recurrent neural networks trained to generate two-dimensional

target trajectories. We considered several easily interpreted two-

dimensional closed trajectories as the target patterns for training

recurrent spiking networks. The FORCE method is used for

supervised learning which is a particular framework of reservoir

computing, where weight modification occurs at the output layer

while recurrent connections are randomly initialized and kept

fixed. In addition, the random feedback connections from the

output provide indirect low-rank perturbation to the recurrent

matrix, thus creating the modified effective coupling architecture

capable of producing target patterns. The neural spike trains

in the trained networks were considered as points in some

metric space, where the distances between them were calculated

as cost-based Victor–Purpura quantities. We rank-ordered the

measured distances and chose one hundred most active neurons
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FIGURE 7

Betti curves for zero-dimensional (left column) and one-dimensional (right column) simplices associated with increasing filtration of the persistence

barcodes shown in Figure 6 for four di�erent target outputs: (A, B) a circle, (C, D) two-petal, (E, F) three-petal, and (G, H) four-petal polar roses. Each

curve indicates the number of simplices of particular dimension with varying filtration parameter ρ.
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for which we performed persistent homology analysis. We plotted

persistence barcodes and Betti curves, which characterize how

specific topological objects in the spiking data were preserved

under continuous transformation. We find complicated relation

between topological characteristic of spike trains and those of

target patterns. The novelty of our study is that we apply

persistence homology methods to the spiking networks trained to

autonomously generate planar output trajectories. Previously, such

methods were mostly applied to the neural networks performing

navigation tasks and consisting of neurons which fire preferentially

in particular locations in the environment—place fields. Thus, one

was able to find a one-to-one correspondence between topological

features of the environment and those of spiking patterns. Our

study is an attempt to establish regularities in a more general case

where generated trajectories do not carry navigation information

yet have clear topological interpretation.

4 Methods

4.1 Spiking neural network and target
outputs

We consider a recurrent spiking neural network consisting ofN

leaky integrate-and-fire neurons whose activity is projected intoM

scalar outputs, see Figure 1. Autonomous dynamics of the spiking

network is described by the following system (Nicola and Clopath,

2017):

τm
dvi

dt
= vrest − vi + Ibias +

N∑

j=1

aijrj, (1)

where vi is a membrane potential (voltage) of the i-th neuron, τm is

a time constant for the voltage relaxation, vrest is the resting voltage,

Ibias is an input bias current (the default value in our numerical

experiments is Ibias = 0 ), and aij are the weights describing the

strength of recurrent links. After the membrane potential reaches

the threshold vth, the neuron generates a spike and the voltage

resets to v0. During the absolute refractory period τr after the spike

generation, the voltage value remains constant at v0, i.e., during this

interval the neuron is unaffected by external stimulation.

The coupling in (1) is implemented via the double exponential

synaptic filter given by the dynamics of variables ri and hi for the

i-th neuron:

dri

dt
= −

ri

τd
+ hi,

dhi

dt
= −

hi

τr
+

1

τdτr

∑

t
(i)
k

<t

δ(t − t
(i)
k
),

(2)

where τr and τd are the synaptic rise and decay time constants,

respectively, t
(i)
k

is the moment of generation of the k-th spike by

the i-th neuron.

The coupling structure of recurrent connections is described

by the weight matrix A = [aij] whose elements are drawn from

a Gaussian distribution with zero mean and standard deviation

g(pN)−1/2 where p is a fraction of non-zero elements, g is a global

coupling strength. The output is given by M readout units whose

dynamics are determined as follows:

ẑk(t) =

N∑

i=1

wkiri(t), k = 1 . . . ,M (3)

wherewki is the weight coefficient between the i-th neuron and k-th

output (resulting in the output matrix W = [wki]), and ri(t) is the

neural firing rate filtered according to Equation (2).

The FORCE method requires that the output units send

feedback links to the spiking neurons whose weights are stored

in N × M matrix U composed of concatenated vectors uk (k =

1, . . . ,M) and whose elements are drawn randomly and uniformly

from a uniform distribution between −q and q, where q is a

feedback coupling strength. Therefore, the complete system taking

into account the recurrent and feedback links is as follows:

τm
dvi

dt
= vrest − vi + Ibias +

N∑

j=1

(aij +

M∑

k=1

uikwkj)rj,

= vrest − vi + Ibias +

N∑

j=1

ωijrj,

(4)

where matrix � = A + UW
T = [ωij] determines the efficient

topology shaped by the fixed recurrent and feedback links and the

trained output weights.

The goal of training is to modify output weights wij in such

a way that the linear readout (3) approximates the target signal:

ẑk(t) ≈ zk(t). In this study, we use two-dimensional target signals

in the form of closed polar figures which have a clear geometrical

interpretation in order to study whether it is possible to relate

distinct features of output geometry with the hidden geometry of

spike pattern produced by (4). Namely, we illustrate our results

by four target curves (5–8) for which equations governing their

generation in (x, y)-plane are as follows:

(a) a circle

xt = R cos(2π f1t), yt = R sin(2π f1t), (5)

(b) two-petal

xt = R sin(4π f1t) cos(2π f1t),

yt = R sin(4π f1t) sin(2π f1t),

φ = 2π f1t ∈ [0,π/2] ∪ [π , 3π/2]

(6)

(c) three-petal,

xt = R sin(3π f1t) cos(2π f1t),

yt = R sin(3π f1t) sin(2π f1t),
(7)

and (d) four-petal

xt = R sin(4π f1t) cos(2π f1t),

yt = R sin(4π f1t) sin(2π f1t),
(8)

polar roses.
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4.2 Force training

The output weights in matrix W are trained according to the

algorithm of first-order reduced and controlled error (FORCE)

learning adopted to spiking neural networks, see Sussillo and

Abbott (2009) and Nicola and Clopath (2017). The error e(t)

between the teaching signal and the real output is computed after

each time interval of 1t:

e(t) = ẑ(t)− z(t) = W
T(t)r(t)− z(t). (9)

In addition, a running estimate of the inverse of the correlation

matrix of the network rates P is computed as follows:

P(t) = P(t − 1t)−
P(t − 1t)r(t)r(t)TP(t − 1t)

1+ r(t)TP(t − 1t)r(t)
, (10)

where matrix P is initialized by I/α in which I is the identity matrix

and α is a learning rate parameter. Moreover, after each time period

of 1t matrix,W is trained according to the following rule based on

(9, 10):

W(t) = W(t − 1t)− P(t)r(t)e(t)T . (11)

Initially, the elements of output matrix W equal to zero,

and after each interval, 1t changes with the adaptation rule

according to Equation (11). Gradually, the values wk become

close to some stationary states. After that, the learning procedure

stops, and we have a multidimensional dynamical system of a

complex network with fixed weights. This supervisely trained

system is able to autonomously generate the target output closed

trajectories. The core structure of the network defined by the

adjacency matrix A after learning remains the same as before

learning. The trained vectors wk multiplied by the feedback vectors

uk introduce some low-rank perturbation to the coupling topology,

and the corresponding network activity dramatically changed. Such

structural perturbation leads to a global disturbance in the phase

space of the recurrent network.

4.3 Victor–Purpura distance for spike trains

Each spike train is considered to be a point in an abstract

topological space. A spike train metric is defined according to

the special rule, which assigns a non-negative number to pairs of

spike trains and expresses how dissimilar they are (Guidolin et al.,

2022). We use the variant of the spike time VP distance which is

parametrized by the cost quantity q in units of the inverse time. To

compute the VP distance, the spike trains are compared in terms of

allowed elementary steps, which can be applied to one sequence of

spike timings to get another one. The following steps and associated

costs are as follows: (a) insertion of a spike with the cost of one,

(b) deletion of a spike with the cost of one, and (c) shifting a

spike by amount of time t with the cost of qt. If q is very small,

the metric becomes the simple spike count distance. If q is very

large, all spike trains are far apart from each other, unless they are

nearly identical. For intermediate values of q, the distance between

two spike trains is small if they have a similar number of spikes,

occurring at similar times. The motivation for this construction is

that neurons which act like coincidence detectors should care about

this metric. The value of q corresponds to the temporal precision

1/q of the coincidence detector. We calculate the VP distance of

the described types using the scripts provided by the authors of this

metric: http://www-users.med.cornell.edu/~jdvicto/metricdf.html,

http://www-users.med.cornell.edu/~jdvicto/spkdm.html.

Each matrix of VP distances Dij is transformed via rank-

ordering its entries, i.e., we replace the original entries in the

above-diagonal part by natural numbers 0, 1, . . . in ascending order

of their value (Giusti et al., 2015). The below-diagonal part of

the rank-ordered matrix is obtained according to the symmetrical

transformation of the above-diagonal part. After that, the entries

are normalized by N(N − 1)/2 and reindexed in descending

order of the neural firing rates. Finally, we obtain the normalized

rank-ordered matrix M = [Mij] which contains non-linearly

transformed VP distances while having unchanged their relative

order.

4.4 Persistence barcodes and Betti curves

For the normalized rank-ordered matrices, we perform

persistence homology analysis of the following form. The set of

100 most active neurons with their spike trains are considered as

vertices in an abstract space, where the distance between the i-th

and j-th neurons are given by entryMij.

These vertices form zero-dimensional or 0-simplices, and we

introduce a filtration parameter ρ which defines the radius of

abstract circles centered at vertices. With increasing ρ, two vertices

i and j considered coupled if Mij ≤ ρ. The edge resulting

from such construction is one-dimensional or 1-simplex. With

increasing filtration parameter ρ, the number of 0-simplices and

1-simplices changed but may be unchanged or persisted over

some intervals. This property is quantified by so-called Betti

numbers, which count the number of correspondinc topological

invariants at the current filtration scale. For example, the 0-th

Betti number β0(ρ) gives the number of connected components

and the 1-st Betti number β1(ρ) counts the number of one-

dimensional simplices (edges). How particular simplex (k) emerges

and disappears is reflected in the persistence barcode which consists

of bars [ρ
(k)
b
, ρ

(k)
d
], indicating the birth ρb and death ρd values

of the filtration parameter for that simplex. Betti curves β0(ρ)

and β1(ρ) summarize this information showing how the number

of simplices of corresponding dimensions varies with increasing

filtration parameter.
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Maletić, S., Zhao, Y., and Rajković, M. (2016). Persistent topological features of
dynamical systems. Chaos 26, 053105. doi: 10.1063/1.4949472

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-
dependent computation by recurrent dynamics in prefrontal cortex.Nature 503, 78–84.
doi: 10.1038/nature12742

Marblestone, A. H., Wayne, G., and Kording, K. P. (2016). Toward an
integration of deep learning and neuroscience. Front. Comput. Neurosci. 10, 94.
doi: 10.3389/fncom.2016.00094

Maslennikov, O. V. (2021). Dynamics of an artificial recurrent neural network for
the problem of modeling a cognitive function. Izvestiya VUZ. Appl. Nonlin. Dynam.
29, 799–811. doi: 10.18500/0869-6632-2021-29-5-799-811

Maslennikov, O. V., and Nekorkin, V. I. (2019). Collective dynamics of rate
neurons for supervised learning in a reservoir computing system. Chaos 29, 103126.
doi: 10.1063/1.5119895

Maslennikov, O. V., and Nekorkin, V. I. (2020). Stimulus-induced sequential
activity in supervisely trained recurrent networks of firing rate neurons.Nonlinear Dyn.
101, 1093–1103. doi: 10.1007/s11071-020-05787-0

Maslennikov, O. V., Pugavko, M. M., Shchapin, D. S., Nekorkin, V. I., et al. (2022).
Nonlinear dynamics and machine learning of recurrent spiking neural networks.
Physics-Uspekhi 65, 10. doi: 10.3367/UFNe.2021.08.039042

Muratore, P., Capone, C., and Paolucci, P. S. (2021). Target spike patterns enable
efficient and biologically plausible learning for complex temporal tasks. PLoS ONE 16,
e0247014. doi: 10.1371/journal.pone.0247014

Myers, A., Munch, E., and Khasawneh, F. A. (2019). Persistent homology
of complex networks for dynamic state detection. Phys. Rev. E. 100, 022314.
doi: 10.1103/PhysRevE.100.022314

Naitzat, G., Zhitnikov, A., and Lim, L.-H. (2020). Topology of deep neural networks.
J. Mach. Learn. Res. 21, 1–40. doi: 10.5555/3455716.3455900

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: Bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Nicola, W., and Clopath, C. (2017). Supervised learning in spiking neural networks
with force training. Nat. Commun. 8, 2208. doi: 10.1038/s41467-017-01827-3

Petri, G., Expert, P., Turkheimer, F., Carhart-Harris, R., Nutt, D., Hellyer, P. J., et
al. (2014). Homological scaffolds of brain functional networks. J. Royal Soc. Interf. 11,
20140873. doi: 10.1098/rsif.2014.0873

Pugavko, M. M., Maslennikov, O. V., and Nekorkin, V. I. (2020). Dynamics of
spiking map-based neural networks in problems of supervised learning. Commun.
Nonlinear Sci. Numer. Simulat. 90, 105399. doi: 10.1016/j.cnsns.2020.105399

Pugavko, M. M., Maslennikov, O. V., and Nekorkin, V. I. (2023). Multitask
computation through dynamics in recurrent spiking neural networks. Sci. Rep. 13,
3997. doi: 10.1038/s41598-023-31110-z

Ramezanian-Panahi, M., Abrevaya, G., Gagnon-Audet, J.-C., Voleti, V., Rish, I., and
Dumas, G. (2022). Generative models of brain dynamics. Front. Artif. Intellig. 147,
807406. doi: 10.3389/frai.2022.807406

Salnikov, V., Cassese, D., and Lambiotte, R. (2018). Simplicial complexes
and complex systems. Eur. J. Phys. 40, 014001. doi: 10.1088/1361-6404/aa
e790

Santos, F. A., Raposo, E. P., Coutinho-Filho, M. D., Copelli, M., Stam,
C. J., and Douw, L. (2019). Topological phase transitions in functional
brain networks. Phys. Rev. E 100, 032414. doi: 10.1103/PhysRevE.100.03
2414

Schuman, C. D., Kulkarni, S. R., Parsa, M., Mitchell, J. P., Kay, B., et al. (2022).
Opportunities for neuromorphic computing algorithms and applications. Nat. Comp.
Sci. 2, 10–19. doi: 10.1038/s43588-021-00184-y

Sizemore, A. E., Phillips-Cremins, J. E., Ghrist, R., and Bassett, D. S. (2019). The
importance of the whole: topological data analysis for the network neuroscientist.
Netw. Neurosci. 3, 656–673. doi: 10.1162/netn_a_00073

Stolz, B. J., Harrington, H. A., and Porter, M. A. (2017). Persistent homology of
time-dependent functional networks constructed from coupled time series. Chaos 27,
047410. doi: 10.1063/1.4978997

Sussillo, D. (2014). Neural circuits as computational dynamical systems. Curr. Opin.
Neurobiol. 25, 156–163. doi: 10.1016/j.conb.2014.01.008

Sussillo, D., and Abbott, L. F. (2009). Generating coherent patterns of activity from
chaotic neural networks. Neuron 63, 544–557. doi: 10.1016/j.neuron.2009.07.018

Sussillo, D., and Barak, O. (2013). Opening the black box: low-dimensional
dynamics in high-dimensional recurrent neural networks. Neural Comput. 25,
626–649. doi: 10.1162/NECO_a_00409

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida,
A. (2019). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.
doi: 10.1016/j.neunet.2018.12.002

Vyas, S., Golub, M. D., Sussillo, D., and Shenoy, K. V. (2020). Computation
through neural population dynamics. Annu. Rev. Neurosci. 43, 249–275.
doi: 10.1146/annurev-neuro-092619-094115

Yamazaki, K., Vo-Ho, V.-K., Bulsara, D., and Le, N. (2022). Spiking neural networks
and their applications: a review. Brain Sci. 12, 863. doi: 10.3390/brainsci12070863

Yang, G. R., andWang, X.-J. (2020). Artificial neural networks for neuroscientists: a
primer. Neuron 107, 1048–1070. doi: 10.1016/j.neuron.2020.09.005

Yu, Y., Fan, Y., Han, F., Luan, G., andWang, Q. (2023a). Transcranial direct current
stimulation inhibits epileptic activity propagation in a large-scale brain networkmodel.
Sci. China Technol. Sci. 66, 3628–3638. doi: 10.1007/s11431-022-2341-x

Yu, Y., Han, F., and Wang, Q. (2023b). A hippocampal-entorhinal cortex neuronal
network for dynamical mechanisms of epileptic seizure. IEEE Trans. Neural Syst.
Rehabil. Eng. 31, 1986–1996. doi: 10.1109/TNSRE.2023.3265581

Zeng, Y., Zhao, D., Zhao, F., Shen, G., Dong, Y., Lu, E., et al. (2023). Braincog: a
spiking neural network based, brain-inspired cognitive intelligence engine for brain-
inspired ai and brain simulation. Patterns 4, 100789. doi: 10.1016/j.patter.2023.100789

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2024.1363514
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1063/1.4949472
https://doi.org/10.1038/nature12742
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.18500/0869-6632-2021-29-5-799-811
https://doi.org/10.1063/1.5119895
https://doi.org/10.1007/s11071-020-05787-0
https://doi.org/10.3367/UFNe.2021.08.039042
https://doi.org/10.1371/journal.pone.0247014
https://doi.org/10.1103/PhysRevE.100.022314
https://doi.org/10.5555/3455716.3455900
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1038/s41467-017-01827-3
https://doi.org/10.1098/rsif.2014.0873
https://doi.org/10.1016/j.cnsns.2020.105399
https://doi.org/10.1038/s41598-023-31110-z
https://doi.org/10.3389/frai.2022.807406
https://doi.org/10.1088/1361-6404/aae790
https://doi.org/10.1103/PhysRevE.100.032414
https://doi.org/10.1038/s43588-021-00184-y
https://doi.org/10.1162/netn_a_00073
https://doi.org/10.1063/1.4978997
https://doi.org/10.1016/j.conb.2014.01.008
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1162/NECO_a_00409
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1146/annurev-neuro-092619-094115
https://doi.org/10.3390/brainsci12070863
https://doi.org/10.1016/j.neuron.2020.09.005
https://doi.org/10.1007/s11431-022-2341-x
https://doi.org/10.1109/TNSRE.2023.3265581
https://doi.org/10.1016/j.patter.2023.100789
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	Topological features of spike trains in recurrent spiking neural networks that are trained to generate spatiotemporal patterns
	1 Introduction
	2 Results
	2.1 Training recurrent spiking neural networks to generate target outputs
	2.2 Distance matrices for spike trains in the trained neural network
	2.3 Persistent homology of rank-ordered matrix

	3 Discussion
	4 Methods
	4.1 Spiking neural network and target outputs
	4.2 Force training 
	4.3 Victor–Purpura distance for spike trains
	4.4 Persistence barcodes and Betti curves

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


