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A good intelligent learning model is the key to complete recognition of scene

information and accurate recognition of specific targets in intelligent unmanned

system. This study proposes a new associative memory model based on the

semi-tensor product (STP) of matrices, to address the problems of information

storage capacity and association. First, some preliminaries are introduced to

facilitate modeling, and the problem of information storage capacity in the

application of discrete Hopfield neural network (DHNN) to associative memory

is pointed out. Second, learning modes are equivalently converted into their

algebraic forms by using STP. A memory matrix is constructed to accurately

remember these learning modes. Furthermore, an algorithm for updating

the memory matrix is developed to improve the association ability of the

model. And another algorithm is provided to show how our model learns and

associates. Finally, some examples are given to demonstrate the e�ectiveness

and advantages of our results. Compared with mainstream DHNNs, our model

can remember learning modes more accurately with fewer nodes.

KEYWORDS

associative memory model, discrete Hopfield neural network (DHNN), information
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1 Introduction

Under complex circumstances, autonomous perception and scene understanding

of the environment are a prerequisite for intelligent unmanned systems to operate

autonomously (Gonzalez-Jorge et al., 2017; Muniraj and Farhood, 2019). It directly affects

whether the task can be successfully completed. By utilizing multiple sensors to collaborate

with each other, the environmental feature information is extracted, and a sufficient

number of learning datasets with precise calibration are established (Balestrieri et al., 2021).

Then, building an intelligent learning model (Jafari and Xu, 2018; Eski and Kus, 2019; Guo

et al., 2022; Kang et al., 2022) can achieve complete recognition of scene information and

accurate recognition of designated targets by intelligent unmanned systems.

There are many intelligent learning models, such as neural networks (Ding et al.,

2019; Pasa et al., 2022; García-Treviño et al., 2024) and fuzzy control (Zhang et al.,

2021; Su et al., 2023), etc. They are effective in modeling and dealing with many non-

linear systems. The discrete Hopfield neural network (DHNN) is a classical neural

network (Tank and Hopfield, 1986; Kobayashi, 2019a). It adopts a fully interconnected

and completely feedback structure. Therefore, the output of any neuron is fed back to

all neurons as inputs through connection weights. Its purpose is to enable the output

of any neuron to be controlled by the output of all neurons so that the outputs

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2024.1384924
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2024.1384924&domain=pdf&date_stamp=2024-03-19
mailto:tianhui@cqupt.edu.cn
https://doi.org/10.3389/fncom.2024.1384924
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2024.1384924/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Hou et al. 10.3389/fncom.2024.1384924

of all neurons can be mutually constrained. Associative memory is

the primary function of DHNN. The working process is divided

into two stages: memory and association. In the memory stage,

through design or learning of network weights, the network has

several equilibrium states, which are also known as attractors. These

attractors are the extreme points of the energy function of the

DHNN. The memory process is to store those modes that need

to be remembered as network attractors. The associative stage is

such a process that the associative memory network reaches a stable

state from a given state through the evolution of dynamics, i.e.,

converging to the attractors and recalling stored modes.

The number of attractors represents the memory capacity or

storage capacity of the network. It is actually the maximum number

of non-interfering modes stored in the network under a certain

association error tolerance. The more attractors a network has,

the larger the information storage capacity is and the stronger the

associative ability is. In fact, when using DHNN for associative

memory, it is constrained by memory capacity and sample

differences (Kobayashi, 2019b). If there are too many samples to

memorize the network may converge to a pseudo mode that is

different from any learning mode. Moreover, when the network

scale is fixed, the number of modes that can be remembered is

very limited. In general, the maximum number of modes that

a network can store is called the network capacity. It is related

to size, algorithm, and vector distribution of memory modes of

the network. As the number of memory modes increases, some

memory modes intersect with each other. When the number

of modes exceeds the network capacity, the network not only

gradually forgets the modes previously memorized but also cannot

remember the new modes. For a DHNN with n neurons, the

maximum number of modes that can be remembered is 0.15n by

appropriately selecting the connection weight matrix. It indicates

that when the network size is fixed, the more the modes to be

remembered are, the greater the likelihood of making mistakes

during the association is. On the contrary, the lower the allowable

error is, the smaller the information storage capacity is.

To solve the problem of information storage capacity, this

study proposes a new associative memory model. The main

mathematical tool is the semi-tensor product (STP) of matrices,

which is proposed and developed by Cheng’group (Cheng and Qi,

2009). STP extends ordinarymatrixmultiplication to a general case,

where the number of columns in the front matrix is not required

to equal to that of rows in the back matrix. It not only retains

the basic properties of the ordinary matrix multiplication but also

has some special properties, such as pseudo commutativity. After

development in the past two decades, STP has made significant

progress in both theory and application, including logical control

systems (Zhang et al., 2016; Tian et al., 2017; Tian and Hou,

2019), finite game (Zheng et al., 2022; Hou and Tian, 2023),

and finite automata (Zhang et al., 2020; Yan et al., 2023), and

so on.

The main contributions are summarized as follows:

1. A new associative memory model is proposed. Compared

with the mainstream DHNNs, the new model can accurately

remember more learning modes with fewer nodes.

2. Unlike most existing models that perform mode recognition

after learning, our model automatically learns when needed.

3. The accuracy of mode recognition can be controlled

effectively using our recognition model.

The rest of the study is organized as follows. In Section

2, some preliminaries are introduced, including DHNN,

outer product method, and STP. In addition, the problem

of information storage capacity is pointed out. Section 3

proposes a new memory model and its update algorithm.

The learning and association process of the new model is

provided in another algorithm. Section 4 gives an illustrative

example, which is followed by a brief conclusion mentioned in

Section 5.

2 Materials and methods

2.1 Preliminaries

2.1.1 Notations
For ease of expression, some notations are first introduced.

• R
n: the set of all n-dimensional real vectors;

• Mm×n: the set ofm× n dimensional real matrices;

• Coli(M) (Rowi(M)): the ith column (row) of matrixM;

• 0: a zero column vector with a appropriate dimension;

• δ
i
n : = Coli(In), the ith column of n × n dimensional identity

matrix In;

• 1n : = Col(In) = {δin | i = 1, 2, · · · , n}, the set of all columns

of In;

• r = [r1, · · · , rn]
T ∈ R

n is a probabilistic vector, if ri ≥ 0, i =

1 · · · , n, and
n
∑

i=1
ri = 1.

2.1.2 Discrete Hopfield neural network
Discrete Hopfield Neural Network (DHNN) is a

type of binary neural network. Each neuron’s output

only takes two states 1 and –1, representing activation

and inhibition, respectively. It mainly has the following

characteristics:

(1) Each unit has no self feedback (no connection to itself). That

is, wii = 0.

(2) The connection weights between units are symmetrical, i.e

wij = wji, ∀i 6= j.

For a DHNN with n binary units, it is easy to know that the

cardinality of its state space is 2n.

The associative memory is an important function of

DHNN. The core of implementing associative memory is

to design a set of appropriate network connection weights

and thresholds, based on energy extreme points (also known

as learning modes). There are many design methods and

learning algorithms for connection weight of DHNN, such

as outer product method, projection learning rule, pseudo

inverse method, and eigen structure method, etc. However,

the most commonly used method is the outer product method

that is based on Hebb learning rules. We recall it in the

following.
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Assume that the network has n nodes and the

connection weight matrix of the network is W. If

the network processes m pairwise orthogonal

pattern samples, i.e., the learning task set of

the network is Xk = (xk1, x
k
2, · · · , x

k
n)

T , k = 1, 2, · · · ,m, W is

calculated as follows:

W = α

m
∑

k=1

[Xk(Xk)T − I], (1)

where α is a positive constant.

Algorithm 1. Outer product method based on Hebb learning rules.

2.1.3 Semi-tensor product of matrices
Since the main mathematical tool used in this study is STP, it is

necessary to recall it here.

Definition 1. Cheng and Qi (2010) Let A ∈ Mm×n, B ∈ Mp×q, and

denote the least common multiplier lcm(n, p) of n and p by r. Then,

the STP of A and B is

A⋉ B : = (A⊗ I r
n
)(B⊗ I r

p
) ∈ Mmr

n ×
qr
p
,

where⊗ is the Kronecker product of matrices.

It is noted that STP has properties similar to those of

the ordinary matrix products. Especially, when n = p, STP

happens to be the ordinary matrix product. Therefore, STP is

generalization of the ordinary matrix product. Throughout this

study, the matrix products are STP and the symbol ⋉ is usually

omitted.

Here, it is necessary to recall an important

property. Readers refer to Cheng et al. (2011) for

more details.

Let x = (x1, x2, · · · , xm)
T ∈ R

m, y = (y1, y2, · · · , yn)
T ∈ R

n.

Then

x⋉ y = (x1y1, · · · , x1yn, · · · , xmy1, · · · , xmyn)
T ∈ R

mn.

2.2 Problem analysis

Although DHNN has strong associative memory

function, it also has some shortcomings. They are listed

as follows:

• The limitation of memory capacity.

• When the memory modes are relatively close, the mode

associated or recovered by the network may not be the closest

to the input one.

• In some cases, the mode recalled by the network is not any of

the memory modes. It leads to falling into a “pseudo state.”

Next, an example will be used to illustrate these problems faced

when applying DHNN to associative memory.

Example 1. Consider a DHNN with five nodes, whose learning

modes are X1 = (1, 1,−1, 1, 1)T , X2 = (1,−1, 1,−1,−1)T ,

X3 = (−1, 1, 1,−1, 1)T , and X4 = (−1,−1,−1, 1, 1)T . Calculate

its connection weight matrixW and verify its memory ability.

First, according to Equation 1 in Algorithm 1, the connection

weight matrixW can be computed as follows:

W =X1(X1)T + X2(X2)T + X3(X3)T + X4(X4)T − 4I

=















1

1

−1

1

1















(

1 1 −1 1 1
)

+















1

−1

1

−1

−1















(

1 −1 1 −1 −1
)

+















−1

1

1

−1

1















(

−1 1 1 −1 1
)

+















−1

−1

−1

1

1















(

−1 −1 −1 1 1
)

− 4















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1















=















1 1 −1 1 1

1 1 −1 1 1

−1 −1 1 −1 −1

1 1 −1 1 1

1 1 −1 1 1















+















1 −1 1 −1 −1

−1 1 −1 1 1

1 −1 1 −1 −1

−1 1 −1 1 1

−1 1 −1 1 1















+















1 −1 −1 1 −1

−1 1 1 −1 1

−1 1 1 −1 1

1 −1 −1 1 −1

−1 1 1 −1 1















+















1 1 1 −1 −1

1 1 1 −1 −1

1 1 1 −1 −1

−1 −1 −1 1 1

−1 −1 −1 1 1















−















4 0 0 0 0

0 4 0 0 0

0 0 4 0 0

0 0 0 4 0

0 0 0 0 4















=















0 0 0 0 −2

0 0 0 0 2

0 0 0 −4 −2

0 0 −4 0 2

−2 2 −2 2 0















.

Next, we use W that is obtained above to verify the memory

ability of the network.

sgn(WX1) =sgn(















0 0 0 0 −2

0 0 0 0 2

0 0 0 −4 −2

0 0 −4 0 2

−2 2 −2 2 0





























1

1

−1

1

1















)

= sgn(
(

−2 2 −6 6 4
)T

) =
(

−1 1 −1 1 1
)T

6= X1.
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sgn(WX2) =sgn(















0 0 0 0 −2

0 0 0 0 2

0 0 0 −4 −2

0 0 −4 0 2

−2 2 −2 2 0





























1

−1

1

−1

−1















)

= sgn(
(

2 −2 6 −6 −8
)T

) =

(

1 −1 1 −1 −1
)T

= X2.

sgn(WX3) =sgn(















0 0 0 0 −2

0 0 0 0 2

0 0 0 −4 −2

0 0 −4 0 2

−2 2 −2 2 0





























−1

1

1

−1

1















)

= sgn(
(

−2 2 2 −2 0
)T

) =

(

−1 1 1 −1 −1
)T

6= X3.

sgn(WX4) =sgn(















0 0 0 0 −2

0 0 0 0 2

0 0 0 −4 −2

0 0 −4 0 2

−2 2 −2 2 0





























−1

−1

−1

1

1















)

= sgn(
(

−2 2 −6 6 4
)T

) =

(

−1 1 −1 1 1
)T

6= X4.

From the above results, it can be observed that the network

cannot perform normal associative memory on learning modes X1,

X3, and X4 because the input modes X1, X2, X3, and X4 are non-

orthogonal. When the modes to be memorized are similar, it is

easy for them to intersect with each other. The network cannot

fully distinguish thesemodes.Moreover, errorsmay still occur, even

if a memorized mode is used as the object to be recognized. In

fact, for non-orthogonal modes of a DHNN with n neurons, the

information storage capacity is generally 0.13n–0.15n. When the

number of storage modes exceeds 0.15n, the associative memory

of the network may go wrong.

3 Results

3.1 A new memory model

For any learning mode Xk = (l1, l2, · · · , ln)
T of a DHNN with

n nodes, we first transform it into an equivalent vector Yk =

(k1, k2, · · · , kn)
T , where

ki =

{

li, if li = 1,

0, otherwise.

Next, we continue to give the algebraic form of Yk. δ
2−i
2 is

identified with i, i = 0, 1. Then, (k1, k2, · · · , kn)
T can be replaced by

(δ2−k1
2 , δ2−k2

2 , · · · , δ
2−kn
2 )T . From the study by Cheng et al. (2011),

(δ2−k1
2 , δ2−k2

2 , · · · , δ
2−kn
2 )T is equivalent to δ

rk
2n , where rk = (1 −

k1)2
n−1 + (1− k2)2

n−2 + · · · + (1− kn−1)2+ (2− kn):

FIGURE 1

Recognition process of the memory model (Equation 2) proposed in

the study.

Yk = (k1, k2, · · · , kn)
T ∼ δ

2−k1
2 δ

2−k2
2 · · · δ

2−kn
2 = δ

rk
2n ,

where δ
rk
2n is called the algebraic form of the learning mode Yk.

In the following, we give a new memory model based on

algebraic forms of learning modes.

Theorem 1. Assume that n-dimensional modes Yk, k =

1, 2, · · · ,m, are required to be memorized, whose algebraic

forms are δ
rk
2n , respectively. A memory matrix is designed as

follows:

L =

m
∑

k=1

δ
rk
2n (δ

rk
2n )

T . (2)

Then, all modes Yk are memorized by L and fully recognized.

PROOF. For any mode Y i, its algebraic form is δ
ri
2n . Then,

Lδ
ri
2n =

m
∑

k=1

δ
rk
2n (δ

rk
2n )

T
δ
ri
2n .

Since (δ
ri
2n )

T
δ
ri
2n = 1 and (δ

rk
2n )

T
δ
ri
2n = 0, k 6= i, we have

Lδ
ri
2n = δ

ri
2n (δ

ri
2n )

T
δ
ri
2n = δ

ri
2n . (3)

Because of the arbitrariness of selecting Y i, Equation 3 implies

that all modes Yk are memorized and recognized by L. The proof is

completed.

For convenience, we denote Rowi(Colj(L)) by lij. It is easy to

observe that

lij =

{

1, if i = j = rk,

0, otherwise.
(4)

From Equation 4, we find: (1) thememorymatrix L is a Boolean

matrix, (2) only on the main diagonal, there may be non-zero

elements. For anymode δ
ri
2n to be recognized, if Lδ

ri
2n = 0, this mode

is not a stored standard learning mode. Otherwise, Lδ
ri
2n must be

δ
ri
2n , which means the mode δ

ri
2n can be recognized accurately. The

recognition process is shown in Figure 1.

Example 2. The four learning modes in Example 1 are used to

verify the memory ability of the new memory model (Equation 2).

First, it is easy to calculate algebraic forms of the four learning

modes as follows:

Y1 = (1, 1, 0, 1, 1)T ∼ δ
1
2δ

1
2δ

2
2δ

1
2δ

1
2 = δ

5
32,

Y2 = (1, 0, 1, 0, 0)T ∼ δ
1
2δ

2
2δ

1
2δ

2
2δ

2
2 = δ

12
32 ,

Y3 = (0, 1, 1, 0, 1)T ∼ δ
2
2δ

1
2δ

1
2δ

2
2δ

1
2 = δ

19
32 ,

Y4 = (0, 0, 0, 1, 1)T ∼ δ
2
2δ

2
2δ

2
2δ

1
2δ

1
2 = δ

29
32 .

(5)
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According to Equation 2, the memory matrix L is as follows:

L = δ
5
32(δ

5
32)

T + δ
12
32 (δ

12
32 )

T + δ
19
32 (δ

19
32 )

T + δ
29
32 (δ

29
32 )

T

=



















































































































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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..

(6)

Next, we verify the memory ability of L.

LY1 = [δ532(δ
5
32)

T + δ
12
32(δ

12
32)

T + δ
19
32(δ

19
32)

T + δ
29
32(δ

29
32)

T]δ532 = δ
5
32

= Y1,

LY2 = [δ532(δ
5
32)

T + δ
12
32(δ

12
32)

T + δ
19
32(δ

19
32)

T + δ
29
32(δ

29
32)

T]δ1232 = δ
12
32

= Y2,

LY3 = [δ532(δ
5
32)

T + δ
12
32(δ

12
32)

T + δ
19
32(δ

19
32)

T + δ
29
32(δ

29
32)

T]δ1932 = δ
19
32

= Y3,

LY4 = [δ532(δ
5
32)

T + δ
12
32(δ

12
32)

T + δ
19
32(δ

19
32)

T + δ
29
32(δ

29
32)

T]δ2932 = δ
29
32

= Y4.

(7)

Remark 1. From the verification results in Equation 7, it is found

that the four learning modes in Example 1 can be completely

remembered by our memory model (Equation 6) without any

errors. Furthermore, it can be directly verified that all modes from

12n can be accurately remembered if learned by our model.

Although this new memory model (Equation 2) can remember

all modes accurately, its associative ability (robustness) is not good.

Especially, in the real environment, there always be interference

signals that may cause bit errors and then lead to recognition error.

Therefore, it is necessary to improve the associative ability of the

memory model.

3.2 Update the associative memory matrix
L

As mentioned above, there are always interference signals

that cause some bit errors in a realistic environment. When the

error is within the allowable range, the interfered mode should

be correctly identified. However, the memory model (Equation 2)

cannot achieve this goal because it lacks associative ability.

In practical engineering, the accuracy of mode recognition is

often guaranteed through an error control parameter. There are

many such parameters. The bit error control parameter (BEC) is

the simplest and most effective one among them. Specifically, the

number of different bits between the input mode i and the kth

stored learning mode, denoted by ski, is used to define the degree of

difference between the two modes. If ski is smaller than or equal to

BEC, mode i may be recognized and classified as the kth learning

mode. Otherwise, it does not belong to the kth learning mode.

One thing to be considered is that if there are multiple learning

modes with difference degrees less than or equal to the BEC, mode

i should be classified into the above learning modes according to a

probability distribution.

Without loss of generality, we let mode i be different from all

learning modes that have been stored in the associative memory

matrix L. In the following, we provide an update algorithm for L in

Algorithm 2, according to a given BEC.

1: Determine a BEC Ec according to engineering

requirements. Calculate the number of

different bits between a mode i to be

recognized and the kth stored learning mode,

and denote the number by ski(k = 1, 2, · · · ,m).

2: for k = 1 to m do

3: (Calculate the transition probability

lrkri.)

4: if 0 < ski ≤ Ec, then

5: lrkri =

1

ski
m

∑

j=1

0<sji≤Ec

1

sji

;

6: else

7: lrkri = 0.

8: end if

9: end for

10: Return the updated associative memory matrix

L = (lrkri )2n×2n.

Algorithm 2. The associative memory matrix L in Equation 2 can be

updated according to a given BEC to improve its associative ability.

It is worth noting that the parameter ski indicates the difference

degree between mode i and mode k. The larger ski is, the greater the

difference between the two modes is and the lower the probability

of mode i being classified as the kth learning mode is.

3.3 Learning and association of the new
associative memory model

We put the results of Sections 3.1, 3.2 together and then

present a new algorithm for the learning and association of model

(Equation 2).
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FIGURE 2

Flowchart for the novel associative memory model based on STP.

For ease of understanding, the use and learning process of our

model are illustrated in the form of a flowchart, see Figure 2.

Algorithm 3 includes two core parts: recognition and learning.

In fact, after an object to be recognized enters our model for

recognition, if it is recognized as a standard mode, the model

outputs the result. Otherwise, the model learns immediately, re-

identifies the aforementioned object, and finally outputs the result,

which is the final result. The above algorithm can be summarized

as a diagram, see Figure 3.

Compared with DHNN, this new associative memory model

has the following advantages:

• It can accurately remember more learning modes with fewer

nodes. All modes in their algebraic forms are orthogonal to

each other. Therefore, theoretically speaking, our model can

remember all modes.

• The accuracy of mode recognition can be effectively

controlled. As analyzed in Section 3.2, the parameter BEC can

be used to control the mode recognition errors.

• This model works more efficiently because it learns

automatically and only when needed. That is, when the

input mode cannot be recognized for the first time, our

associative learning model automatically uses the above input

mode to learn (update the memory matrix) and then proceeds

re-recognition. This is different from the most existing

models, which perform mode recognition after learning.

4 Discussion

In the following, an example is given to show the effectiveness

of the method developed in this study.
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Step 1. Construct the memory matrix L according to

Equation 2.

Step 2. For a mode i to be recognized, obtain its

algebraic form δ
ri
2n.

Step 3. Calculate Lδ
ri
2n = Colri (L). If Lδ

ri
2n 6= 0, classify

mode i according to the probability

distribution Colri (L). Else, go to Step 4.

Step 4. Use Algorithm 2 to update the associative

memory matrix L.

Step 5. Check whether Lδ
ri
2n 6= 0 holds or not. If yes,

classify mode i according to the

probability distribution Colri (L). Else, Mode

i does not belong to any learning mode.

Algorithm 3. Assume that there arem n-dimensional learning modes. The

mode recognition and model learning can be carried out by the following

steps.

FIGURE 3

The diagram for the associative memory model proposed in this

study.

Example 3. Use Algorithm 3 to verify the associative memory

ability of the four learning modes in Example 1. Assume that the

BEC is Ec = 2.

When the mode Xi to be recognized is one of the learning

modes, it has been verified in Example 2 that Xi can be accurately

identified. In the following, we mainly consider the case that the

object to be recognized is not a stored learning mode.

Step 1. From Example 2, we know that the algebraic forms of

four learning modes and the memory matrix L have been given in

Equations 5, 6, respectively.

Step 2. Let the object to be recognized be

Y i = (0, 1, 0, 1, 1)T ∼ δ
2
2δ

1
2δ

2
2δ

1
2δ

1
2 = δ

21
32 .

Step 3. We calculate

Lδ2132 = Col21(L)

= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T .

Since Lδ2132 = 0, we should use Algorithm 2 to update the

associative memory matrix L.

Step 4. Throughout calculation, we get the numbers of different

bits between Y i and Y1, Y2, Y3, and Y4 which are s1i = 1, s2i = 5,

FIGURE 4

The recognition result of our model for the mode Xi = (−1,1,−1,1,1).

s3i = 2, and s4i = 1, respectively. It is noted that Ec = 2, s1i ≤ Ec,

s2i > Ec, s3i ≤ Ec, s4i ≤ Ec. According to

lrkri =







































1

ski
4

∑

j=1

0<sji≤2

1

sji

, 0 < ski ≤ 2,

0, ski > 2,

we have l5,21 =
2

5
, l12,21 = 0, l19,21 =

1

5
, and l29,21 =

2

5
.

Then, the 21th column of the associative memory matrix L is

updated to

Col21(L) = [0, 0, 0, 0,
2

5
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

5
, 0, 0, 0, 0, 0, 0, 0, 0, 0,

2

5
, 0, 0, 0]T .

Step 5.

Lδ2132 =Col21(L)

=[0, 0, 0, 0,
2

5
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

5
, 0, 0,

0, 0, 0, 0, 0, 0, 0,
2

5
, 0, 0, 0]T

=
2

5
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0]T

+
1

5
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0]T

+
2

5
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0]T

=
2

5
δ
5
32 +

1

5
δ
19
32 +

2

5
δ
29
32 .

Moreover, mode δ
21
32 (equivalently, (0, 1, 0, 1, 1)

T) is classified as

δ
5
32 (equivalently, (1, 1, 0, 1, 1)T), δ

19
32 (equivalently, (0, 1, 1, 0, 1)T),

and δ
29
32 (equivalently, (0, 0, 0, 1, 1)T) stored in the network with
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probabilities of 0.4, 0.2, and 0.4, respectively. The recognition result

of our model is shown in Figure 4.

From the example, we can observe that the

associative memory can also be performed through

Algorithm 3, even though the mode Xi is not one of the

learning modes.

If all modes in 125 are identified, the leaning result of L is as

follows:

L =


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,

whose state transition diagram is shown in Figure 5.

Of course, in practical application, it is not necessary to

calculate all elements of L. In fact, when mode i requires to be

identified, we only need to determine the value of the rith column

of matrix L.

5 Conclusion

A new associative memory model has been proposed

to solve the problem of information storage capacity. The

main mathematical tool used in this study was STP. It can

equivalently transform ordinary vector modes into the algebraic

forms that are mutually orthogonal. Therefore, the model

proposed in this study can accurately remember all learning

modes theoretically. However, due to the complexity of the

environment, there are inevitably some interfering factors. Hence,

in order to improve the association ability or robustness of

the model, an on-demand learning update algorithm for the

model was developed. It utilizes parameter BEC to effectively

control the recognition errors. Compared with the classical

DHNN, the new model can store more information with fewer

nodes.

However, when the parameter BEC is too large, the new model

may encounter such a situation that the input mode belongs

to multiple different learning modes, according to a probability

distribution. In this case, the input mode may not be accurately

recognized. Therefore, how to choose the best BEC based on the

actual situation and how to apply the associative memory model

to practical scenarios as soon as possible are our future research

topics.
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FIGURE 5

State transition diagram of matrix L.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

YH: Conceptualization, Formal analysis, Investigation,

Methodology, Validation, Writing—original draft, Writing—

review & editing. HT: Conceptualization, Formal analysis, Funding

acquisition, Methodology, Project administration, Supervision,

Writing—review & editing. CW: Formal analysis, Investigation,

Writing—review & editing.

Funding

The author(s) declare that financial support was received for

the research, authorship, and/or publication of this article. This

research was funded by the National Key R&D Program of China

(2021YFB3203202) and Chongqing Nature Science Foundation

(cstc2020jcyj-msxmX0708).

Acknowledgments

The authors would like to thank the reviewers for their

constructive and valuable suggestions on the earlier drafts of this

manuscript.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Balestrieri, E., Daponte, P., De Vito, L., and Lamonaca, F. (2021). Sensors
and measurements for unmanned systems: an overview. Sensors 21:1518.
doi: 10.3390/s21041518

Cheng, D., and Qi, H. (2009). Controllability and observability of boolean control
networks. Automatica 45, 1659–1667. doi: 10.1016/j.automatica.2009.03.006

Cheng, D., and Qi, H. (2010). A linear representation of dynamics of boolean
networks. IEEE Trans. Autom. Control 55, 2251–2258. doi: 10.1109/TAC.2010.2043294

Cheng, D., Qi, H., and Li, Z. (2011). Analysis and Control of Boolean
Networks: A Semi-Tensor Product Approach. London: Springer-Verlag.
doi: 10.1007/978-0-85729-097-7

Ding, S., Wang, Z., and Zhang, H. (2019). Quasi-synchronization of delayed
memristive neural networks via region-partitioning-dependent intermittent control.
IEEE Trans. Cybern. 49, 4066–4077. doi: 10.1109/TCYB.2018.2856907

Eski, I., and Kus, Z. A. (2019). Control of unmanned
agricultural vehicles using neural network-based control system.
Neural Comput. Appl. 31, 583–595. doi: 10.1007/s00521-017-3
026-4

García-Treviño, E. S., Yang, P., and Barria, J. A. (2024). Wavelet probabilistic
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 35, 376–389.
doi: 10.1109/TNNLS.2022.3174705

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2024.1384924
https://doi.org/10.3390/s21041518
https://doi.org/10.1016/j.automatica.2009.03.006
https://doi.org/10.1109/TAC.2010.2043294
https://doi.org/10.1007/978-0-85729-097-7
https://doi.org/10.1109/TCYB.2018.2856907
https://doi.org/10.1007/s00521-017-3026-4
https://doi.org/10.1109/TNNLS.2022.3174705
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Hou et al. 10.3389/fncom.2024.1384924

Gonzalez-Jorge, H., Martinez-Sanchez, J., Bueno, M., and Arias, P.
(2017). Unmanned aerial systems for civil applications: a review. Drones 1:2.
doi: 10.3390/drones1010002

Guo, Y., Zhao, Y., Rothfus, T. A., and Avalos, A. S. (2022). A novel invasive plant
detection approach using time series images from unmanned aerial systems based on
convolutional and recurrent neural networks. Neural Comput. Appl. 34, 20135–20147.
doi: 10.1007/s00521-022-07560-3

Hou, Y., and Tian, H. (2023). Research on the dynamic characteristics of
photovoltaic power production and sales based on game theory. Sustainability 15, 1–19.
doi: 10.3390/su151914645

Jafari, M., and Xu, H. (2018). Intelligent control for unmanned aerial systems with
system uncertainties and disturbances using artificial neural network. Drones 2:30.
doi: 10.3390/drones2030030

Kang, H. H., Lee, D. K., and Ahn, C. K. (2022). Finite-memory-structured
online training algorithm for system identification of unmanned aerial
vehicles with neural networks. IEEE ASME Trans. Mechatron. 27, 5846–5856.
doi: 10.1109/TMECH.2022.3190053

Kobayashi, M. (2019a). O(2)-valued hopfield neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 30, 3833–3838. doi: 10.1109/TNNLS.2019.2897994

Kobayashi, M. (2019b). Storage capacity of hyperbolic hopfield neural networks.
Neuron 369, 185–190. doi: 10.1016/j.neucom.2019.08.064

Muniraj, D., and Farhood, M. (2019). Detection and mitigation of actuator
attacks on small unmanned aircraft systems. Control Eng. Pract. 83, 188–202.
doi: 10.1016/j.conengprac.2018.10.022

Pasa, L., Navarin, N., and Sperduti, A. (2022). Multiresolution reservoir
graph neural network. IEEE Trans. Neural Netw. Learn. Syst. 33, 2642–2653.
doi: 10.1109/TNNLS.2021.3090503

Su, Y., Shan, Q., Li, T., and Chen, C. L. P. (2023). Variable separation-based fuzzy
optimal control for multiagent systems in nonstrict-feedback form. IEEE Trans. Fuzzy
Syst. 34, 547–561. doi: 10.1109/TFUZZ.2023.3302293

Tank, D. W., and Hopfield, J. J. (1986). Simple ’neural’ optimization networks: An
a/d converter, signal decision circuit, and a linear programming circuit. IEEE Trans.
Circuits Syst. 33, 533–541. doi: 10.1109/TCS.1986.1085953

Tian, H., and Hou, Y. (2019). State feedback design for set stabilization
of probabilistic boolean control networks. J. Franklin Inst. 356, 4358–4377.
doi: 10.1016/j.jfranklin.2018.12.027

Tian, H., Zhang, H., Wang, Z., and Hou, Y. (2017). Stabilization of k-valued logical
control networks by open-loop control via the reverse-transfer method.Automatica 83,
387–390. doi: 10.1016/j.automatica.2016.12.040

Yan, Y., Cheng, D., Feng, J. E., Li, H., and Yue, J. (2023). Survey on applications of
algebraic state space theory of logical systems to finite state machines. Sci. China Inf.
Sci. 66, 1–20. doi: 10.1007/s11432-022-3538-4

Zhang, H., Liu, Y., Dai, J., and Wang, Y. (2021). Command filter based adaptive
fuzzy finite-time control for a class of uncertain nonlinear systems with hysteresis. IEEE
Trans. Fuzzy Syst. 29, 2553–2564. doi: 10.1109/TFUZZ.2020.3003499

Zhang, H., Tian, H., Wang, Z., and Hou, Y. (2016). Synchronization analysis and
design of coupled boolean networks based on periodic switching sequences. IEEE
Trans. Neural Netw. Learn. Syst. 27, 2754–2759. doi: 10.1109/TNNLS.2015.2499446

Zhang, Z., Chen, Z., Han, X., and Liu, Z. (2020). Stabilization of probabilistic finite
automata based on semi-tensor product of matrices. J. Franklin Inst. 357, 5173–5186.
doi: 10.1016/j.jfranklin.2020.02.028

Zheng, Z., Tian, H., Zhu, P., Chi, Y., Liu, Y., and Jia, X. (2022). Research on strategy
of green electricity acquisition transaction of park-level energy internet by using stp.
Front. Energy Res. 10, 1–7. doi: 10.3389/fenrg.2022.953039

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2024.1384924
https://doi.org/10.3390/drones1010002
https://doi.org/10.1007/s00521-022-07560-3
https://doi.org/10.3390/su151914645
https://doi.org/10.3390/drones2030030
https://doi.org/10.1109/TMECH.2022.3190053
https://doi.org/10.1109/TNNLS.2019.2897994
https://doi.org/10.1016/j.neucom.2019.08.064
https://doi.org/10.1016/j.conengprac.2018.10.022
https://doi.org/10.1109/TNNLS.2021.3090503
https://doi.org/10.1109/TFUZZ.2023.3302293
https://doi.org/10.1109/TCS.1986.1085953
https://doi.org/10.1016/j.jfranklin.2018.12.027
https://doi.org/10.1016/j.automatica.2016.12.040
https://doi.org/10.1007/s11432-022-3538-4
https://doi.org/10.1109/TFUZZ.2020.3003499
https://doi.org/10.1109/TNNLS.2015.2499446
https://doi.org/10.1016/j.jfranklin.2020.02.028
https://doi.org/10.3389/fenrg.2022.953039
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	A novel associative memory model based on semi-tensor product (STP)
	1 Introduction
	2 Materials and methods
	2.1 Preliminaries
	2.1.1 Notations
	2.1.2 Discrete Hopfield neural network
	2.1.3 Semi-tensor product of matrices

	2.2 Problem analysis

	3 Results
	3.1 A new memory model
	3.2 Update the associative memory matrix L
	3.3 Learning and association of the new associative memory model

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


