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Reinforcement learning-based
SDN routing scheme empowered
by causality detection and GNN

Yuanhao He, Geyang Xiao*, Jun Zhu, Tao Zou and Yuan Liang

Intelligent Manufacturing Computing Research Center, Zhejiang Lab, Hangzhou, China

In recent years, with the rapid development of network applications and the

increasing demand for high-quality network service, quality-of-service (QoS)

routing has emerged as a critical network technology. The application of

machine learning techniques, particularly reinforcement learning and graph

neural network, has garnered significant attention in addressing this problem.

However, existing reinforcement learning methods lack research on the

causal impact of agent actions on the interactive environment, and graph

neural network fail to e�ectively represent link features, which are pivotal

for routing optimization. Therefore, this study quantifies the causal influence

between the intelligent agent and the interactive environment based on causal

inference techniques, aiming to guide the intelligent agent in improving the

e�ciency of exploring the action space. Simultaneously, graph neural network

is employed to embed node and link features, and a reward function is

designed that comprehensively considers network performance metrics and

causality relevance. A centralized reinforcement learning method is proposed to

e�ectively achieve QoS-aware routing in Software-Defined Networking (SDN).

Finally, experiments are conducted in a network simulation environment, and

metrics such as packet loss, delay, and throughput all outperform the baseline.

KEYWORDS

reinforcement learning, causal inference, graph neural network, SDN routing, quality-
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1 Introduction

Software-Defined Networking (SDN) routing separates the routing decision process

from hardware devices, such as routers, allowing routing decisions to be made through

a centralized software controller. This provides greater flexibility and stronger control

capabilities. SDN routing (Tu et al., 2021, 2022; He et al., 2024) plays a crucial role in

application scenarios that require high-quality network service, such as online video game

and video conferencing.

The routing problem has been widely abstracted into graph theory model, where

routers and links in the network are represented as nodes and edges in the graph. This

model allows us to determine the optimal transmission path for data packets in the

network through path selection algorithms. Early routing methods, such as distance-

vector algorithms and link-state algorithms, had significant limitations in terms of

computation and communication overhead, slow convergence speed, and poor network

scalability. Heuristic algorithms can be used for routing optimization, but they have high

computational complexity and increased the computational load on the SDN controller.
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In recent years, there have been numerous studies attempting

to optimize routing using machine learning techniques (Xie

et al., 2019; Su et al., 2023; Teng et al., 2023; Xiao and Zhang,

2023), particularly through reinforcement learning (RL) methods.

By maximizing rewards through continuous interaction with

the environment, the agent is able to find optimal strategies.

Causal inference can help understand the causal relationship

between network events, identify cause of problems, and guide

control decisions. These machine learning techniques can achieve

more intelligent SDN routing, enhancing network performance

and stability.

In this study, a QoS-aware network routing scheme that

combines deep reinforcement learning, causal inference, and GNN

is designed to improve routing performance. Real-time network

state is collected by the reinforcement learning agent, which

aggregates neighborhood information using CensNet (Jiang et al.,

2019; Jiang et al., 2020), to obtain representations of nodes and

edges as input to the deep reinforcement learning (DRL) model.

The agent outputs link weights and generates routing policies based

on the Dijkstra algorithm. Causal inference is used to measure the

causal impact of actions on the network environment and guide

the agent to explore the action space more effectively. Finally,

the routing performance of the network topology is tested in a

simulation environment. The innovation points of this study are

mainly listed as follows:

• This study is the first to effectively combine causal

inference and reinforcement learning, resulting in significant

performance improvement in network routing problems.

• For QoS routing problems, causal inference is used to quantify

the impact of actions, and a new reward function is designed

to guide effective exploration of actions.

• Graph neural network is employed to simultaneously

represent nodes and edges, which is applied to SDN network

routing.

• Experiments are conducted on a network topology, and

performance metrics are improved significantly, verifying the

effectiveness of the proposed method.

2 Related work

2.1 Reiforcement learning

DRL-based methods (Bernardez et al., 2021; Casas-Velasco

et al., 2021; Dong et al., 2021; Liu et al., 2021, 2023; Sun et al.,

2022; He et al., 2023) deploy the agent within SDN controller and

generate control signals based on reward feedback after interacting

with the data plane. Distinguishing from supervised learning

algorithms, DRL methods do not require labeled datasets and can

converge to optimal policies through continuous iteration with

the environment, achieving automated network operation (Sun

et al., 2022). Bernardez et al. (2021) combined traffic engineering

with multi-agent RL to minimize network congestion and optimize

routing. Casas-Velasco et al. (2021) introduced the concept of

knowledge plane into SDN and applies DRL for routing decisions.

Dong et al. (2021) employed a generative adversarial network

to learn domain-invariant features for DRL-based routing in

various network environments. Liu et al. (2021), He et al. (2023),

and Liu et al. (2023) proposed multi-agent RL approaches for

hop-by-hop routing.

2.2 Causal inference

Causal inference is a method used to determine and

quantify causal relationship by analyzing observed data and

credible hypotheses, inferring causal connection between causes

and effects rather than just correlation. Causal reinforcement

learning is an umbrella term for RL approaches that incorporate

additional assumptions or prior knowledge to analyze and

understand the causal mechanism underlying actions and their

consequences, enabling agents to make more informed and

effective decisions. The four key applications of causal inference to

RL include improving sample efficiency, enhancing generalization

and knowledge transfer, eliminating spurious correlations, and

studying interpretability, safety, and fairness in RL (Deng et al.,

2023). Research studies such as Sontakke et al. (2021) and Huang

et al. (2022) enhance sample efficiency in RL by conducting

causal representation learning. Seitzer et al. (2021) improves the

efficiency of the agent, exploring the action space by measuring

the causal impact on the environment based on conditional

mutual information. Pitis et al. (2020) explores counterfactual data

by studying local independence condition in the environment,

enriching the sample dataset and enhancing the generalization

capability of the agent. Lu et al. (2018) eliminate decision bias of

agent and improve decision accuracy by studying confounding bias

in RL.

2.3 Graph neural network

Supervised learning algorithms (Rusek et al., 2019; Xie et al.,

2019; Ferriol-Galm’s et al., 2023) rely on labeled training datasets,

where the model take network and traffic information as input

to generate routing scheme. One major challenge of supervised

learning methods is feature extraction, and the existing extraction

methods generally perceive the network topological structure based

on Graph Neural Network (GNN). Rusek et al. (2019) and Ferriol-

Galm’s et al. (2023) predicted network performance metrics (e.g.,

packet loss, delay, and jitter) for quality-of-service routing only

through GNN.

3 Problem formulation

The network traffic considered in this study originates from any

node and terminates at other nodes, represented as a discrete-time

model (Liu et al., 2021), where traffic arrives in a predetermined

time sequence. Each traffic flow is represented as a source node and

a destination node. Additionally, the network topology is modeled

as a bidirectional graph consisting of a collection of routers or

switches and links. A DRL agent is deployed in the SDN controller,

which takes network state as input and output routing control
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FIGURE 1

The system framework for SDN routing.

signals. The SDN controller creates routing tables and deploys them

to the data plane to achieve traffic forwarding.

The objective of this study is that each traffic flow is successfully

routed from the source node to the destination node, avoiding

congested or failed links and maximizing the average reward for

all traffic flows. It is important to note that once a routing policy

is implemented on a specific traffic flow, the routing policy for that

flow remains stable.

4 The proposed SDN routing scheme

4.1 System framework for SDN routing

In this study, the network state and global topology are

obtained by the SDN controller and used as inputs for the RL

agent. The scheme utilizes soft actor-critic (Haarnoja et al., 2018)

integrated with nodes and links co-embedding (Jiang et al., 2019;

Jiang et al., 2020) and applies causal action influence modeling

(Seitzer et al., 2021) to reward feedback, called SAC-CAI-EGCN.

Routing control policies are generated as outputs and prune action

through a safe learning mechanism (Mao et al., 2019). The final

routing strategy is then generated using the Dijkstra algorithm and

deployed to the data plane, as shown in Figure 1.

4.2 Design of SAC-CAI-EGCN

SAC-CAI-EGCN includes an actor net, two critic nets and two

target critic nets. The structure of actor and critic nets is shown in

Figure 2. CeGCN part is employed to represent nodes and links,

and then, the resulting link embedding and node embedding are

concatenated as input to the actor and critic nets.

4.2.1 CeGCN part
To achieve simultaneous embedding of nodes and links, a

three-layer network structure called CeGCN is designed, as shown

in Figure 2. It consists of two edge-wise layers and a node-wise

layer. The node-wise layer updates node embedding by combining

the updated link embedding with propagation process referring

to Equation (1). The edge-wise layer updates link embedding

based on the input data with information propagation referring to

Equation (2).

The node-wise propagation process of node features is shown

in Equation (1).

H(l+1)
v = σ (T8(H(l)

e Pe)T
T ⊙ ÃvH

(l)
v Wv) (1)

The edge-wise propagation process of edge features is shown in

Equation (2).

H(l+1)
e = σ (TT8(H(l)

v Pv)T ⊙ ÃeH
(l)
e We) (2)

In which, T is a transformation matrix and Ti,m represents

whether node i connects edge m. 8 denotes the diagonalization

operation of a matrix. Pe and Pv, respectively, represent the

learnable weights of edge and node feature vectors. ⊙ denotes the

element-wise product operation. Wv is the network parameter in

the node-wise propagation process, so asWe.

In Equations (1, 2), Ãe and Ãv are calculated as Equation (3). Ai

represents the adjacency matrix of nodes or edges, and i represents

the node or edge. INi is an identity matrix and Di is the diagonal

degree matrix of Ai + INi .

Ãi = D
− 1

2
i (Ai + INi )D

− 1
2

i
(3)

4.2.2 DRL model
The agent is trained based on a quadruple data structure <

S,A,R, S′ >, which is defined in detail as follows:

• State S: the current state mainly includes (1) the representation

of nodes and links generated by the CeGCN part; (2) the

topology of network; and (3) the flow request. Specifically, the

raw features for representation include the remaining available

bandwidth and packet loss rate of each link, the number of

flows, and the total size of data packets of each node.
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FIGURE 2

The structure of SAC-CAI-EGCN.

• Action A: the weights of links in the network which are

decimals and belong to the interval (0, 1].

• Reward R: for comprehensive calculation of packet loss rate,

delay, and throughput, a reward function is designed as

follows:

rt = −γ1xt − γ2yt + γ3zt + γ4r
cai
t (4)

rcait =
1

N

N∑

j

Cj(st) (5)

Cj(st) = I(S′j;A | S = st) = Ea∼π

[
DKL

(
PS′j|st ,a

∥∥∥PS′j|st
)]

(6)

In Equation (4), let xt represents the packet loss rate, yt
represents the delay, and zt represents throughput at t time

slot, respectively. γ1, γ2, γ3, and γ4, respectively, represent

the weight of packet loss rate, delay, throughput, and causal

influence in the reward function. In this study, the reward

function assigns weights to prioritize packet loss rate, delay,

and throughput in the following order: γ1, γ2, γ3, and γ4 are

assigned to be 2, 1.5, 1, and 1, respectively. In Equations (5,

6), S′j represents the j-th component of S′, DKL denotes the KL

divergence, and Cj(s) quantifies the causal influence of action

A on S′j given the state S = st .

In specific scenarios, packet loss rate, delay, and

throughput are not on the same scale, so normalization is

required. The normalization operation for packet loss rate and

delay is as follows:

xt =
xt

xt
(7)

yt =
yt − ybase

yt
(8)
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Between Equations (7) and (8), ybase represents the average

delay of all links in the network, which is set to be 5 ms. xt and

yt denote the average loss rate and delay of the recent flows

with the same source and destination as the flow at time slot t,

which are approximated by the following equation.

mt =

{
mt , t = 1

ǫ ·mt−1 + (1− ǫ) ·mt , t ≥ 2
(9)

ǫ is a constant used to control the update rate of Equation (9).

In this study, ǫ is 0.8.

For the throughput, after normalizing according to the

bandwidth requirement zdemand, it needs the logarithmic

change. The process is presented as Equation (10):

zt = log(
zt

zdemand
+ b) (10)

In Equation (10), in order to avoid abnormal values in the log

operation, the parameter b = 0.5 is added.

• State S′: after executing action A, state S′ is acquired and it

contains the same type of information as state S.

The experience of interacting with the environment is stored in

the replay buffer and sampled by prioritized experience replay. The

policy πθ (s) is updated by the temporal differencemethod, in which

θ represents the parameter of policy network. The loss function of

actor net and critic net is as follows:

ãt = fθ ,ǫt∼N(ǫt; st) (11)

Lπ (θ) = Est∼R
[αlogπθ (̃at|st)− min

j=1,2
Qωj (st , ãt)] (12)

yt = rt + λ[min
j=1,2

Qω−
j
(st+1, at+1)− αlogπ(at+1|st+1)] (13)

LQ(ω) = E(st ,at ,rt ,st+1)∼R
[
1

2
(Qω(st , at)− yt)

2] (14)

As shown in the above equations, ǫt is a random noise variable

sampled from the unit gaussian distribution N. ãt is obtained

through the reparameterization trick of Equation (11). The loss of

actor net is calculated based on Equation (12). at+1 is obtained

by πθ (·|st+1), and the loss of any critic net is calculated by

Equations (13, 14).

As shown in Algorithm 1, lines 1–3 are to initialize actor net,

two critic nets, two target critic nets, and replay buffer. Lines 4–

10 collect experience, line 8 calculates the causal action influence

rcait , then lines 9–10 calculate reward rt and store them to the

replay bufferR. Line 13 updates two critic nets Qω1 (s, a), Qω2 (s, a),

and then lines 14–15 update actor net πθ (s). Moreover, line 17

softly synchronizes parameter to the two target critic netsQω−
1
(s, a),

Qω−
2
(s, a).

4.2.3 Safe learning mechanism for routing
To prevent the degradation of performance caused by unsafe

strategies, such as passing through failure or heavily congested

Input: Replay buffer R, Actor Network πθ (s),

Critic Networks Qω1 (s, a), Qω2 (s, a),Target Critic

Networks Qω−
1
(s, a), Qω−

2
(s, a), Entropy regularization

coefficient α, Parameter synchronization weighted

τ

Output: Actor Net πθ (s)

1: Randomly initialize network parameters θ ,ω1,ω2 of

Actor network and two Critic Networks

2: Copy the same parameters ω1 → ω−
1 ,ω2 → ω−

2 to

initialize Target Critic Networks

3: Initialize the replay buffer R

4: for Episode = 1, E do

5: for t in Trajectory do

6: obtain state st from the environment

7: execute action at, then get new state st+1

8: calculate rcait according to Equations (5, 6)

9: calculate reward rt according to Equation (4)

10: add experience < st , at , rt , st+1 > into R

11: for Training rounds = 1, K do

12: sample mini batch B from R by Prioritized

Experience Replay

13: calculate loss with Equations (13, 14) and

update Critic Networks Qω1 (s, a), Qω2 (s, a) by Adam

optimizer

14: Sample action by reparameterization trick

based on Equation (11)

15: calculate loss with Equation (12) and update

Actor network by Adam optimizer

16: update Entropy regularization coefficient α

17: update Target Critic Networks by:

τωi + (1− τ )ω−
i → ω−

i , i ∈ {1, 2}

18: end for

19: end for

20: end for

Algorithm 1. SAC-CAI-EGCN routing algorithm.

links, a safe learning mechanism is designed. As shown in Figure 3,

for each decision-making process, the control plane will determine

whether the safe condition is met. For the current action and status

s, the safe condition containing the following two items needs to be

met simultaneously: (1) not passing through failure links and (2)

not going through heavily congested links. If the safe condition is

satisfied, the action will be output directly. If not, a fallback stable

action will be output. Specifically, the weights of failure links or

heavily congested links will be modified to the maximum value,

which is 1. At the same time, an extra reward penalty will be fed

back to guide the actor net to generate safer routing policies.

5 Experiments

5.1 Simulation setup

A public network topology is used, namely, GEANT2. It has 24

nodes and 37 bidirectional links. In the simulation environment,
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FIGURE 3

The safe learning mechanism for SDN routing.

TABLE 1 Performance results under GEANT2 network.

Method Avg.lossRate Avg.delay
(ms)

Avg.thrpt
(Kbps)

SPR 0.269 302.811 1025.295

SAC-CAI 0.090 108.107 1264.046

SAC-CAI-EGCN 0.089 106.653 1266.710

The bold values indicate optimal performance in the current column.

most of the links have a data rate of 10 Mbps, while there is two

bottleneck links in GEANT2 with a data rate of 2.5 Mbps. Overall,

10% packet loss is added to each bottleneck link. Moreover, each

link has a transmission delay of 5 ms.

In this study, the shortest path routing (SPR) is selected

as the typical method for comparison, which only calculates

the shortest hop number without considering the network state.

The other one is SAC with causal action influence modeling

called SAC-CAI.

5.2 Experiment results

5.2.1 Performance under given network
For a given network topology, the starting and ending nodes of

flows are generated randomly, and the exact same traffic is used to

test the three methods. For the GEANT2 network, the duration of

flows is set to be 35 time slots, the global steps for the three methods

are, respectively, set to be 30,000, 100,000, and 100,000.

Table 1 presents a comparison of three methods in terms

of performance metrics including packet loss rate, latency, and

throughput under the GEANT2 network topology. From themodel

reward curves, SAC-CAI and SAC-CAI-EGCN converge∼100,000

steps, while SPR exhibits congestion and latency at ∼30,000 steps,

so the SPR method only runs 30,000 steps. SAC-CAI-EGCN

outperforms SPR and SAC-CAI significantly in all metrics under

the same network topology, flows, and traffic intensity. First,

the superior performance of SAC-CAI over SPR indicates the

positive impact of causal inference in guiding action exploration

for network routing. Second, SAC-CAI-EGCN exploits link and

node co-embedding to effectively aggregate neighborhood features,

thereby enhancing network routing performance in comparison

with SAC-CAI.

5.2.2 Performance under di�erent tra�c
intensities

To investigate the performance of SAC-CAI-EGCN, SAC-

CAI, and SPR under different traffic intensities, an additional

experiment with 25 time slot (light-load) flows was conducted.

However, due to the poor performance of SPR and its significant

difference in data scale compared with the other two methods,

only the experimental results of SAC-CAI-EGCN and SAC-

CAI are presented, as shown in Figure 4. First, as the traffic

intensity increases, the packet loss rate and latency increase, while

the throughput decreases. Second, from light to heavy traffic

intensity, SAC-CAI-EGCN demonstrates superior performance

in terms of packet loss rate, latency, and throughput compared

with SAC-CAI.

6 Conclusion

In this study, based on action influence quantification

and GNN a reinforcement learning method is proposed,

enabling efficient SDN routing. Experimental results on publicly

available network topology and different traffic intensities

demonstrate significant improvement in QoS metrics, such

as packet loss rate, latency, and throughput compared with

baselines. This validates the effectiveness of SAC-CAI-EGCN in

quantifying the causal impact of actions on the environment

and simultaneously embedding edges and node features,

guiding the generation of efficient SDN routing policies. In

the future, we will continue exploring the application of

causal reinforcement learning in improving network service

quality, such as leveraging counterfactual data augmentation

to improve sample efficiency and addressing confounding

bias in RL.
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A B C

D E F

FIGURE 4

Performance results of three methods under di�erent tra�c intensities (light-load and heavy-load) in the GEANT2 network. (A) Loss rate under

light-load. (B) Delay under light-load. (C) Throughput under light-load. (D) Loss rate under heavy-load. (E) Delay under heavy-load. (F) Throughput

under heavy-load.
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