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Alzheimer’s disease (AD) is a neurodegenerative illness that impairs cognition,

function, and behavior by causing irreversible damage to multiple brain areas,

including the hippocampus. The su�ering of the patients and their family

members will be lessened with an early diagnosis of AD. The automatic diagnosis

technique is widely required due to the shortage of medical experts and eases

the burden of medical sta�. The automatic artificial intelligence (AI)-based

computerized method can help experts achieve better diagnosis accuracy and

precision rates. This study proposes a new automated framework for AD stage

prediction based on the ResNet-Self architecture and Fuzzy Entropy-controlled

Path-Finding Algorithm (FEcPFA). A data augmentation technique has been

utilized to resolve the dataset imbalance issue. In the next step, we proposed

a new deep-learning model based on the self-attention module. A ResNet-50

architecture is modified and connected with a self-attention block for important

information extraction. The hyperparameters were optimized using Bayesian

optimization (BO) and then utilized to train the model, which was subsequently

employed for feature extraction. The self-attention extracted features were

optimized using the proposed FEcPFA. The best features were selected using

FEcPFA and passed to the machine learning classifiers for the final classification.

The experimental process utilized a publicly available MRI dataset and achieved

an improved accuracy of 99.9%. The results were comparedwith state-of-the-art

(SOTA) techniques, demonstrating the improvement of the proposed framework

in terms of accuracy and time e�ciency.

KEYWORDS

Alzheimer’s disease, MRI, deep learning, self-attention, convolutional neural network,

optimization, fuzzy entropy
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1 Introduction

Dementia is the seventh-greatest root cause of mortality and

the main reason for impairment and vulnerability in elderly

individuals (Koul et al., 2023). It is a rapidly spreading disorder

among the elderly population, becoming increasingly common

over the last decade (Sisodia et al., 2023). Dementia greatly

impairs intellectual performance, interfering with daily tasks and

interpersonal interactions (Nagdee, 2011). Alzheimer’s disease

(AD) is an inseparable subclass of dementia that can cause memory

loss in a person (Mahmud et al., 2024). An individual affected

by AD may struggle to recognize family members and experience

difficulties in remembering daily activities. Moreover, it can cause

ultimately lead to the death of the patient (Mohammad and

Al Ahmadi, 2023). Due to these worse health conditions, it is

also referred to as a progressive neurodegenerative disease. It

affects behavioral functions, thinking abilities, decision-making,

and language skills, often leading to memory loss in older people

(Kellar and Craft, 2020).

Brain cell alteration may occur a decade or more before

clinical signs appear. In the beginning, patients with AD

experience unnoticed changes in their brains (Jansi et al.,

2023). Throughout the early AD stage, the brain undergoes

destructive transformations, including ectopic protein deposition

that produces amyloid plaques and tau tangles. Neurons that were

once fully functional cease to function properly, losing connections

to other neurons and eventually undergoing cell death (Hoozemans

et al., 2006). Several additional intricate alterations in the brain

can also lead to Alzheimer’s (Kasula, 2023). The hippocampus and

entorhinal cortex, critical for cognitive control, seem to be the

initial regions of impairment (Shrager et al., 2008). Furthermore,

the signs of AD begin to manifest when nerve cells (neurons) in

certain areas of the brain gradually shrink and eventually become

destroyed or damaged (Khalid et al., 2023). In the final phase of AD,

damage becomes widespread, and a large amount of brain tissue is

destroyed (Bloniecki Kallio, 2002; Carle, 2022).

AD is such a serious brain disease that it can result in a patient’s

death if not effectively treated (Gómez-Isla and Frosch, 2022). To

overcome this disease, patients need good care, regular exercise,

and some memory-sharpening activities as there is currently no

specific medication for AD (Shamrat et al., 2023). In recent

years, a significant increase has been observed in AD (Mirzaei

and Adeli, 2022; Stevenson-Hoare et al., 2023). The number of

deaths from Alzheimer’s disease in 2020 increased by 15,925

compared to the 5 years before 2023, and 44,729 more deaths

were recorded for all dementias, including Alzheimer’s disease

(Chua, 2023). Traditional machine learning (ML) techniques such

as pre-processing (Wen et al., 2020), feature extraction (Rathore

et al., 2017), feature selection (Balaji et al., 2023), feature fusion

(Jia and Lao, 2022), and classification (Tanveer et al., 2020) have

been employed by researchers as a four-step channel in the past

few years. Classification is the bottommost step in which each

object accredits a label, in either a supervised or unsupervised

ML technique (Bondi et al., 2017). Deep learning (DL) (Shaukat

et al., 2022) is a subtype of machine learning that falls under the

umbrella of artificial intelligence, but DL is way more vigorous and

flexible in comparison with ML (Fabrizio et al., 2021). Techniques

such as shallow CNN (Marwa et al., 2023), DNN (Hazarika et al.,

2023), MultiAz-Net (Ismail et al., 2023), hybridized DL method

(Hashmi, 2024), and RVFL (Goel et al., 2023) have been used in

recent years, but these techniques yield low accuracy as compared

to our proposed model (Shamrat et al., 2023).

1.1 Major challenges and gaps

Recent advances inML andDL have opened up new avenues for

assessing AD, but researchers are still grappling with the diagnosis

of the disease (Shamrat et al., 2023). Few of them are related to

insufficient and unbalanced datasets. Furthermore, major problems

with AD patients are the complexity, diversity, and complicated

neurobiological underlying AD (Dhakhinamoorthy et al., 2023).

Architectural variation in scans is another main challenge to

diagnosing and detecting AD. However, the influence of these

challengesmay vary from patient to patient. This research will focus

on AD stages for classification using deep learning and feature

optimization techniques.

1.2 Major contributions

The main contributions of this study are as follows:

• A fine-tuned ResNet-50 architecture has been modified by

adding a self-attention layer and trained from scratch for

feature extraction.

• Hyperparameters of the trained model are initialized using an

optimization technique named Bayesian optimization.

• Improved the extracted self-attention features using an

improved pathfinder optimization named the Fuzzy

entropy-controlled path-finding algorithm (FEcPFA). The

optimization algorithm selects the best features and improves

the efficiency.

• The optimized selected features are finally classified using

machine learning to classify the stages of AD.

This article is organized as follows: Section 2 reviews ML and

DL techniques that have been applied to Alzheimer’s disease, and

Section 3 provides a comprehensive description of the datasets.

The testing outcomes are shown in detail in Section 4. Section 5

summarizes our findings, and Section 6 discusses future work.

2 Related work

Due to the brain’s intricacy, classifying AD is difficult

(Dhakhinamoorthy et al., 2023). Thus, researchers are improving

medical image processing to identify AD correctly. This section

presents relevant literature in the domain of AD detection and

diagnosis, which focuses primarily on classification techniques

based on deep learning for MRI tissue structure analysis (Mohi

et al., 2023). The deep belief network (DBN) was utilized by AI-

Atroshi et al. (2022) to extract feature vectors from detected speech

samples, which has an output accuracy of 90.2%. Shankar et al.

(2022) used HAAR-based object identification techniques because

they are more suitable with discriminant attributes and generated
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37 spatial pieces of information from seven characteristics that

produced 94.1% accuracy on the dataset taken from ADNI. To

aid in the initial diagnosis of AD (FDN-ADNet), Sharma et al.

(2022) used a DL network for all-level feature extraction from

extracted sagittal plane slices of 3D MRI scans and a fuzzy

hyperplane-oriented FLS-TWSVM for the classification of the

retrieved features, which generated 97.29% accuracy on the publicly

available ADNI dataset.

Albright (2019) presented the all-pairs pre-processing

algorithm to train the model. For this experiment, setting data

were taken from ADNI and divided into three datasets, i.e., LB1,

LB2, and LB3, with an mAUC of 0.866. The 3D-CNN networks

by Soliman et al. (2022) predicted AD. It learned basic traits that

catch AD indicators to identify brains with Alzheimer’s disease

from healthy and normal brains using MRI scans. ADNI provided

3,013 photographs with 96.5% training accuracy and 80.6% tested

accuracy. Samhan et al. (2022) adopted CNNs, VGG16, Adam,

activation, and softmax optimizers. The Kaggle dataset of 10,432

images yielded 100% training accuracy, 0.0012 training loss, 97%

validation accuracy, and 0.0832 verifying loss. Jo et al. (2022)

proposed a unique deep learning-based genome-wide approach

called SWAT-CNN that found SNPs associated with AD and

a classification model for AD. It may be useful for a variety of

biomedical applications and was tested on the GWAS dataset by

the AD Neuroimaging Initiative (ADNI).

Zhang et al. (2022) adopted CNN models of various designs

and capacities and assessed them thoroughly. Themost appropriate

model was then applied for AD diagnosis. To increase the

transparency of the model, an explanation heatmap was produced

for AD vs. cognitive normal (CN) classification tasks and pMCI

vs. sMCI using two publicly available datasets. Interestingly, the

study found that a moderately sized model could outperform one

with the largest capacity. Ghazal et al. (2022) proposed the system

named ADDLTA, in which the transfer learning (TL) approach

was used in conjunction with brain medical resonance imaging

(MRI) to classify the image into four categories: mildly demented

(MD), moderately demented (MD), non-demented (ND), and

very mildly demented (VMD), which gave 91.70% accuracy on

simulation results based on the publicly assessable dataset by the

Kaggle repository.

Shanmugam et al. (2022) focused on detecting different phases

of cognitive impairment and AD in the early stages by utilizing TL

in neuroimaging. GoogLeNet, AlexNet, and ResNet-18 were three

pre-trained models adopted for classification, giving an accuracy

of 96.39, 94.08, and 97.51%, respectively, on the ADNI dataset.

Prasath and Sumathi (2024) suggested a compact architecture

by merging two models, LeNet and AlexNet, that outperform

DenseNet. Three parallel tiny filters (1 × 1, 3 × 3, and 5 ×

5) replaced the convolution levels to recover key features that

achieved 93.58% accuracy on the dataset taken from ADNI. Sorour

et al. (2024) proposed a system for the automated diagnosis

of Alzheimer’s disease that integrates multiple customized deep-

learning models to provide an objective evaluation. The very

first methodology addresses AD diseases using SVM and KNN.

The second approach combines rs-fMRI datasets from the ADNI

repository with modified AlexNet and Inception blocks. This

architecture gave 96.61% accuracy. A new optimized ensemble-

based DNN learning model called MultiAz-Net is used by Ismail

et al. (2023) with diverse PET and MRI data to identify AD. The

Multi-Objective Grasshopper Optimization Algorithm (MOGOA)

optimizes MultiAz-Net layers, which produced 92.3% accuracy on

the ADNI dataset. Balaji et al. (2023) suggested a DL approach

to detect AD in its initial stages using multimodal imaging

and the LSTM algorithm, combining MRI, PET, and traditional

neuropsychological examination results. The suggested technique

adjusted the learning weights to improve accuracy and employed

Adam’s optimization. The proposed architecture achieved 98.5%

accuracy on 512 MRI and 112 PET scans.

3 Materials and methods

This section provides a comprehensive exposition of the

experimental dataset and methodologies employed within. It

elucidates the specifics of the experiments, including the nature of

the dataset utilized and the methodologies adopted.

3.1 Dataset

A well-characterized repository has a significant role in the

performance evaluation of a diagnosis system. In this experiment,

a dataset was obtained from Kaggle. This dataset, known as

Alzheimer’s disease, consists of specimens of anonymously affected

individuals with MRI scans and their appropriate class label details.

This multiclass dataset contains four distinct classes and offers

many different views, comprising over 5,000 MRI images. The

four classes are shown in Figure 1: mildly demented (Shanmugam

et al., 2022), moderately demented (Prasath and Sumathi, 2024),

non-demented (Sorour et al., 2024), and very mildly demented

(Ismail et al., 2023). A brief explanation of the four classes of AD

is given in Table 1 for testing and training purposes. The data were

imbalanced in each class. Each class consisted of a different number

of images.

These datasets are the most prominent and effective for

this publicly available domain. The major aim of this study

is to yield high accuracy. Original MRI scans and augmented

image distribution were utilized in the training and testing of

the experiment. Mild demented contained 896 images; moderate

demented contained 64 images; non-demented comprised 3,200

images; and very mild had 2,240 images. After the augmentation,

we took 2,000 images from each class for further proceedings.

Figure 2 illustrates the AD stages with a brief description.

Moreover, an image description that lists the number of classes

and augmented images utilized in this study is found in

Table 2.

3.2 Proposed methodology

Our proposed study presents a deep learning-based

methodology for classifying AD grades. First, the dataset was

taken from Kaggle, a public repository. The data were unbalanced

in each class, so different augmentation techniques were applied.

The data have been enhanced by applying different enhancement

methods. After the enhancement, we fine-tuned the ResNet-50
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FIGURE 1

Classes of Alzheimer’s disease for the classification.

TABLE 1 Description of AD classes dataset.

References Classes Description No of images

Shanmugam et al. (2022) Mild demented People may become socially withdrawn, and noticeable changes occur in their moods and

personality. People may find it hard to remember the faces, people they met a long time

ago, and recent events. Individuals do not recall what they are saying, cannot find their way

to their desired location, and have lost focus and work abilities.

896

Prasath and Sumathi

(2024)

Moderate demented In this phase, the affected person requires help to do their routine work. Inability to recall

important information, such as name of close relatives, home location, time, and date;

however, the person knows their name and family member’s names. The person lacks

sensibility, forgets previous work, and struggles to keep track of finances and daily expenses

while living alone.

3,200

Sorour et al. (2024) Non-demented It usually occurs in elderly persons. People may face difficulty in conversation and

gradually memory loss.

64

Ismail et al. (2023) Very mild

demented

The person may find it hard to adjust to a new environment and experience apathy and

repetition. Affected persons cannot complete the task. There seems to be low memory loss

in this stage. Individuals may forget the names of people who lived with them.

2,240

FIGURE 2

Description of AD stages.

model and added Self-Attention layers. The modified model is

trained on the augmented dataset and extracted deep features

from the self-attention layer. The features are extracted from the

self-attention layer. Bayesian optimization is employed for the

selection of hyperparameters, instead of manual initialization.

Moreover, PFA is utilized to select the optimal features. In

the final stage, KNN, NN, and SVM classifiers are used to

classify AD stages. The proposed model is represented in

Figure 3.

3.2.1 Data augmentation
Augmentation is creating modified image variants from an

existing image dataset to improve its variety artificially. Images are

nothing more than a 2D collection of numbers for a computer.

These numbers indicate intensity values, which may be modified to

produce new, enhanced images. The primary goal of augmentation

is to maintain parity among each group. It improved the outcomes

and made them more precise and effective. In most cases, it

was only useful for very small data sets. Images may be flipped
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TABLE 2 Dataset image description.

S# Dataset Number of classes Total images Augmented images Training/testing

1 Alzheimer’s disease Mild demented 896 3,200 3,200/2= 1,600

2 Moderate demented 64 3,200 3,200/2= 1,600

3 Non-demented 3,200 3,200 3,200/2= 1,600

4 Very mild demented 2,240 3,200 3,200/2= 1,600

FIGURE 3

Proposed model of classification of AD stages.

horizontally, vertically, or rotated using this method. Both of these

techniques expand the quantity of the dataset by producing images

that have been flipped at various angles.

3.2.1.1 Horizontal flip

Complete rows and columns of image pixels are set aside

horizontally. If the image on the right is flipped, the outcome will

be on the left. The mathematical representation for the horizontal

flip is shown by Equation 1.

HF

(

−x, y
)

= HO

(

x, y
)

(1)

The given formula illustrates the horizontal flip of an image

scan. HF shows the flipping function, while HO represents the real

image. The first half
(

x, y
)

displays the actual image, while quadrant

two
(

−x, y
)

displays the replica image. Therefore, the unedited

version of the image resides within the first quarter, which is the

right side, and after horizontal flipping, the image has been flipped

to the second phase, which is the left side.

3.2.1.2 Vertical flip

Complete rows and columns of image pixels are set aside

vertically. When an image is now displayed in the upward position

and flipped, the resulting image will be displayed in the downward

motion. The mathematical representation for the vertical Flip is

shown below:

Hv

(

x, −y
)

= HO

(

x, y
)

(2)

The given formula illustrates the vertical flip of an image

scan. HV shows the flipping function, while HO represents the

real image.

The first half lies in
(

x, y
)

which displays the actual image,

while the third quadrant third
(

x, −y
)

displays the replica image.

Therefore, Equation (2) demonstrates that the initial image resides

in the first half on the right side. When the vertical flip is enforced,

the image goes to the third half, which is in a downward direction.

In short, it flipped the image along with the X-axis.

3.2.1.3 Rotate flip

A 3D graphic item is flipped by rotating it. The following is a

mathematical representation by Equation 3.

g90
◦

(i,j)
=

[

cos90◦ −sin90◦

sin90◦ cos90◦

] [

gi

gj

]

(3)
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FIGURE 4

Visual illustration of image augmentation using mathematical

techniques.

Consequently, image (I) is rotated by angle degrees

counterclockwise around its center. To rotate the image

counterclockwise, input a negative angle value, then (imrotate)

will extend the resultant image (J) to encompass the entire rotated

image. The methods for data augmentation used in the experiment

are shown in Figure 4.

3.2.2 Contrast enhancement
Increasing contrast is one of the most important and useful

techniques for improving the essential elements of an image.

Normally, raw images contain noise, distortion, and low contrast

that lower the image quality, which sometimes causes the loss

of useful information (Perumal and Velmurugan, 2018). Contrast

enhancement improves the image qualities for further processing.

More relevant characteristics may be extracted from the improved

photographs for the classification stage than from the input image.

The datasets chosen in this study have poor-quality images with

low contrast levels. Due to this issue, we could end up incorrectly

categorizing things. Contrast enhancement is further divided into

two main groups, i.e., the spatial and frequency domains, such

as morphological enhancement, histogram equalization, contrast

stretching, contrast slicing, and some contrast enhancement. In

our proposed experiment, two types of contrast enhancement have

been adopted, one by one. First, a fast local Laplacian filter is

applied to the augmented dataset. After this, a top–bottom hat filter

is applied to the enhanced dataset to get better-quality MRI scans.

3.2.2.1 Fast local Laplacian filter

There are two main functions of FLLF. The first is applied

to the raw images to boost the boundary detail and reduce the

noise artifacts. The second is that the images are transformed from

the RGB color system to the YUV color space to isolate the Y

factor. Multiscale adjustments are crucial to photo editing but are

FIGURE 5

Visual illustration of contrast enhancement.

especially vulnerable to halos. Advanced edge-aware algorithms

and careful parametric adjustments are needed to get outcomes

without artifacts. These deficiencies were subsequently remedied

through local Laplacian filters. These filters use typical Laplacian

pyramids to generate a wide variety of effects. However, these filters

are time-consuming, and their link to other methods is obscure.

3.2.2.2 Top–bottom hat filter

In this filter, the top-hat part is employed for objects with a

light color on a darker backdrop, whereas the bottom-hat part

is utilized for images with a dark color on a light background.

The correction of the effects of non-lighting is a key purpose of

the top-hat modification. When the shade is evident in an image,

this filtering technique can effectively highlight the information

in the image. The methods for contrast enhancement are visually

presented in Figure 5.

3.2.3 Bayesian optimization
Bayesian optimization incorporates Bayes’ theorem to guide the

search as a method for minimizing or maximizing an optimization

technique. This method can be very helpful for optimization

algorithms that are difficult to evaluate due to their complexity,

noise, or cost. BO differs from other methods in that it considers

previous parameter data by changing the baseline using Gaussian

progress (GP). Additionally, BO has minimal iterations and a

rapid convergence time. The BO approach may also eliminate

local optimum in non-convex optimization circumstances. BO is

a perfect pick for optimizing HPs due to its high convergence

and resilience. All hyperparameters must be tuned to gain

classification precision while utilizing DL architectures. The choice

of hyperparameters substantially affects the accuracy and precision

of the prediction. When optimizing hyperparameters, the objective

is to choose the values that provide the highest quality validation

findings. Hyperparameter optimization is written mathematically

by Equation 4.

x∗ = argminf (x) (4)

where f(x) shows the cost-minimizing objective score for evaluating

hyperparameter optimization relative to the validation set, and x is
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TABLE 3 Hyperparameter range of BO.

Hyperparameters Ranges

L2Regularization (1e−10 , 1e−2)

Section depth (1, 3)

Momentum (0.7, 0.98)

Learning rate (0.0001, 1)

the set of hyperparameters whose values lie in that range. Training

takes longer and is extremely difficult to do by hand with DNN

models with numerous hyperparameters. ML and simulations

employ BO. FFNN designs alter hyperparameters in CV-based

techniques to enhance the performance of the mode network.

Optimizing several parameters is faster by using it.

In contrast to other methods, BO updates the prior with

Gaussian progress to adjust for past parameter values (GP).

Additionally, BO converges quickly and with a small number of

iterations. When addressing non-convex optimization problems,

the BO approach may be able to sidestep localized optimality. BO

is a great option for optimizing HPs due to its high convergence

and resilience. The stopping condition of the BO algorithm is

based on MaxTime. The BO algorithm stops when it reaches the

MaxTime, which is 54,000 s. This time is approximately equivalent

to 15 h. In this study, we utilized BO along with DCNN, which

fine-tuned the hyperparameters to generate the lowest error rate

with optimal results in an architecture. Optimizing parameters such

as L2Regularization, Section Depth, Momentum, and Learning

Rate have been used in this study, shown along with their ranges

in Table 3, which represents the Bayesian optimization workflow.

Figure 6 illustrates the BO.

3.2.4 Deep transfer learning
Transfer learning is applying a learned model to a different

situation. The fact that it has the potential to train deep neural

networks on very little training data has recently made it more

famous in deep learning. Deep transfer learning is becoming

more prominent in handling image classification issues as it is

feasible to use built-in CNNs on publicly available datasets such

as ImageNet to achieve top classification accuracy in several

application domains. After transfer learning (TL), the framework

is fine-tuned (FT) to relearn all FE and C. FT is performed by

initializing feature extraction parameters and ImageNet weights,

and classification parameters are updated along with TL weights.

Figure 7 illustrates the deep transfer learning workflow.

3.2.5 Proposed ResNet-Self architecture
In this study, we proposed a modified ResNet-50 architecture

based on the self-attention module named ResNet-Self. Initially, we

consider the ResNet-50 architecture based on the residual blocks. In

this network, 48 convolutional layers have been originally added,

along with one max-pooling layer, one average pooling layer, and

one fully connected layer. The residual blocks added in this network

contain skip connections. In this network, bottleneck filters are

applied, such as 1 × 1, which reduces the number of parameters.

The depth size of this model is originally between 64- and 2,048,

and filter sizes of 3 × 3. Moreover, the stride is used 2 out of the

residual blocks, and in the residual blocks, 1 stride is employed.

The average pooling layer has been added at the end of this model

for the features extraction that followed the fully connected and

softmax layers. The initial performance of this model for AD stage

classification was insufficient; therefore, we modified it with the

latest concept named Self-Attention.

The proposed ResNet-Self architecture is illustrated in Figure 8.

This figure shows that the self-attention layer was added after the

global average pooling layer. A flattening layer has been added

before the self-attention layer that converts the input into 1D. The

first channel is passed to the Softmax function that combines with

the second channel for the attention map creation. After that, the

generated attention map is combined with a third channel for final

attention features that are further utilized to classify AD stages.

3.2.5.1 Self-attention

The internal attention approach, sometimes called the self-

attention (SA) strategy, uses internal information to automatically

identify and highlight relevant information without needing

external information. SA has low computational complexity and

allows parallel computing. It consists of three characteristics

matrices such as X, Y , and V , where these are defined by

Equations 5–9.

{Y ,X} ∈ RT×T (5)

V ∈ RT×J (6)

Initially, the correlation score has been computed among all

rows of Y and X as follows:

P = XYτ (7)

where Yτ denotes the transpose of Y and P ∈ RT×T . The softmax

function is applied in the next step, which converts the correlation

score into probability values. Mathematically, it is formulated

as follows:

SM (P)
(

i, j
)

=
eP(i,j)

∑T−1
j=0 eP(i,j)

(8)

Hence, the final attention map has been obtained as follows:

AMp = SM (P)V (9)

3.2.5.2 Proposed network training

After the design of the proposed model, the next step is training

a model using the deep transfer learning concept. The entire

model is trained from scratch, instead of any frozen layer. The

hyperparameters of this network are presented in Table 3. Based

on the selected hyperparameters using BO, the proposed model

is trained on the augmented dataset. The best-returned value of

the learning rate using BO is 0.00032, and the momentum value

is 0.773. After the training process, the test data are employed for

the extraction of the features.
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FIGURE 6

Bayesian optimization workflow for hyperparameters selection.

FIGURE 7

Deep transfer learning architecture for classification of AD stages.

FIGURE 8

Proposed ResNet-Self architecture for classification of AD stages.
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3.2.5.3 Deep features extraction

Typically, CNNs return the three levels of feature maps:

low-level feature maps, mid-level feature maps, and high-level

feature maps. All of these levels contain different information.

Low-level feature maps contain simple patterns such as edges,

corners, and textures. These maps have high dimensions. Mid-level

feature maps contain abstract and more structured patterns like

specific regions of the objects or textures, but high-level features

contain discriminative and semantically significant information.

The features (high-level) are extracted from the last stage of CNNs

due to their lower dimensions. The low dimensionality reduces the

memory requirement and computational complexity.

This study extracts deep features using the self-attention layer,

instead of the global average pooling layer. The self-attention layer

returns the prominent and relevant global information within the

images. The testing images are utilized, and a trainedmodel is opted

for. The batch size was 128 during the deep features extraction. The

self-attention layer features contain deeper information about the

AD stages. The size of the extracted feature vector isN × 2,048. The

extracted features are analyzed and optimized using an improved

pathfinder optimization algorithm.

3.2.6 Best features selection
In this study, we utilized an evolutionary optimization

algorithm named Entropy Path Finder Optimization (EPFO) for

the best feature selection. Features are selected at the initial step

through original pathfinder optimization and later refined using an

entropy approach that handles the uncertainty.

3.2.6.1 Path finder optimization

In contrast to previously suggested swarm intelligence, the

Pathfinder approach does not specify which species group it

belongs to. For instance, the seagull optimization algorithm

restricts the number of seagulls, whereas the gray wolf optimization

technique restricts the number of gray wolves, etc. The Pathfinder

algorithm is based on many surviving traits and regulations of

animals. Based on the best fitness of the organism, the Pathfinder

algorithm divides cluster animals among two sorts of tasks: the

leader (only with the lowest fitness value) and the follower. The

leader must find the greatest food and label it for the followers.

The markings left behind by the Pathfinder are used as a reference

point by the followers, who then proceed to follow the Pathfinder.

Hence, both the Pathfinder and the follower are skeptical. That is

why the two distinct sorts of responsibilities may switch places with

one another depending on the individual’s level of search capability

as the number of iterative steps of the method rises; that is, those

who lead the way sometimes get followers. Similarly, followers may

also play the role of a pathfinder. To optimize a task, the PFA is split

into two segments. The initial stage is a period of exploration. The

PFA changes the location using the following Equation (10):

xk+1
p = xkp + 2r3 . (xkp − xk−1

p ) + A (10)

where xk+1
p demonstrates the modified position vector of PFA. xkp

indicates the present location of vectors in PFA, while xk−1
p shows

the former position of the vector of PFA. The ongoing iteration

count is denoted by the variable k. R3 is a random vector that

is created in a uniform manner in the range [0,1], whereas A is

produced within every iteration by applying Equation (11). Step

2 is really the exploitation step, which is immediately preceded

by the location change. The following update formula applies

Equation (11):

xk+1
i = xki + R1 . (xkj + xki )+ R2. (xkp + xki )

+ E, i ≥ 2 (11)

where xk+1
i indicates the updated location vector of the i-th integer

just after location modification. xki is the location vector of the

i-th individual, xkj is the neighboring individual, and xkp is the

Pathfinder. The variable k denotes the ongoing iteration count.

Each of the vectors R1 and R2 is completely unpredictable. In

this situation, R1 = (αr1) and R2 = (βr2), and here, R1 and

R2 are random vectors that are created uniformly in the range

[0,1]. α determines the degree to which each component travels

about its neighbors and is hence called the coefficient of iteration. β

establishes a randomized spacing to make the herd fairly constant

along with the leader and hence called the coefficient of attraction

kmax. Mathematically, it is formulated by Equation (12).

h =

(

1−
k

kmax

)

. µ1 . Dij, Dij

∥

∥xi − xj
∥

∥ (12)

Therefore, here µ1 and µ2 are randomly generated two vectors

in the interval of [1,1], Dij is the gap between both individuals,
(

k
)

denotes the present iteration range, and kmax is the maximal

quantity of repetitions. (A) and
(

h
)

may give random walk strides

for all persons when the second part of Equations (10) and (11)

and the third part of Equation (12) are equal to zero. As a result,

in order to ensure that the motion will be in several directions and

completely random, the values of. (A) and
(

h
)

should be within the

proper span.

After every update in the position, the KNN classifier is

employed to measure the fitness value. The cost function of KNN is

mathematically formulated as:

τcost = ϕα × ǫerr + ϕβ ×

(

count of sel_feat

Max(features)

)

(13)

where α and β are denoted, the coefficient having values are 0.94

and 0.014, respectively. The ǫerr presented the error value that is

calculated by employing an Equation (14):

ǫerr = 1− ∂accuracy (14)

3.2.6.2 Entropy selection

AssumeU is a discrete random variable, and it is represented as

u = {u1, u2, . . . , un}, then if an element ui occurs with p(ui), the

entropy H(U) of U is formulated by Equation (15):

H (U) = −

n
∑

i=1

p (ui) log p (ui) (15)
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Load self-attention feature vector

Load parameters of PFA

Initialize the population of size 20

Calculate the fitness of initial

population

Find the Pathfinder

While k<maximum number of iterations

α and β = random number in [1,2]

update the position of Pathfinder

using Equation (10) and check the

bound

if the new Pathfinder is better than old

update the Pathfinder

end

for i=2 to maximum number of populations

update the position of members using

the Equation (11) and check the bound

end

calculate the new fitness of members

find the best fitness using

Equations (13) and (14)

if best fitness < fitness of Pathfinder

pathfinder = best member

fitness = best fitness

end

for i=2 to maximum number of populations

if new fitness of member (i) <

fitness of member (i)

update member

- Find entropy of updated member using

Eq. 15.

- Compute the fuzziness using Eqs. 16-18

- Find the fuzzy entropy value using

Eq. 19.

end

end

generate new A and ε

end

Algorithm 1. The pathfinder algorithm.

where n denotes the total number of features. The fuzzy C-Means

clustering is utilized to construct the membership function of all

features. The fuzzy membership method is defined in the following

five steps.

In the first step, we assumed the number of clusters (C), where

2 ≤ C ≤ N. In the next step, the jth center clusters are computed

by the following Equation (16).

Cj =

∑N
i=1 µe

ijuij
∑N

i=1 µ
g
ij

(16)

where e ≥ 1 is a fuzziness coefficient and µij is the

degree of membership (DOM) for the ith data point ui in jth

cluster. Euclidean distance is computed in the third step using

Equation (17).

Dij =
∣

∣Cj − µi

∣

∣ (17)

In the fourth step, the value of the fuzzy membership function

is updated by Equation (18):

µ =
1

∑e
m=1

(

Dij

Dim

)
2

g−1

(18)

In the final step, we repeated steps 2–4 until the change inµwas

less as per the previous values. Hence, the fuzzy entropy function is

formulated as follows in Equation (19):

Fe
(

Ȟ
)

= −λc

(

Ȟ
)

log λc

(

Ȟ
)

(19)

where λc

(

Ȟ
)

is a class degree of the membership function

(Khushaba et al., 2007). The fuzzy entropy process is applied to the

selected features of Equation (12). The dimensions of the selected

features are N × 1,467. The final features are employed for the

classification. The proposed fuzzy entropy-controlled pathfinder

algorithm’s pseudo-code is given in Algorithm 1.

4 Results and analysis

The proposed AD stage classification model undergoes

evaluation using a Kaggle dataset, providing a robust framework

for assessing its performance. The forthcoming section will

comprehensively showcase all the experiments conducted and the

corresponding results obtained, offering insights into the efficacy

and potential of the proposed model in accurately diagnosing AD.

4.1 Experimental setup and evaluation
measures

The experimental process of this study is discussed here.

The proposed framework of AD is evaluated on a publically

available dataset that includes four classes as mentioned in Section

3.1. The dataset is divided into 50:50 approaches, and training

data augmentation is performed. The training data extracts and

optimizes features for the best feature selection. The selected

features are classified using machine learning classifiers, and the

following measures are computed: recall rate, precision rate, F1-

Score, MCC, and KAPPA. The entire experimental process has

been conducted on MATLAB2023a using a personal computer

with 128GB RAM, 512FB SSD, and a 12GB Graphics Card of

NVIDIA3060 RTX.

4.2 Proposed ResNet-Self results (random
values)

The proposed ResNet-Self CNN architecture is tested on 1,600

images in this experiment. The hyperparameters of this experiment

are randomly initialized (related work knowledge such as learning

rate 0.0001 and momentum 0.70) and performed training. Features

are extracted from the testing data, and the maximum accuracy
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TABLE 4 Proposed prediction results of AD stages using initialization of random hyperparameters.

S# Classifiers Precision Recall F1-score Kappa MCC Accuracy Time (s)

1 Fine KNN 98.73 98.73 98.72 96.60 98.30 98.7 66.002

2 NNN 99.93 99.93 99.92 99.80 99.90 99.93 33.532

3 MNN 99.90 99.90 99.90 99.73 99.87 99.90 50.399

4 Trilayered NN 99.65 99.65 99.65 99.07 99.53 99.65 41.09

5 Medium KNN 98.99 98.97 98.97 97.27 98.64 98.97 62.531

6 Coarse KNN 83.00 97.60 87.50 30.31 84.03 73.86 63.041

7 Cosine KNN 98.78 98.75 98.75 96.67 98.35 98.75 66.134

8 Bilayered NN 99.88 99.88 99.87 99.67 99.83 99.88 28.071

9 Medium

Gaussian SVM

99.73 99.72 99.73 99.27 99.63 99.72 73.511

Bold values shows the best results.

TABLE 5 Proposed classification results after employing Bayesian optimization-based selection of hyperparameters.

S# Classifiers Precision Recall F1-score Kappa MCC Accuracy Time

1 Fine KNN 98.48 98.48 98.47 95.93 97.97 98.48 35.573

2 NNN 99.90 99.90 99.90 99.73 99.87 99.90 15.874

3 MNN 99.95 99.95 99.95 99.87 99.93 99.95 17.78

4 Trilayered NN 99.75 99.75 99.75 99.33 99.67 99.75 21.891

5 Medium KNN 98.75 98.72 98.72 96.60 98.31 98.72 34.139

6 Coarse KNN 97.11 97.08 97.07 92.20 96.11 97.08 34.571

7 Cosine KNN 98.45 98.40 98.40 95.73 97.89 98.40 37.183

8 Bilayered

KNN

99.58 99.58 99.58 98.87 99.43 99.58 34.292

9 Medium

Gaussian SVM

99.73 99.72 99.73 99.27 99.63 99.72 34.235

Bold values shows the best results.

of 99.93% for the NNN classifier was obtained (results seen in

Table 4). The values of precision measure are 99.93%, and the

Kappa value is 99.80%, respectively. The computational time taken

by the NNN classifier is 33.532 (s), whereas the minimum noted

time is 28.071 (s) for bilayered NN. The rest of the classifiers

obtained accuracies of 98.7, 99.90, 99.65, 98.97, 73.86, 98.75, 99.88,

and 99.72%, respectively.

4.3 Bayesian optimization results

This section presents the results obtained from Bayesian

optimization (BO). We executed our BO algorithm 100 times and

got the value for a learning rate of 0.00010195, momentum value of

0.81079, L2Regularization of 2.8724e−10, and section depth value

of 3. These are the best feasible points. Based on these points, the

classification was performed, and the results are noted in Table 5.

TheMNN classifier achieved amaximum accuracy of 99.95% in this

table. The precision rate of this classifier is 99.95, the Kappa value

of 99.87, and the MCC value of 99.95%, respectively. In addition,

the computation time of this classifier is 17.78 (s). Compared to

the results in Table 4, this experiment shows improved accuracy,

precision, Kappa, and MCC values. Moreover, the computation

time of this experiment was less than that of the results in Table 4.

The results show that selecting hyperparameters using BO can

improve the accuracy and reduce the computational cost.

4.4 Proposed feature selection

Table 6 presents the AD stage classification results using the

proposed selection of BO extracted features. In the first stage of this

table, results are presented for the original pathfinder algorithm.

The PFA was applied to the BO-based deep features extraction and

performed classification. The maximum obtained accuracy for this

experiment is 99.82%. The precision and recall values are 99.83 and

99.83%. In addition, Kappa and MCC measure values of 99.80 and

99.80%, respectively. Compared to Tables 4, 5, the selection results

show better. Moreover, the computation time of each classifier

is also noted, and the minimum noted time for this experiment

is 12.338 (s), which is less than Tables 4, 5. Overall, the time is

decreased after employing the optimization method.

To further improve (minimize) the computational time, we

improved the PFA using Fuzzy Entropy formulation in this study.

The proposed Fuzzy Entropy PFA (FEPFA) results are given in

the second half of Table 6. The maximum obtained accuracy for
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TABLE 6 Proposed classification results after employing Bayesian optimization and proposed feature selection algorithm.

S# Classifiers Precision Recall F1-score Kappa MCC Accuracy Time

Features selection using original PFA

1 Fine KNN 94.34 94.32 94.32 84.82 92.43 94.31 23.406

2 NNN 99.83 99.83 99.82 99.80 99.80 99.82 12.338

3 MNN 99.82 99.80 99.82 99.47 99.80 99.80 14.71

4 Trilayered NN 99.80 99.80 99.80 99.47 99.73 99.80 16.088

5 Medium KNN 98.94 98.92 98.92 97.13 98.57 98.92 14.9

6 Coarse KNN 96.64 96.57 96.57 90.87 95.46 96.57 14.67

7 Cosine KNN 98.73 98.70 98.70 96.53 98.28 98.70 19.92

8 Bilayered

KNN

99.88 99.88 99.87 99.67 99.83 99.80 15.04

9 Medium

Gaussian SVM

99.73 99.73 99.73 99.27 99.63 99.73 17.014

Features selection using proposed fuzzy entropy PFA

1 Fine KNN 99.90 99.90 99.90 99.73 99.87 99.90 18.987

2 NNN 99.93 99.92 99.92 99.80 99.90 99.90 10.231

3 MNN 99.90 99.90 99.90 99.73 99.87 99.90 13.395

4 Trilayered NN 99.73 99.73 99.72 99.27 99.63 99.73 11.411

5 Medium KNN 99.04 99.03 99.03 97.41 98.71 99.03 7.167

6 Coarse KNN 97.05 97.00 96.99 92.00 96.02 97.00 6.77

7 Cosine KNN 98.74 98.70 98.70 96.53 98.28 98.70 8.683

8 Bilayered

KNN

99.85 99.82 99.85 99.60 99.80 99.85 10.336

9 Medium

Gaussian SVM

99.70 99.70 99.70 99.20 99.60 99.70 9.118

Bold values shows the best results.

this technique is 99.90%, whereas the precision rate value of

99.93%. The Kappa and MCC values of this experiment are 99.80

and 99.90%, respectively. In addition, the computation time of

this classifier is 10.231 (s), less than the original PFA (12.338).

Overall, the performance of this technique is improved and time is

minimized. The performance of the NNN classifier can be further

verified using a confusion matrix illustrated in Figure 9. In this

figure, the diagonal values represent the true predicted rates of

each class.

4.5 Discussion and comparison

In this section, a detailed analysis of the proposed study has

been conducted in the form of visual graphs and comparison

with recent state-of-the-art (SOTA) techniques. The proposed

framework of AD stage classification has been discussed in Section

3.1, and the visual illustration is shown in Figure 1. TheMRI dataset

has been used for the experimental process (a few sample images

are shown in Figures 2, 3). The augmentation process has been

performed to increase the number of images for a better training

process. After that, a new model is proposed named ResNet-

Self as shown in Figure 8 for the accurate classification of AD

stages. The performance of AD stage classification is improved

by proposing new FEPFA techniques that select the best features.

The results are presented in Tables 4–6. Table 4 presents results for

the proposed ResNet-Self architecture using random initialization

of hyperparameters. Table 5 presents the results of the proposed

ResNet-Self after employing BO for hyperparameters selection.

Table 5 shows better accuracy, precision rate, MCC, and Kappa

performance than Table 4. The computational time and precision

rate are further improved using the proposed FEPFA feature

selection algorithm, and the results are presented in Table 6. In

this table, accuracy is also improved and time is significantly

decreased. In addition, a comparison is also conducted of the

proposed FEPFA with the original PFA, showing the improvement

in accuracy, precision, MCC, and computational time. Overall,

the time comparison is illustrated in Figure 10. This figure clearly

shows that the proposed selection method consumed less time than

the other steps.

Table 7 compares the methods currently utilized for predicting

AD. To enhance the categorization of early AD phases while

reducing parameters and computational costs, a novel detection

network named DAD-Net was introduced by Mohi et al. (2023).

This network appropriately classified initial AD processes and

depicted class activation characteristics as a heat map of the brain,

achieving 99.2% accuracy using a Kaggle dataset. Additionally,

AI-Atroshi et al. (2022) utilized convolutional layers with freeze
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FIGURE 9

Confusion matrix of the NNN classifier using proposed feature selection algorithm.

FIGURE 10

Comparison among middle steps of the proposed method in terms of computational time.

elements from ImageNet, achieving 99.27% accuracy on ADNI’s

MRI data collection for both binary and ternary classification.

Authors in Shankar et al. (2022) employed a ResNet-18 architecture

using a transfer learning concept and obtained an accuracy of

83.3% on Kaggle datasets. Authors in Sharma et al. (2022) utilized

a CNN-based pre-trained network named ResNet-50 and achieved

91.78% accuracy. Authors in Albright (2019) proposed a ResNet-

15 model and fused it with DenseNet-169 for the classification

of AD prediction. They achieved an improved accuracy of

88.70% on Kaggle’s AD dataset. Furthermore, Soliman et al.

(2022) suggested a novel approach employing three pre-trained

CNN frameworks such as DenseNet196, VGG16, and ResNet-

50, achieving 89% accuracy on MRI brain data from Kaggle.

Hashmi (2024) proposed a compact architecture by merging LeNet

and AlexNet models, achieving 93.58% accuracy on the ADNI

dataset. Goel et al. (2023) proposed a system for automated

AD diagnosis, integrating multiple customized deep-learning

models. This architecture achieved 96.61% accuracy using rs-fMRI

datasets and modified AlexNet and Inception blocks. Ismail et al.

(2023) utilized a new optimized ensemble-based DNN learning

model named MultiAz-Net and obtained 92.3% accuracy on the

ADNI dataset.
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TABLE 7 Comparison of proposed method results with existing techniques.

References Years Models Datasets Results

Ahmed et al. (2022) 2022 CNN based DAD-Net Kaggle 99.22%

Naz et al. (2022) 2022 CNN using freeze features ADNI 99.27%

Oktavian et al. (2002) 2022 CNN with ResNet-18 Kaggle 83.3%

Ebrahimi et al. (2021) 2021 CNN, ResNet-18, temporalCN, RNN ImageNet 91.78%

Al Shehri (2022) 2022 ResNet-15 Kaggle 88.70%

Techa et al. (2022) 2022 ResNet-15 Kaggle 89%

Abunadi (2022) 2022 ResNet-18, AlexNet Kaggle 99.94%

Prasath and Sumathi (2024) 2023 LeNet, AlexNet ADNI 93.58%

Sorour et al. (2024) 2023 AlexNet, Inception blocks ADNI 96.61%

Ismail et al. (2023) 2023 MOGOA ADNI 92.3%

Proposed model ResNet-50 Kaggle 99.99%

Bold values shows the best results.

5 Conclusion and future study

It is challenging to diagnose and predict Alzheimer’s disease

using multiclass datasets promptly. A computerized technique

is widely required for early AD prediction from MRI images.

This study proposes a computerized framework based on deep-

learning and optimization algorithms. A dataset balancing issue has

been resolved at the initial stage using mathematical formulations

that improved the training capability of the proposed ResNet-Self

deep model. The proposed ResNet-Self model is a combination

of ResNet-50 architecture modified by adding the self-attention

module. The self-attention module shows improved accuracy;

however, the random initialization of hyperparameters impacts the

accuracy and computational time. Therefore, we implemented a

BO technique that automatically initialized the hyperparameters

for the training process. Moreover, we proposed a feature selection

algorithm named FEcPFA that selects the best features and shows

improved accuracy (99.90), precision rate, and Kappa value. In

addition, the computational time is significantly reduced, which is

the strength of FEcPFA. The optimized hyperparameters that make

the proposed model less generalized and lead to overfitting are the

limitations of the proposed framework. In the future, a new custom

model will be proposed based on the fire module, and the output

of that module will be employed with self-attention and cross-

validation to overcome overfitting. In addition, more MRI datasets

will be utilized for the experimental process.
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